Effective Removal of Mercury Ions in Aqueous Solutions: A Review

Author(s): Kang Hua, Xueliu Xu, Zhiping Luo, Dong Fang*, Rui Bao*, Jianhong Yi*.

Journal Name: Current Nanoscience

Volume 16 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Due to its high toxicity and bioaccumulation, the existence of mercury in the environment is always a big threat to human beings. In order to control mercury pollution, scientists have put great efforts in the past decades.

Methods: Precipitation, adsorption, membrane separation, biological treatment and ion exchange are reviewed as a remover for mercury removal. For each material type, we not only reported on the removal mechanism, but also discussed the best areas for it. The correlation method and step-to-step focusing method have been used for references.

Results: For better mercury removal, the ways above are compared together. The mechanisms of removing mercury in different ways are summarized in this paper.

Conclusion: With the exploration and application of research, people have mastered a variety of mature technologies for the treatment of mercury-containing wastewater. Using inexpensive adsorbents is a cost-effective method for treating low concentrations of heavy metal wastewater. Ion exchange with a fast removal rate has been widely used in the field of heavy metal removal from wastewater. The biological treatment method can effectively treat low-concentration mercurycontaining wastewater. However, there is still a need to develop novel mercury removers with high capacity, fast removal rate, and low removal limit. Nanomaterials with a high specific surface area on substrate with synergistic effects, such as high adsorption and ion exchange, are the future research points.

Keywords: Mercury, removal, method, wastewater, nanomaterial, mechanism.

[1]
Suvarapu, L.N.; Baek, S.O. Recent developments in the speciation and determination of mercury using various analytical techniques. J. Anal. Methods Chem., 2015, 2015372459
[http://dx.doi.org/10.1155/2015/372459] [PMID: 26236539]
[2]
Tunsu, C.; Wickman, B. Effective removal of mercury from aqueous streams via electrochemical alloy formation on platinum. Nat. Commun., 2018, 9(1), 4876.
[http://dx.doi.org/10.1038/s41467-018-07300-z] [PMID: 30451827]
[3]
Bjørklund, G.; Aaseth, J.; Ajsuvakova, O.P.; Nikonorov, A.A.; Anatoly, V.; Skalny, A.V.; Skalnaya, M.G.; Tinkov, A.A. Molecular interaction between mercury and selenium in neurotoxicity. Coord. Chem. Rev., 2017, 332, 30-37.
[http://dx.doi.org/10.1016/j.ccr.2016.10.009]
[4]
Burger, J.; Gochfeld, M. Spatial and temporal patterns in metal levels in eggs of common terns (Sterna hirundo) in New Jersey. Sci. Total Environ., 2003, 311(1-3), 91-100.
[http://dx.doi.org/10.1016/S0048-9697(03)00135-9] [PMID: 12826386]
[5]
Clarkson, T.W.; Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol., 2006, 36(8), 609-662.
[http://dx.doi.org/10.1080/10408440600845619] [PMID: 16973445]
[6]
Nordberg, G.F.; Fowler, B.A. Interactions and mixtures in metal toxicology, in handbook on the toxicology of metals, 4th ed; Academic Press: San Diego, 2015.
[7]
Clarkson, T.W. Mercury: major issues in environmental health. Environ. Health Perspect., 1993, 100, 31-38.
[http://dx.doi.org/10.1289/ehp.9310031] [PMID: 8354179]
[8]
Crowe, W.; Allsopp, P.J.; Watson, G.E.; Magee, P.J.; Strain, J.J.; Armstrong, D.J.; Ball, E.; McSorley, E.M. Mercury as an environmental stimulus in the development of autoimmunity - A systematic review. Autoimmun. Rev., 2017, 16(1), 72-80.
[http://dx.doi.org/10.1016/j.autrev.2016.09.020] [PMID: 27666813]
[9]
Ullrich, S.M.; Tanton, T.W.; Abdrashitova, S.A. Mercury in the aquatic environment: A review of factors affecting methylation. Crit. Rev. Environ. Sci. Technol., 2001, 31, 241-293.
[http://dx.doi.org/10.1080/20016491089226]
[10]
Milioni, A.L.V.; Nagy, B.V.; Moura, A.L.A.; Zachi, E.C.; Barboni, M.T.S.; Ventura, D.F. Neurotoxic impact of mercury on the central nervous system evaluated by neuropsychological tests and on the autonomic nervous system evaluated by dynamic pupillometry. Neurotoxicology, 2017, 59, 263-269.
[http://dx.doi.org/10.1016/j.neuro.2016.04.010] [PMID: 27090823]
[11]
Bottino, C.; Vázquez, M.; Devesa, V.; Laforenza, U. Impaired aquaporins expression in the gastrointestinal tract of rat after mercury exposure. J. Appl. Toxicol., 2016, 36(1), 113-120.
[http://dx.doi.org/10.1002/jat.3151] [PMID: 25854323]
[12]
Lee, S.W.; Lowry, G.V.; Hsu-Kim, H. Biogeochemical transformations of mercury in solid waste landfills and pathways for release. Environ. Sci. Process. Impacts, 2016, 18(2), 176-189.
[http://dx.doi.org/10.1039/C5EM00561B] [PMID: 26745831]
[13]
Macirella, R.; Guardia, A.; Pellegrino, D.; Bernabò, I.; Tronci, V.; Ebbesson, L.O.; Sesti, S.; Tripepi, S.; Brunelli, E.; Brunelli, E. Effects of two sublethal concentrations of mercury chloride on the morphology and metallothionein activity in the liver of zebrafish (Danio rerio). Int. J. Mol. Sci., 2016, 17(3), 361-366.
[http://dx.doi.org/10.3390/ijms17030361] [PMID: 26978352]
[14]
Oliveri, E.; Manta, D.S.; Bonsignore, M.; Cappello, S.; Tranchida, G.; Bagnato, E.; Sabatino, N.; Santisi, S.; Sprovieri, M. Mobility of mercury in contaminated marine sediments: Biogeochemical pathways. Mar. Chem., 2016, 186, 1-10.
[http://dx.doi.org/10.1016/j.marchem.2016.07.002]
[15]
Pedro, S.; Fisk, A.T.; Tomy, G.T.; Ferguson, S.H.; Hussey, N.E.; Kessel, S.T.; McKinney, M.A. Mercury and persistent organic pollutants in native and invading forage species of the Canadian Arctic: Consequences for food web dynamics. Environ. Pollut., 2017, 229, 229-240.
[http://dx.doi.org/10.1016/j.envpol.2017.05.085] [PMID: 28599207]
[16]
Suvarapu, L.N.; Seo, Y.; Baek, S. Speciation and determination of mercury by various analytical techniques. Rev. Anal. Chem., 2013, 32, 225-245.
[http://dx.doi.org/10.1515/revac-2013-0003]
[17]
Aricò, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater., 2005, 4(5), 366-377.
[http://dx.doi.org/10.1038/nmat1368] [PMID: 15867920]
[18]
Snober, A.; John, B.; Ke, X.; Abdennour, A. A nanoselenium sponge for instantaneous mercury removal to undetectable levels. Adv. Funct. Mater., 2017, 27, 1606572-1606582.
[http://dx.doi.org/10.1002/adfm.201606572]
[19]
Xue, X.Y.; Cheng, R.; Shi, L.; Ma, Z.; Zheng, X. Nanomaterials for water pollution monitoring and remediation. Environ. Chem. Lett., 2017, 15, 23-27.
[http://dx.doi.org/10.1007/s10311-016-0595-x]
[20]
Okoronkwo, N.E.; Igwe, J.C.; Okoronkwo, I.J. Environmental impacts of mercury and its detoxification from aqueous solutions. Afr. J. Biotechnol., 2007, 6, 335-340.
[21]
Liu, J.; Valsaraj, K.T.; Devai, I.; DeLaune, R.D. Immobilization of aqueous Hg(II) by mackinawite (FeS). J. Hazard. Mater., 2008, 157(2-3), 432-440.
[http://dx.doi.org/10.1016/j.jhazmat.2008.01.006] [PMID: 18280650]
[22]
Zhuang, J.M.; Walsh, T.; Lam, T. A new technology for the treatment of mercury contaminated water and soils. Environ. Technol., 2003, 24(7), 897-902.
[http://dx.doi.org/10.1080/09593330309385626] [PMID: 12916841]
[23]
Blue, L.Y.; Jana, P.; Atwood, D.A. Aqueous mercury precipitation with the synthetic dithiolate, BDTH2. Fuel, 2010, 89, 1326-1330.
[http://dx.doi.org/10.1016/j.fuel.2009.10.031]
[24]
Sun, Y.; Liu, Y.L.; Lou, Z.M.; Yang, K.L.; Lv, D.; Zhou, J.S.; Baig, S.A.; Xu, X.H. Enhanced performance for Hg (II) removal using biomaterial (CMC/gelatin/starch) stabilized FeS nanoparticles: Stabilization effects and removal mechanism. Chem. Eng. J., 2018, 344, 616-624.
[http://dx.doi.org/10.1016/j.cej.2018.03.126]
[25]
Khazaei, M.; Nasseri, S.; Ganjali, M.R.; Khoobi, M.; Nabizadeh, R.; Gholibegloo, E.; Nazmara, S. Selective removal of mercury (II) from water using a 2, 2-dithiodisalicylic acid-functionalized graphene oxide nanocomposite: kinetic, thermodynamic, and reusability studies. J. Mol. Liq., 2018, 265, 189-198.
[http://dx.doi.org/10.1016/j.molliq.2018.05.048]
[26]
Abadast, F.; Mouradzadegun, A.; Ganjali, M.R. Rational design, fabrication and characterization of a thiol-rich 3D-porous hypercrosslink polymer as a new engineered Hg2+ sorbent: Enhanced selectivity and uptake. New J. Chem., 2017, 41, 5458-5466.
[http://dx.doi.org/10.1039/C7NJ00663B]
[27]
Atwood, D.A.; Zaman, M.K. Mercury Removal from Water. In: Atwood, D.A., (Ed.). Recent Developments in Mercury Science. Structure and Bonding; Springer: Berlin, Heidelberg, 2006; Vol. 120, pp. 163-182.
[http://dx.doi.org/10.1007/430_013]
[28]
Hadi, P.; Barford, J.; McKay, G. Selective toxic metal uptake using an e-waste-based novel sorbent single, binary and ternary systems. J. Environ. Chem. Eng., 2014, 2, 332-339.
[http://dx.doi.org/10.1016/j.jece.2014.01.004]
[29]
Ismaiel, A.A.; Aroua, M.K.; Yusoff, R. Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water. Chem. Eng. J., 2013, 225, 306-314.
[http://dx.doi.org/10.1016/j.cej.2013.03.082]
[30]
Xu, M.; Hadi, P.; Chen, G.; McKay, G. Removal of cadmium ions from wastewater using innovative electronic waste-derived material. J. Hazard. Mater., 2014, 273, 118-123.
[http://dx.doi.org/10.1016/j.jhazmat.2014.03.037] [PMID: 24727013]
[31]
Perrich, J.R. Activated carbon adsorption for wastewater treatment. Boca Raton, Fla; CRC Press: Chicago, 2018.
[http://dx.doi.org/10.1201/9781351069465]
[32]
Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J., 2010, 156, 11-24.
[http://dx.doi.org/10.1016/j.cej.2009.10.029]
[33]
Benhammou, A.; Yaacoubi, A.; Nibou, L.; Tanouti, B. Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies. J. Colloid Interface Sci., 2005, 282(2), 320-326.
[http://dx.doi.org/10.1016/j.jcis.2004.08.168] [PMID: 15589536]
[34]
Zhang, F.S.; Nriagu, J.O.; Itoh, H. Mercury removal from water using activated carbons derived from organic sewage sludge. Water Res., 2005, 39(2-3), 389-395.
[http://dx.doi.org/10.1016/j.watres.2004.09.027] [PMID: 15644247]
[35]
Di Natale, F.; Erto, A.; Lancia, A.; Musmarra, D. Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides. J. Hazard. Mater., 2011, 192(3), 1842-1850.
[http://dx.doi.org/10.1016/j.jhazmat.2011.07.021] [PMID: 21803490]
[36]
Tchinda, A.J.; Ngameni, E.; Kenfack, I.T.; Walcarius, A. One-step preparation of thiol-functionalized porous clay heterostructures: application to Hg (II) binding and characterization of mass transport issues. Chem. Mater., 2009, 21, 4111-4121.
[http://dx.doi.org/10.1021/cm8024022]
[37]
Chiarle, S.; Ratto, M.; Rovvati, M. Mercury removal from water by ion exchange resins adsorption. Water Res., 2000, 34, 2971-2978.
[http://dx.doi.org/10.1016/S0043-1354(00)00044-0]
[38]
Billinge, S.J.L.; McKimmy, E.J.; Shatnawi, M.; Kim, H.; Petkov, V.; Wermeille, D.; Pinnavaia, T.J. Mercury binding sites in thiol-functionalized mesostructured silica. J. Am. Chem. Soc., 2005, 127(23), 8492-8498.
[http://dx.doi.org/10.1021/ja0506859] [PMID: 15941284]
[39]
Wang, J.; Deng, B.L.; Wang, X.R.; Zheng, J.Z. Adsorption of aqueous Hg (II) by sulfur-impregnated activated carbon. Environ. Eng. Sci., 2009, 26, 1693-1699.
[http://dx.doi.org/10.1089/ees.2008.0418]
[40]
Shin, Y.; Fryxell, G.E.; Um, W.; Parker, K.; Mattigod, S.V.; Skaggs, R. Sulfur-functionalized mesoporous carbon. Adv. Funct. Mater., 2007, 17, 2897-2901.
[http://dx.doi.org/10.1002/adfm.200601230]
[41]
Bag, S.; Trikalitis, P.N.; Chupas, P.J.; Armatas, G.S.; Kanatzidis, M.G. Porous semiconducting gels and aerogels from chalcogenide clusters. Science, 2007, 317(5837), 490-493.
[http://dx.doi.org/10.1126/science.1142535] [PMID: 17656718]
[42]
He, F.; Wang, W.; Moon, J.W.; Howe, J.; Pierce, E.M.; Liang, L. Rapid removal of Hg(II) from aqueous solutions using thiol-functionalized Zn-doped biomagnetite particles. ACS Appl. Mater. Interfaces, 2012, 4(8), 4373-4379.
[http://dx.doi.org/10.1021/am301031g] [PMID: 22853320]
[43]
Nabais, J.V.; Carrott, P.J.M.; Carrott, M.M.L.R.; Belchior, M.; Boavida, D.; Diall, T.; Gulyurtlu, I. Mercury removal from aqueous solution and flue gas by adsorption on activated carbon fibres. Appl. Surf. Sci., 2006, 252, 6046-6052.
[http://dx.doi.org/10.1016/j.apsusc.2005.11.034]
[44]
Cai, J.H.; Jia, C.Q. Mercury removal from aqueous solution using coke-derived sulfur-impregnated activated carbons. Ind. Eng. Chem. Res., 2010, 49, 2716-2721.
[http://dx.doi.org/10.1021/ie901194r]
[45]
Behjati, M.; Baghdadi, M.; Karbassi, A. Removal of mercury from contaminated saline wasters using dithiocarbamate functionalized-magnetic nanocomposite. J. Environ. Manage., 2018, 213, 66-78.
[http://dx.doi.org/10.1016/j.jenvman.2018.02.052] [PMID: 29477852]
[46]
Iannazzo, D.; Pistone, A.; Ziccarelli, I.; Espro, C.; Galvagno, S.; Giofré, S.V.; Romeo, R.; Cicero, N.; Bua, G.D.; Lanza, G.; Legnani, L.; Chiacchio, M.A. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes. Environ. Sci. Pollut. Res. Int., 2017, 24(17), 14735-14747.
[http://dx.doi.org/10.1007/s11356-017-9086-2] [PMID: 28470495]
[47]
Fang, Q.R.; Yuan, D.Q.; Sculley, J.; Li, J.R.; Han, Z.B.; Zhou, H.C. Functional mesoporous metal-organic frameworks for the capture of heavy metal ions and size-selective catalysis. Inorg. Chem., 2010, 49(24), 11637-11642.
[http://dx.doi.org/10.1021/ic101935f] [PMID: 21082837]
[48]
Yee, K.K.; Reimer, N.; Liu, J.; Cheng, S.Y.; Yiu, S.M.; Weber, J.; Stock, N.; Xu, Z. Effective mercury sorption by thiol-laced metal-organic frameworks: in strong acid and the vapor phase. J. Am. Chem. Soc., 2013, 135(21), 7795-7798.
[http://dx.doi.org/10.1021/ja400212k] [PMID: 23646999]
[49]
He, J.; Yee, K.K.; Xu, Z.T.; Zeller, M.; Hunter, A.D.; Chui, S.S.Y.; Che, C.M. Thioether side chains improve the stability, fluorescence, and metal uptake of a metal-organic framework. Chem. Mater., 2011, 23, 2940-2947.
[http://dx.doi.org/10.1021/cm200557e]
[50]
Liu, T.; Che, J.X.; Hu, Y.Z.; Dong, X.W.; Liu, X.Y.; Che, C.M. Alkenyl/thiol-derived metal-organic frameworks (MOFs) by means of postsynthetic modification for effective mercury adsorption. Chemistry, 2014, 20(43), 14090-14095.
[http://dx.doi.org/10.1002/chem.201403382] [PMID: 25210002]
[51]
Sun, D.T.; Peng, L.; Reeder, W.S.; Moosavi, S.M.; Tiana, D.; Britt, D.K.; Oveisi, E.; Queen, W.L. Rapid, selective heavy metal removal from water by a metal-organic framework/polydopamine composite. ACS Cent. Sci., 2018, 4(3), 349-356.
[http://dx.doi.org/10.1021/acscentsci.7b00605] [PMID: 29632880]
[52]
Fan, C.; Li, K.; He, Y.; Wang, Y.; Qian, X.; Jia, J. Evaluation of magnetic chitosan beads for adsorption of heavy metal ions. Sci. Total Environ., 2018, 627, 1396-1403.
[http://dx.doi.org/10.1016/j.scitotenv.2018.02.033] [PMID: 30857103]
[53]
Yilmaz, S.; Sahan, T.; Karabakan, A. Response surface approach for optimization of Hg (II) adsorption by 3-mercaptopropyl trimethoxysilane-modified kaolin minerals from aqueous solution. Korean J. Chem. Eng., 2017, 34, 2225-2235.
[http://dx.doi.org/10.1007/s11814-017-0116-z]
[54]
Sobhanardakani, S.; Zandipak, R. Synthesis and application of TiO2/SiO2/Fe3O4 nanoparticles as novel adsorbent for removal of Cd (II), Hg (II) and Ni (II) ions from water samples. Clean Technol. Environ. Policy, 2017, 19, 1913-1925.
[http://dx.doi.org/10.1007/s10098-017-1374-5]
[55]
Alimohammady, M.; Jahangiri, M.; Kianib, F.; Tahermansouri, H. Highly efficient simultaneous adsorption of Cd (II), Hg (II) and As (III) ions from aqueous solutions by modification of graphene oxide with 3-aminopyrazole: central composite design optimization. New J. Chem., 2017, 41, 8905-8919.
[http://dx.doi.org/10.1039/C7NJ01450C]
[56]
Zhang, D.; Yin, Y.G.; Liu, J.F. Removal of Hg2+ and methylmercury in waters by functionalized multi-walled carbon nanotubes: Adsorption behavior and the impacts of some environmentally relevant factors. Chem. Spec. Bioavail., 2017, 29, 161-169.
[http://dx.doi.org/10.1080/09542299.2017.1378596]
[57]
Ravi, S.; Ahn, W.S. Facile synthesis of a mesoporous organic polymer grafted with 2-aminoethanethiol for Hg2+ removal. Microporous Mesoporous Mater., 2018, 271, 59-67.
[http://dx.doi.org/10.1016/j.micromeso.2018.05.038]
[58]
Song, Y.H.; Lu, M.C.; Huang, B.; Wang, D.L.; Wang, G.; Zhou, L. Decoration of defective MoS2 nanosheets with Fe3O4 nanoparticles as superior magnetic adsorbent for highly selective and efficient mercury ions (Hg2+) removal. J. Alloys Compd., 2018, 737, 113-121.
[http://dx.doi.org/10.1016/j.jallcom.2017.12.087]
[59]
Ifthikar, J.; Jiao, X.; Ngambia, A.; Wang, T.; Khan, A.; Jawad, A.; Xue, Q.; Liu, L.; Chen, Z. Facile one-pot synthesis of sustainable carboxymethyl chitosan-sewage sludge biochar for effective heavy metal chelation and regeneration. Bioresour. Technol., 2018, 262, 22-31.
[http://dx.doi.org/10.1016/j.biortech.2018.04.053] [PMID: 29689437]
[60]
Movahedi, F.; Masrouri, H.; Tayyebi, H. Highly efficient adsorption behavior of benzoylthiourea functionalized graphene oxide with respect to the removal of Hg (II) from aqueous solutions: isothermal, kinetic and thermodynamic studies. Res. Chem. Intermed., 2018, 44, 5419.
[http://dx.doi.org/10.1007/s11164-018-3431-z]
[61]
Muliwa, A.M.; Onyango, M.S.; Maity, A.; Ochieng, A. Batch equilibrium and kinetics of mercury removal from aqueous solutions using polythiophene/graphene oxide nanocomposite. Water Sci. Technol., 2017, 75(12), 2841-2851.
[http://dx.doi.org/10.2166/wst.2017.165] [PMID: 28659524]
[62]
Qu, Z.; Fang, L.; Chen, D.Y.; Xu, H.M.; Yan, N.Q. Effective and regenerable Ag/graphene adsorbent for Hg (II) removal from aqueous solution. Fuel, 2017, 203, 128-134.
[http://dx.doi.org/10.1016/j.fuel.2017.04.105]
[63]
Arshadi, M.; Abdolmaleki, M.K.; Mousavinia, F.; Foroughifard, S.; Karimzadeh, A. Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: Aging time and mechanism study. J. Colloid Interface Sci., 2017, 486, 296-308.
[http://dx.doi.org/10.1016/j.jcis.2016.10.002] [PMID: 27723483]
[64]
Ma, Y.X.; Xing, D.; Shao, W.J.; Du, X.Y.; La, P.Q. Preparation of polyamidoamine dendrimers functionalized magnetic graphene oxide for the adsorption of Hg(II) in aqueous solution. J. Colloid Interface Sci., 2017, 505, 352-363.
[http://dx.doi.org/10.1016/j.jcis.2017.05.104] [PMID: 28601744]
[65]
Gil, A.; Amiri, M.J.; Abedi-Koupai, J.; Eslamian, S. Adsorption/reduction of Hg(II) and Pb(II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions. Environ. Sci. Pollut. Res. Int., 2018, 25(3), 2814-2829.
[http://dx.doi.org/10.1007/s11356-017-0508-y] [PMID: 29143259]
[66]
Ravi, S.; Puthiaraj, P.; Row, K.H.; Park, D.W.; Ahn, W.S. Aminoethanethiol-grafted porous organic polymer for Hg2+ removal in aqueous solution. Ind. Eng. Chem. Res., 2017, 56, 10174-10182.
[http://dx.doi.org/10.1021/acs.iecr.7b02743]
[67]
Huang, L.; He, M.; Chen, B.B.; Cheng, Q.; Hu, B. Highly efficient magnetic nitrogen-doped porous carbon prepared by one-step carbonization strategy for Hg2+ removal from water. ACS Appl. Mater. Interfaces, 2017, 9(3), 2550-2559.
[http://dx.doi.org/10.1021/acsami.6b15106] [PMID: 28051307]
[68]
Alijani, H.; Shariatinia, Z. Synthesis of high growth rate SWCNTs and their magnetite cobalt sulfide nanohybrid as super-adsorbent for mercury removal. Chem. Eng. Res. Des., 2018, 129, 132-149.
[http://dx.doi.org/10.1016/j.cherd.2017.11.014]
[69]
Li, Y.; Li, W.; Liu, Q.; Meng, H.; Lu, Y.; Li, C. Alkynyl carbon materials as novel and efficient sorbents for the adsorption of mercury(II) from wastewater. J. Environ. Sci. (China), 2018, 68, 169-176.
[http://dx.doi.org/10.1016/j.jes.2016.12.016] [PMID: 29908736]
[70]
Rostami, S.; Azizi, S.N.; Asemi, N. Removal of mercury (II) from aqueous solutions via Box-Behnken experimental design by synthesized hierarchical nanoporous ZSM-5 zeolite. J. Iran Chem. Soc., 2018, 15, 1741-1754.
[http://dx.doi.org/10.1007/s13738-018-1371-6]
[71]
Deb, A.K.S.; Dwivedi, V.; Dasgupta, K.; Ali, S.M.; Shenoy, K.T. Novel amidoamine functionalized multi-walled carbon nanotubes for removal of mercury (II) ions from wastewater: Combined experimental and density functional theoretical approach. Chem. Eng. J., 2017, 313, 899-911.
[http://dx.doi.org/10.1016/j.cej.2016.10.126]
[72]
AlOmar, M.K.; Alsaadi, M.A.; Jassam, T.M.; Akib, S.; Ali Hashim, M. Novel deep eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water. J. Colloid Interface Sci., 2017, 497, 413-421.
[http://dx.doi.org/10.1016/j.jcis.2017.03.014] [PMID: 28314146]
[73]
AlOmar, M.K.; Alsaadi, M.A.; Hayyan, M.; Akib, S.; Ibrahim, M.; Hashim, M.A. Allyl triphenyl phosphonium bromide based DES-functionalized carbon nanotubes for the removal of mercury from water. Chemosphere, 2017, 167, 44-52.
[http://dx.doi.org/10.1016/j.chemosphere.2016.09.133] [PMID: 27710842]
[74]
Homayoon, F.; Faghihian, H.; Torki, F. Application of a novel magnetic carbon nanotube adsorbent for removal of mercury from aqueous solutions. Environ. Sci. Pollut. Res. Int., 2017, 24(12), 11764-11778.
[http://dx.doi.org/10.1007/s11356-017-8780-4] [PMID: 28337626]
[75]
Leus, K.; Perez, J.P.H.; Folens, K.; Meledina, M.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P. UiO-66-(SH)2 as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions. Faraday Discuss., 2017, 201, 145-161.
[http://dx.doi.org/10.1039/C7FD00012J] [PMID: 28607993]
[76]
Geng, B.Y.; Wang, H.Y.; Wu, S.; Ru, J.; Tong, C.C.; Chen, Y.F.; Liu, H.Z.; Wu, S.C.; Liu, X.Y. Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg (II) ions from water. ACS Sustain. Chem.& Eng., 2017, 5, 11715-11726.
[http://dx.doi.org/10.1021/acssuschemeng.7b03188]
[77]
Sun, N.; Wen, X.; Yan, C. Adsorption of mercury ions from wastewater aqueous solution by amide functionalized cellulose from sugarcane bagasse. Int. J. Biol. Macromol., 2018, 108, 1199-1206.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.027] [PMID: 29126940]
[78]
Lin, G.; Wang, S.X.; Zhang, L.B.; Hu, T.; Peng, J.H.; Cheng, S.; Fu, L.K. Selective and high efficient removal of Hg2+ onto the functionalized corn bract by hypophosphorous acid. J. Clean. Prod., 2018, 192, 639-646.
[http://dx.doi.org/10.1016/j.jclepro.2018.05.043]
[79]
Huang, L.J.; Peng, C.Y.; Cheng, Q.; He, M.; Chen, B.B.; Hu, B. Thiol-functionalized magnetic porous organic polymers for highly-efficient removal of mercury. Ind. Eng. Chem. Res., 2017, 56, 13696-13703.
[http://dx.doi.org/10.1021/acs.iecr.7b03093]
[80]
Bajpai, A.K.; Dubey, R.; Bajpai, J. Synthesis, characterization, and adsorption properties of a graphene composite sand (GCS) and its application in remediation of Hg (II) ions. Water Air Soil Pollut., 2017, 228, 346-364.
[http://dx.doi.org/10.1007/s11270-017-3511-5]
[81]
Xu, D.; Wu, W.D.; Qi, H.J.; Yang, R.X.; Deng, W.Q. Sulfur rich microporous polymer enables rapid and efficient removal of mercury(II) from water. Chemosphere, 2018, 196, 174-181.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.186] [PMID: 29304455]
[82]
Bansal, M.; Ram, B.; Chauhan, G.S.; Kaushik, A. l-Cysteine functionalized bagasse cellulose nanofibers for mercury(II) ions adsorption. Int. J. Biol. Macromol., 2018, 112, 728-736.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.206] [PMID: 29425868]
[83]
Mao, X.Y.; Wang, L.; Wang, C.Y.; Lichtfouse, E. Glutathione-functionalized melamine sponge, a mimic of a natural antidote, as a quick responsive adsorbent for efficient removal of Hg(II) from aqueous solutions. Environ. Chem. Lett., 2018, 16, 1429-1434.
[http://dx.doi.org/10.1007/s10311-018-0746-3]
[84]
Xiong, C.; Wang, S.X.; Zhang, L.B.; Li, Y.; Srinivasakannan, C.; Peng, J.H. Preparation and application of phosphinic acid functionalized nanosilica for the effective removal of mercury (II) in aqueous solutions. J. Sol-Gel Sci. Technol., 2018, 87, 442-454.
[http://dx.doi.org/10.1007/s10971-018-4723-x]
[85]
Qin, H.; Xiao, R.; Guo, L.; Meng, J.; Chen, J. Mercury (II) adsorption from aqueous solution using nitrogen and sulfur co-doped activated carbon. Water Sci. Technol., 2017, 2017(1), 310-318.
[http://dx.doi.org/10.2166/wst.2018.117] [PMID: 29698245]
[86]
Liu, C.; Peng, J.H.; Zhang, L.B.; Wang, S.X.; Ju, S.H.; Liu, C.H. Mercury adsorption from aqueous solution by regenerated activated carbon produced from depleted mercury-containing catalyst by microwave-assisted decontamination. J. Clean. Prod., 2018, 196, 109-121.
[http://dx.doi.org/10.1016/j.jclepro.2018.06.027]
[87]
Peng, Y.; Liu, X.J.; Gong, X.; Li, X.M.; Liu, Y.F.; Leng, E.W.; Zhang, Y. Enhanced Hg (II) adsorption by monocarboxylic acid-modified microalgae residuals in simulated and practical industrial wastewater. Energy Fuels, 2018, 32, 4461-4468.
[http://dx.doi.org/10.1021/acs.energyfuels.7b03094]
[88]
Alimohammady, M.; Jahangiri, M.; Kiani, F.; Tahermansouri, H. Design and evaluation of functionalized multi-walled carbon nanotubes by 3-aminopyrazole for the removal of Hg (II) and As (III) ions from aqueous solution. Res. Chem. Intermed., 2018, 44, 69-92.
[http://dx.doi.org/10.1007/s11164-017-3091-4]
[89]
Falahian, Z.; Torki, F.; Faghihian, H. Synthesis and application of polypyrrole/Fe3O4 nanosize magnetic adsorbent for efficient separation of Hg2+ from aqueous solution. Glob Chall, 2017, 2(1) 1700078
[http://dx.doi.org/10.1002/gch2.201700078] [PMID: 31565300]
[90]
Wang, Y.Y.; Tang, M.Y.; Shen, H.; Che, G.B.; Qiao, Y.; Liu, B.; Wang, L. Recyclable multifunctional magnetic mesoporous silica nanocomposite for ratiometric detection, rapid adsorption and efficient removal of Hg (II). ACS Sustain. Chem.& Eng., 2018, 6, 1744-1752.
[http://dx.doi.org/10.1021/acssuschemeng.7b03040]
[91]
Patel, K.; Singh, N.; Nayak, J.M.; Jha, B.; Sahoo, S.K.; Kumar, R. Environmentally friendly inorganic magnetic sulfide nanoparticles for efficient adsorption-based mercury remediation from aqueous solution. ChemistrySelect, 2018, 3, 1840-1851.
[http://dx.doi.org/10.1002/slct.201702851]
[92]
Lourenco, M.A.O.; Figueira, P.; Gomes, J.R.B.; Lopes, C.B.; Ferreira, P. Simple, mono and bifunctional periodic mesoporous organosilicas for removal of priority hazardous substances from water: the case of mercury (II). Chem. Eng. J., 2017, 322, 263-274.
[http://dx.doi.org/10.1016/j.cej.2017.04.005]
[93]
Khor, S.W.; Lee, Y.K.; Bin Abas, M.R.; Tay, K.S. Application of chalcone-based dithiocarbamate derivative incorporated sol-gel for the removal of Hg (II) ion from water. J. Sol-Gel Sci. Technol., 2017, 82, 834-845.
[http://dx.doi.org/10.1007/s10971-017-4362-7]
[94]
Esfandiyari, T.; Nasirizadeh, N.; Dehghani, M.; Ehrampoosh, M.H. Graphene oxide based carbon composite as adsorbent for Hg removal: Preparation, characterization, kinetics and isotherms studies. Chin. J. Chem. Eng., 2017, 25, 1170-1175.
[http://dx.doi.org/10.1016/j.cjche.2017.02.006]
[95]
Zarei, S.; Niad, M.; Raanaei, H. The removal of mercury ion pollution by using Fe3O4-nanocellulose: Synthesis, characterizations and DFT studies. J. Hazard. Mater., 2018, 344, 258-273.
[http://dx.doi.org/10.1016/j.jhazmat.2017.10.009] [PMID: 29055199]
[96]
Liang, W.; Li, M.; Zhang, Z.; Jiang, Y.; Awasthi, M.K.; Jiang, S.; Li, R. Decontamination of Hg(II) from aqueous solution using polyamine-co-thiourea inarched chitosan gel derivatives. Int. J. Biol. Macromol., 2018, 113, 106-115.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.101] [PMID: 29471087]
[97]
Abbas, K.; Znad, H.; Awual, M.R. A ligand anchored conjugate adsorbent for effective mercury (II) detection and removal from aqueous media. Chem. Eng. J., 2018, 334, 432-443.
[http://dx.doi.org/10.1016/j.cej.2017.10.054]
[98]
Zhu, H.; Shen, Y.; Wang, Q.; Chen, K.; Wang, X.; Zhang, G.W.; Yang, J.J.; Guo, Y.F.; Bai, R.B. Highly promoted removal of Hg (II) with magnetic CoFe2O4@SiO2 core-shell nanoparticles modified by thiol groups. RSC Advances, 2017, 7, 39204-39215.
[http://dx.doi.org/10.1039/C7RA06163C]
[99]
Taha, A.A.; Moustafa, A.H.E.; Abdel-Rahman, H.H.; Abd El-Hameed, M.M.A. Comparative biosorption study of Hg (II) using raw and chemically activated almond shell. Adsorpt. Sci. Technol., 2018, 36, 521-548.
[http://dx.doi.org/10.1177/0263617417705473]
[100]
Saman, N.; Johari, K.; Song, S.T.; Kong, H.; Cheu, S.C.; Mat, H. High removal efficacy of Hg(II) and MeHg(II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass. Chemosphere, 2017, 171, 19-30.
[http://dx.doi.org/10.1016/j.chemosphere.2016.12.049] [PMID: 28002763]
[101]
(a)Palaniappan, T.; Saman, N.; Mat, H.; Johari, K. Synthesis and characterization of sulfur-functionalized silica nanocapsules as mercury adsorbents. 3rd Advanced Materials Conference, Langkawi, Malaysia, Nov. 28-29, 2016
(b)Ibrahim, S.M.; Noorsal, K.; AIP Conference Proceedings: Advanced Materials for Sustainability and Growth; USA, 2017, pp. 020018-020025.
[102]
Figueiraa, P.; Lourençob, M.A.O.; Pereirac, E.; Gomesa, J.R.B.; Ferreirab, P.; Lopes, C.B. Periodic mesoporous organosilica with low thiol density-a safer material to trap Hg (II) from water. J. Environ. Chem. Eng., 2017, 5, 5043-5053.
[http://dx.doi.org/10.1016/j.jece.2017.09.032]
[103]
Daneshmand, M.; Outokesh, M.; Akbari, A.; Kosari, M.; Tayyebi, A. Synthesis of “L-cysteine-graphene oxide” hybrid by new methods and elucidation of its uptake properties for Hg (II) ion. Sep. Sci. Technol., 2018, 53, 843-855.
[http://dx.doi.org/10.1080/01496395.2017.1418889]
[104]
Lin, L.; Zou, C.J. Kinetic and thermodynamic study of magnetic separable beta-cyclodextrin inclusion complex with organic phosphoric acid applied to removal of Hg2+. J. Chem. Eng. Data, 2017, 62, 762-772.
[http://dx.doi.org/10.1021/acs.jced.6b00827]
[105]
Wang, H.; Liu, Y.; Ifthikar, J.; Shi, L.; Khan, A.; Chen, Z.; Chen, Z. Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with γ-Fe2O3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment. Bioresour. Technol., 2018, 256, 269-276.
[http://dx.doi.org/10.1016/j.biortech.2018.02.019] [PMID: 29454278]
[106]
Rahman, S.K.A.; Yusof, N.A.; Mohammad, F.; Abdullah, A.H.; Idris, A. Ion imprinted polymer monoliths as adsorbent materials for the removal of Hg (II) from real-time aqueous samples. Curr. Sci., 2017, 113, 2282-2291.
[http://dx.doi.org/10.18520/cs/v113/i12/2282-2291]
[107]
Fu, Y.; Huang, Y.; Hu, J. Preparation of chitosan/MCM-41-PAA nanocomposites and the adsorption behaviour of Hg(II) ions. R. Soc. Open Sci., 2018, 5(3) 171927
[http://dx.doi.org/10.1098/rsos.171927] [PMID: 29657793]
[108]
Sun, Y.; Lou, Z.M.; Yu, J.B.; Zhou, X.X.; Lv, D.; Zhou, J.S.; Baig, S.A.; Xu, X.H. Immobilization of mercury (II) from aqueous solution using Al2O3-supported nanoscale FeS. Chem. Eng. J., 2017, 323, 483-491.
[http://dx.doi.org/10.1016/j.cej.2017.04.095]
[109]
Fang, R.Y.; Lu, C.W.; Zhang, W.K.; Xiao, Z.; Chen, H.F.; Liang, C.; Huang, H.; Gan, Y.P.; Zhang, J.; Xia, Y. Supercritical CO2 assisted synthesis of sulfur-modified zeolites as high-efficiency adsorbents for Hg2+ removal from water. New J. Chem., 2018, 42, 3541-3550.
[http://dx.doi.org/10.1039/C7NJ04869F]
[110]
Al Hamouz, O.C.S. New phenol-glycol cross-linked polymers for efficient removal of mercury from aqueous solutions. Arab. J. Sci. Eng., 2018, 43, 211-219.
[http://dx.doi.org/10.1007/s13369-017-2847-x]
[111]
Raghu, M.S.; Kumar, K.Y.; Rao, S.; Aravinda, T.; Sharma, S.C.; Prashanth, M.K. Simple fabrication of reduced graphene oxide-few layer MoS2 nanocomposite for enhanced electrochemical performance in supercapacitors and water purification. Physica B, 2018, 537, 336-345.
[http://dx.doi.org/10.1016/j.physb.2018.02.017]
[112]
Dean, J.D.; Mason, R.P. Mercury bioaccumulation potential from wastewater treatment plants in receiving waters: phase 1 final report American Geophysical Union, Fall Meeting Abstracts, 2008. Water Environment Federation Report 05-WEM-1OC, Water Environment Federation, Alexandria, Virginia, 2009.
[113]
Urgun-Demirtas, M.; Benda, P.L.; Gillenwater, P.S.; Negri, M.C.; Xiong, H.; Snyder, S.W. Achieving very low mercury levels in refinery wastewater by membrane filtration. J. Hazard. Mater., 2012, 215-216, 98-107.
[http://dx.doi.org/10.1016/j.jhazmat.2012.02.040] [PMID: 22410725]
[114]
Bessbousse, H.; Rhlalou, T.; Verchère, J.F.; Lebrun, L. Mercury removal from wastewater using a poly(vinylalcohol)/poly (vinylimidazole) complexing membrane. Chem. Eng. J., 2010, 164, 37-48.
[http://dx.doi.org/10.1016/j.cej.2010.08.004]
[115]
Wang, J.Q.; Wang, X.X.; Zhang, P.; An, J.H.; Cao, B.; Geng, Y.T.; Luo, T.; Wang, L.F.; Pan, K. Thiol-functionalized electrospun polyacrylonitrile nanofibrous membrane for highly efficient removal of mercury ions. Chem. Eng. Res. Des., 2016, 113, 1-8.
[http://dx.doi.org/10.1016/j.cherd.2016.07.007]
[116]
Yu, X.Q.; Liu, W.; Deng, X.L.; Yan, S.Y.; Su, Z.Q. Gold nanocluster embedded bovine serum albumin nanofibers-graphene hybrid membranes for the efficient detection and separation of mercury ion. Chem. Eng. J., 2018, 335, 176-184.
[http://dx.doi.org/10.1016/j.cej.2017.10.148]
[117]
Chen, G.; Hai, J.; Wang, H.; Liu, W.; Chen, F.; Wang, B. Gold nanoparticles and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of mercury(ii). Nanoscale, 2017, 9(9), 3315-3321.
[http://dx.doi.org/10.1039/C6NR09638G] [PMID: 28225117]
[118]
Menger-Krug, E.; Niederste-Hollenberg, J.; Hillenbrand, T.; Hiessl, H. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances. Environ. Sci. Technol., 2012, 46(21), 11505-11514.
[http://dx.doi.org/10.1021/es301967y] [PMID: 23050661]
[119]
Chen, S.; Wilson, D.B. Construction and characterization of Escherichia coli genetically engineered for bioremediation of Hg(2+)-contaminated environments. Appl. Environ. Microbiol., 1997, 63(6), 2442-2445.
[http://dx.doi.org/10.1128/AEM.63.6.2442-2445.1997] [PMID: 9172366]
[120]
von Canstein, H.; Li, Y.; Timmis, K.N.; Deckwer, W.D.; Wagner-Döbler, I. Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Appl. Environ. Microbiol., 1999, 65(12), 5279-5284.
[http://dx.doi.org/10.1128/AEM.65.12.5279-5284.1999] [PMID: 10583977]
[121]
Deng, X.; Wilson, D.B. Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Appl. Microbiol. Biotechnol., 2001, 56(1-2), 276-279.
[http://dx.doi.org/10.1007/s002530100620] [PMID: 11499944]
[122]
Green-Ruiz, C. Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresour. Technol., 2006, 97(15), 1907-1911.
[http://dx.doi.org/10.1016/j.biortech.2005.08.014] [PMID: 16219462]
[123]
Chien, M.; Nakahata, R.; Tetsuya, O.; Keisuke, M.; Ginro, E. Mercury removal and recovery by immobilized Bacillus megaterium MB1. Front. Chem. Sci. Eng., 2012, 6, 192-197.
[http://dx.doi.org/10.1007/s11705-012-1284-3]
[124]
Anagnostopoulos, V.A.; Manariotis, I.D.; Karapanagioti, H.K.; Chrysikopoulos, C.V. Removal of mercury from aqueous solutions by malt spent rootlets. Chem. Eng. J., 2012, 213, 135-141.
[http://dx.doi.org/10.1016/j.cej.2012.09.074]
[125]
Ghodbane, I.; Hamdaoui, O. Removal of mercury(II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies. J. Hazard. Mater., 2008, 160(2-3), 301-309.
[http://dx.doi.org/10.1016/j.jhazmat.2008.02.116] [PMID: 18400378]
[126]
Wang, J.J.; Guo, Y.Y.; Guo, D.L.; Yin, S.L.; Kong, D.L.; Liu, Y.S.; Zeng, H. Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal. Environ. Sci. Technol., 2012, 46(2), 769-777.
[http://dx.doi.org/10.1021/es2018708] [PMID: 22126585]
[127]
Li, S.X.; Zheng, F.Y.; Yang, H.; Ni, J.C. Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder. J. Hazard. Mater., 2011, 186(1), 423-429.
[http://dx.doi.org/10.1016/j.jhazmat.2010.11.009] [PMID: 21134716]
[128]
Gode, F.; Pehlivan, E. Removal of chromium(III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature. J. Hazard. Mater., 2006, 136(2), 330-337.
[http://dx.doi.org/10.1016/j.jhazmat.2005.12.021] [PMID: 16439060]
[129]
Dujardin, M.C.; Caze, C.; Vroman, I. Ion-exchange resins bearing thiol groups to remove mercury. Part 1: Synthesis and use of polymers prepared from thioester supported resin. React. Funct. Polym., 2000, 43, 123-132.
[http://dx.doi.org/10.1016/S1381-5148(99)00011-5]
[130]
Xiong, C.H.; Chen, X.Y.; Liu, X.Z. Synthesis, characterization and application of ethylenediamine functionalized chelating resin for copper preconcentration in tea samples. Chem. Eng. J., 2012, 203, 115-122.
[http://dx.doi.org/10.1016/j.cej.2012.06.131]
[131]
Brozek, C.K.; Dincă, M. Cation exchange at the secondary building units of metal-organic frameworks. Chem. Soc. Rev., 2014, 43(16), 5456-5467.
[http://dx.doi.org/10.1039/C4CS00002A] [PMID: 24831234]
[132]
Rivest, J.B.; Jain, P.K. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev., 2013, 42(1), 89-96.
[http://dx.doi.org/10.1039/C2CS35241A] [PMID: 22968228]
[133]
Amara-Rekkab, A.; Didi, M.A. Design optimization of extraction procedure for mercury (II) using Chelex 100 resin. Desalination Water Treat., 2016, 57, 6950-6958.
[http://dx.doi.org/10.1080/19443994.2015.1012745]
[134]
Zhuo, W.Q.; Xu, H.A.; Huang, R.S.; Zhou, J.; Tong, Z.Z.; Xie, H.J.; Zhang, X. A chelating polymer resin: slynthesis, characterization, adsorption and desorption performance for removal of Hg (II) from aqueous solution. J. Iran Chem. Soc., 2017, 14, 2557-2566.
[http://dx.doi.org/10.1007/s13738-017-1190-1]
[135]
Qi, Y.X.; Jin, X.L.; Yu, C.; Wang, Y.; Yang, L.Q.; Li, Y.F. A novel chelating resin containing high levels of sulfamine group: Preparation and its adsorption characteristics towards p-toluenesulfonic acid and Hg (II). Chem. Eng. J., 2013, 233, 315-322.
[http://dx.doi.org/10.1016/j.cej.2013.08.016]
[136]
Elwakeel, K.Z.; Guibal, E. Potential use of magnetic glycidyl methacrylate resin as a mercury sorbent: From basic study to the application to wastewater treatment. J. Environ. Chem. Eng., 2016, 4, 3632-3645.
[http://dx.doi.org/10.1016/j.jece.2016.08.001]
[137]
Zhou, Y.; Zhang, J.P.; Luo, X.G.; Luo, Y.J. Enhanced adsorption of mercury (II) and cadmium (II) from aqueous solution onto rice bran modified with chelating ligands. BioResources, 2016, 11, 7145-7161.
[http://dx.doi.org/10.15376/biores.11.3.7145-7161]
[138]
Qu, Z.; Yan, L.; Li, L.; Xu, J.; Liu, M.; Li, Z.; Yan, N. Ultraeffective ZnS nanocrystals sorbent for mercury(II) removal based on size-dependent cation exchange. ACS Appl. Mater. Interfaces, 2014, 6(20), 18026-18032.
[http://dx.doi.org/10.1021/am504896w] [PMID: 25299972]
[139]
Ray, C.; Sarkar, S.; Dutta, S.; Roy, A.; Sahoo, R.; Negishi, Y.; Pal, T. Evolution of tubular copper sulfide nanostructures from copper (I)-metal organic precursor: A superior platform for the removal of Hg (II) and Pb (II) ions. RSC Advances, 2015, 5, 12446-12453.
[http://dx.doi.org/10.1039/C4RA09999K]
[140]
Gupta, S.; Kershaw, S.V.; Rogach, A.L. 25th anniversary article: Ion exchange in colloidal nanocrystals. Adv. Mater., 2013, 25(48), 6923-6943.
[http://dx.doi.org/10.1002/adma.201302400] [PMID: 24108549]
[141]
Smith, A.M.; Nie, S. Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange. J. Am. Chem. Soc., 2011, 133(1), 24-26.
[http://dx.doi.org/10.1021/ja108482a] [PMID: 21142154]
[142]
Wang, Y.; Wang, P.P.; Wu, Y.; Di, J.W. A cathodic “signal-on” photoelectrochemical sensor for Hg2+ detection based on ion-exchange with ZnS quantum dots. Sens. Actuators B Chem., 2018, 254, 910-915.
[http://dx.doi.org/10.1016/j.snb.2017.07.149]
[143]
Crasto de Lima, F.D.; Miwa, R.H.; Miranda, C.R. Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study. J. Chem. Phys., 2017, 147(17)174704
[http://dx.doi.org/10.1063/1.5009585] [PMID: 29117701]
[144]
Gupta, S.; Kershaw, S.V.; Susha, A.S.; Wong, T.L.; Higashimine, K.; Maenosono, S.; Rogach, A.L. Near-infrared-emitting Cd(x)Hg(1-x)Se nanorods fabricated by ion exchange in an aqueous medium. ChemPhysChem, 2013, 14(12), 2853-2858.
[http://dx.doi.org/10.1002/cphc.201300084] [PMID: 23818114]
[145]
Mestrea, S.; Sales, S.; Palacios, M.D.; Lorente, M.M.; Mallol, G.; Pérez-Herranz, V. Low-cost inorganic cation exchange membrane for electrodialysis: optimum processing temperature for the cation exchanger. Desalination Water Treat., 2013, 51, 3317-3324.
[http://dx.doi.org/10.1080/19443994.2012.749177]
[146]
Gupta, S.; Zhovtiuk, O.; Vaneski, A.; Lin, Y.C.; Chou, W.C.; Kershaw, S.V.; Rogach, A.L. CdxHg(1−x)Te alloy colloidal quantum dots: tuning optical properties from the visible to near-infrared by ion exchange. Part. Part. Syst. Charact., 2013, 30, 346-354.
[http://dx.doi.org/10.1002/ppsc.201200139]
[147]
Ansari, S.A.; Khan, F.; Ahmad, A.; Raza, W.; Ahmad, M. Synthesis, characterization, electrical and photocatalytic studies of polyacrylamide Zr(IV) phosphosulphosalicylate, a cation exchanger: Its application in the removal of Hg(II) from aqueous solution. Arab. J. Sci. Eng., 2017, 42, 4351-4364.
[http://dx.doi.org/10.1007/s13369-017-2438-x]
[148]
Fang, L.; Li, L.; Qu, Z.; Xu, H.; Xu, J.; Yan, N. A novel method for the sequential removal and separation of multiple heavy metals from wastewater. J. Hazard. Mater., 2018, 342, 617-624.
[http://dx.doi.org/10.1016/j.jhazmat.2017.08.072] [PMID: 28892798]
[149]
Xiong, Y.H.; Su, L.J.; Yang, H.G.; Zhang, P.; Ye, F.G. Fabrication of copper sulfide using a Cu-based metal organic framework for colorimetric determination and efficient removal of Hg2+ in aqueous solutions. New J. Chem., 2015, 39, 9221-9227.
[http://dx.doi.org/10.1039/C5NJ01348H]
[150]
Ma, L.; Islam, S.M.; Xiao, C.; Zhao, J.; Liu, H.; Yuan, M.; Sun, G.; Li, H.; Ma, S.; Kanatzidis, M.G. Rapid simultaneous removal of toxic anions [HSeO3]-, [SeO3]2-, and [SeO4]2-, and metals Hg2+, Cu2+, and Cd2+ by MoS42- intercalated layered double hydroxide. J. Am. Chem. Soc., 2017, 139(36), 12745-12757.
[http://dx.doi.org/10.1021/jacs.7b07123] [PMID: 28782951]
[151]
Huang, Y.; Tang, J.C.; Gai, L.S.; Gong, Y.Y.; Guan, H.W.; He, R.Z.; Lyu, H.H. Different approaches for preparing a novel thiol-functionalized graphene oxide/Fe-Mn and its application for aqueous methylmercury removal. Chem. Eng. J., 2017, 319, 229-239.
[http://dx.doi.org/10.1016/j.cej.2017.03.015]
[152]
Mohammad, A. Inamuddin; Hussain, S. Synthesis and physicochemical characterization of excellent thermally stable and mercury selective organic-inorganic composite cation exchanger polyvinyl alcohol thorium (IV) phosphate. Desalination Water Treat., 2016, 57, 13795-13806.
[http://dx.doi.org/10.1080/19443994.2015.1065768]
[153]
Lito, P.F.; Aniceto, J.P.S.; Silva, C.M. Modelling ion exchange kinetics in zeolyte-typematerials using Maxwell-Stefan approach. Desalination Water Treat., 2014, 52, 5333-5342.
[http://dx.doi.org/10.1080/19443994.2013.815682]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2020
Page: [363 - 375]
Pages: 13
DOI: 10.2174/1573413715666190112110659

Article Metrics

PDF: 20
HTML: 4