A Facile Synthesis of Oxiranes Possessing Three or Four Carbonyl Groups

Author(s): Haruyasu Asahara*, Shuhei Kikuchi, Yuto Unno, Soichi Yokoyama, Kotaro Yoshioka, Shinki Tani, Kazuto Umezu, Nagatoshi Nishiwaki*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Tri-carbonylated oxiranes were efficiently synthesized by condensing a vicinal tricarbonyl compound with α-bromoketones in the presence of a base. This protocol was applicable to α–bromo-β-keto esters to create tetra-carbonylated oxiranes, from which trifunctionalized bromoalkene was competitively formed. The ratio of these compounds was influenced by the solvent and reaction temperature.

Keywords: Polycarboylated oxirane, polyfunctionalized bromoalkene, vicinal tricarbonyl compound, α-bromo ketone, oxetane intermediate, trifunctionalized bromoalkene.

Zhang, X.; Yang, X.; Wang, H.; Li, S.; Guo, K.; Jiang, D.; Xiao, J.; Liang, D. Design, synthesis, and structure-activity relationship study of epoxysuccinyl-peptide derivatives as cathepsin B inhibitors. Biol. Pharm. Bull., 2017, 40, 1240-1246.
Garcia-Castro, M.; Annamalai, M.; Golz, C.; Strohmann, C.; Kumar, K. Stereoselective synthesis of trisubstituted epoxides marks the route to chiral building blocks with quaternary centers. Eur. J. Org. Chem., 2017, 5660-5665.
Basak, S.; Mal, D. Applications of [4+2] anionic annulation and carbonyl-ene reaction in the synthesis of anthraquinones, tetrahydroanthraquinones, and pyranonaphthoquinones. J. Org. Chem., 2017, 82, 11035-11051.
Lv, L.; Snider, B.B.; Li, Z. Total synthesis and structure revision of (±)-clavilactone D through selective cyclization of an α,β- dicarbonyl peroxide. J. Org. Chem., 2017, 82, 5487-5491.
He, Z.; Qi, X.; She, Z.; Zhao, Y.; Li, S.; Tang, J.; Gao, G.; Lan, Y.; You, J. Room-temperature coupling/decarboxylation reaction of α-oxocarboxylates with α-bromoketones: solvent-controlled regioselectivity for 1,2- and 1,3-diketones. J. Org. Chem., 2017, 82, 1403-1411.
Kamo, S.; Yoshioka, K.; Kuramochi, K.; Tsubaki, K. Total syntheses of juglorescein and juglocombins A and B. Angew. Chem. Int. Ed., 2016, 55, 10317-10320.
Shu, L.; Shi, Y. Asymmetric epoxidation using hydrogen peroxide (H2O2) as primary oxidant. Tetrahedron Lett., 1999, 40, 8721-8724.
Chien, C-S.; Kawasaki, T.; Sakamoto, M.; Tamura, Y.; Kita, Y. Stereospecific epoxidation of cis-2-butene-1,4-diones to cis-2,3-epoxybutane-1,4-diones with oxodiperoxomolybdenum(VI), MoO5·H2O·HMPA. Chem. Pharm. Bull., 1985, 33, 2743-2749.
Katsuki, T.; Sharpless, K.B. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc., 1980, 102, 5974-5976.
Chen, W-p.; Egar, A.L.; Hursthouse, M.B.; Malik, K.M.A.; Mathews, J.E.; Roberts, S.M. Tetrahedron Lett., 1998, 39, 8495-8498.
Takano, S.; Samizu, K.; Sugiura, T.; Ogasawara, K. Asymmetric construction of optically active 3-hydroxyalkyne functionalities. J. Chem. Soc. Chem. Commun., 1989, 1344-1345.
Astarita, A.; Cermola, F.; DellaGreca, M.; Iesce, M.; Maria, R.; Previtera, L.; Rubino, M. Photooxygenation of furans in water and ionic liquid solutions. Green Chem., 2009, 11, 2030-2033.
Iesce, M.R.; Cermola, F.; Guitto, A.; Scarpati, R.; Graziano, M.L. Photosensitized oxidation of furans. 19. Stereoselective synthesis of functionalized methyl cis-3-aroyl-2,3-epoxypropanoates via 5-aryl-5-hydroperoxy-2,2-dimethoxy-2,5-dihydrofurans. Synlett, 1995, 1161-1162.
Claessens, S.; Habonimana, P.; De Kimpe, N. Synthesis of naturally occurring naphthoquinone epoxides and application in the synthesis of β-lapachone. Org. Biomol. Chem., 2010, 8, 3790-3795.
De, S.R.; Ghorai, S.K.; Mal, D. Synthesis and rearrangement of quinone-embedded epoxycyclopentenones: a new avenue to pyranonaphthoquinones and indenopyranones. J. Org. Chem., 2009, 74, 1598-1604.
Kotha, S.; Stoodley, R.J. Enantioselective synthesis of (+)-4-demethoxy-1,4-dimethyldaunomycinone. Bioorg. Med. Chem., 2002, 10, 621-624.
Lin, W-H.; Fang, J-M.; Cheng, Y-S. Diterpenoids and steroids from Taiwania cryptomerioides. Phytochem, 1998, 48, 1391-1397.
Edwards, W.D.; Gupta, R.C.; Raynor, C.M.; Stoodley, R.J. Studies related to anthracyclines. Part 3. Stereoselective synthesis of (+)-daunomycinone. J. Chem. Soc., Perkin Trans.1, 1991, 1913-1918.
Dandia, A.; Laxkar, A.K.; Bhaskaran, S. Sodium carbonate sesquiperhydrate (2Na2CO3-3H2O2) catalysed one-pot synthesis of biologically dynamic novel substituted spirooxirane dicarboxamides. Curr. Catal., 2012, 1, 171-179.
Metwally, S.A.M.; Abdel, M.; Maisa, I.; Elossely, Y.A.; Radwa, I.; Abou-Hadeed, K. Synthesis and crystal structure of some 3,5-pyrazolidinediones. Chem. Heterocycl. Compd., 2010, 46, 426-437.
Schank, K.; La Vecchia, L.; Lick, C. Chemistry of free cyclic vicinal tricarbonyl compounds (“1,2,3-triones”). Part 1. Reaction of diazomethane and its derivatives with 5,5-dimethylcyclohexane-1,2,3-trione (=”Oxo-dimedone”) and related cyclohexane-1,2,3-triones. Helv. Chim. Acta, 2001, 84, 2071-2088.
An example synthesis of tri-carbonylated oxirane using DEMO was reported, in which sulfur ylide was used .
Liu, J.; Yang, D.; Yang, X.; Nie, M.; Wu, G.; Wang, Z.; Li, W.; Liu, Y.; Gong, P. Design, synthesis and biological evaluation of novel 4-phenoxyquinoline derivatives containing 3-oxo-3,4-dihydroquinoxaline moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2017, 25, 4475-4486.
Whitehead, A.; Zhang, Y.; McCabe Dunn, J.; Sherer, E.C.; Lam, Y-h.; Stelmach, J.; Sun, A.; Shiroda, M.; Orr, R.K.; Waddell, S.T.; Raghavan, S. Selective formation of functionalized α-quaternary malononitriles toward 5,5-disubstituted pyrrolopyrimidinones. Org. Lett., 2017, 19, 4448-4451.
Kattamuri, P.V.; Yin, J.; Siriwongsup, S.; Kwon, D.; Ess, D.H.; Li, Q.; Li, G.; Yousfuddin, M.; Richardson, P.F.; Sutton, S.C.; Kurti, L. Practical singly and doubly electrophilic aminating agents: a new, more sustainable platform for carbon-nitrogen bond formation. J. Am. Chem. Soc., 2017, 139, 11184-11196.
Macharia, J.; Wambua, V.; Hong, Y.; Harris, L.; Hirschi, J.S.; Evans, G.B.; Vetticatt, M.J. A designed approach to enantiodivergent enamine catalysis. Angew. Chem. Int. Ed., 2017, 56, 8756-8760.
Kang, C.W.; Sarnowski, M.P.; Elbatrawi, Y.M.; Del Valle, J.R. Access to enantiopure α-hydrazino acids for N-amino peptide synthesis. J. Org. Chem., 2017, 82, 1833-1841.
Yuan, C.; Du, B.; Deng, H.; Man, Y.; Liu, B. Total syntheses of sarcandrolide J and shizukaol D: lindenane sesquiterpenoid [4+2] dimers. Angew. Chem. Int. Ed., 2017, 56, 637-640.
Asahara, H.; Inoue, K.; Tani, S.; Umezu, K.; Nishiwaki, N. Direct synthesis of N-acyl-N,O-hemiacetals via nucleophilic addition of unactivated amides and their O-acetylation: Access to α,α-difunctionalized N-acylimines. Adv. Synth. Catal., 2016, 358, 2817-2828.
Wu, Y.; Sun, P.; Zhang, K.; Yang, T.; Yao, H.; Lin, A. Rh(III)-catalyzed redox-neutral annulation of primary benzamides with diazo compounds: approach to isoquinolinones. J. Org. Chem., 2016, 81, 2166-2173.
Kano, T.; Yamamoto, A.; Song, S.; Maruoka, K. Catalytic asymmetric synthesis of isoxazoline-N-oxides through conjugate addition-cyclization under phase-transfer conditions. Bull. Chem. Soc. Jpn., 2011, 84, 1057-1065.
Han, M.; Nam, K-D.; Hahn, H-G.; Shin, D. Unexpected formation of new bicyclic γ-lactams by dimerization of α-chloroacetoacetanilides. Tetrahedron Lett., 2008, 49, 5217-5219.
Takahashi, Y.; Fujiwara, H.; Tamura, T. Pyridopyrimidine derivatives as antiperistaltics. Jpn. Kokai Tokkyo Koho1986, JP 61289089. (Chem. Abstr., 1987, 106, 196458).
Mulvaney, J.E.; Cramer, R.J.; Hall, H.K., Jr Reduction potentials of olefinic electron acceptor monomers. J. Polymer Sci. Polymer Chem. Ed., 1983, 21, 309-314.
Borah, A.; Sharma, A.; Hazarika, H.; Sharma, K.; Gogoi, P. Synthesis of 1-azaanthraquinone: sequential C-N bond formation/Lewis acid catalyzed intramolecular cyclization strategy. J. Org. Chem., 2017, 82, 8309-8316.
Yin, H.; Dantale, S.W.; Akhmedov, N.G.; Soderberg, B.C.G. Formation of 2-halomethylene-4- cyclopentene-1,3-diones and/or 2- halo-1,4-benzoquinones via ring- expansion of 4-ethynyl-4-hydroxy-2,3- substituted-2-cyclobuten-1-ones. Total synthesis of methyl linderone. Tetrahedron, 2013, 69, 9284-9293.
Benniston, A.C.; Winstanley, T.P.L.; Lemmetyinen, H.; Tkachenko, N.V.; Harrington, R.W.; Wills, C. Large Stokes shift fluorescent dyes based on a highly substituted terephthalic acid core. Org. Lett., 2012, 14, 1374-1377.
Hegedues, L.; Foersterling, H-D.; Onel, L.; Wittmann, M.; Noszticzius, Z. Contribution to the chemistry of the Belousov-Zhabotinsky reaction. Products of the ferriin-bromomalonic acid and the ferriin-malonic acid reactions. J. Phys. Chem. A, 2006, 110, 12839-12844.
Lee, J.C.; Bae, Y.H.; Chang, S-K. Efficient α-halogenation of carbonyl compounds by N-bromosuccinimide and N-chlorosuccinimide. Bull. Kor Chem. Soc., 2003, 24, 407-408.
Cramer, R.J.; Hall, H.K., Jr Reduction potentials of olefinic electron acceptor monomers. J. Polymer Sci. Polymer Chem. Ed., 1983, 21, 309-314.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [97 - 102]
Pages: 6
DOI: 10.2174/1385272823666190112103813
Price: $58

Article Metrics

PDF: 33