Ionic Liquids: A Versatile Medium for the Synthesis of Six-membered Two Nitrogen- Containing Heterocycles

Author(s): Navjeet Kaur*

Journal Name: Current Organic Chemistry

Volume 23 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Due to special properties of ILs (ionic liquids) like their wide liquid range, good solvating ability, negligible vapour pressure, non-inflammability, environmentfriendly medium, high thermal stability, easy recycling and rate promoters etc. they are used in organic synthesis. Therefore, ionic liquids have attracted the attention of chemists and act as a catalyst and reaction medium in organic reaction with high activity. There is no doubt that ionic liquids have become a major subject of study for modern chemistry. More publications in the field have been observed each year, although there is some evidence that this is beginning to plateau at approximately 3500 papers each year. They have been the subject of several major reviews and books, dealing with different applications and aspects of their behavior. Highly efficient methods are explored for the preparation of six-membered two nitrogen-containing heterocycles with the application of IL as a catalyst and reaction medium from 1893 to 2018.

Keywords: Ionic liquid, heterocycles, nitrogen-containing heterocycles, aza heterocycles, pyrimidine, quinazoline, quinoxaline.

(a) Farghaly, A.M.; Soliman, R.; Khalil, M.A.; Bekhit, A.A.; Din, A.; Bekhit, A. Thioglycolic acid and pyrazole derivatives of 4(3H)-quinazolinone: synthesis and antimicrobial evaluation. Boll. Chim. Farm., 2002, 141(5), 372-378.
(b) Kaur, N. Synthesis of six and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48(11), 1235-1258.
(c) Kaur, N. Photochemical reactions as key steps in five-membered N-heterocycles synthesis. Synth. Commun., 2018, 48(11), 1259-1284.
(d) Kaur, N. Solid-phase synthesis of sulfur containing heterocycles. J. Sulfur Chem., 2018, 39(5), 544-577.
(e) Kaur, N. Copper catalysts in the synthesis of five-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15, 940-971.
(f) Kaur, N. Recent developments in the synthesis of nitrogen containing five-membered polyheterocycles using rhodium catalysts. Synth. Commun., 2018, 48, 2457-2474.
(g) Zohreh, N.; Alizadeh, A. Uncatalyzed one-pot synthesis of highly substituted pyridazines and pyrazoline-spirooxindoles via domino SN/condensation/aza-ene addition cyclization reaction sequence. ACS Comb. Sci., 2013, 15(6), 278-286.
(h) Zohreh, N.; Alizadeh, A.; Bijanzadeh, H.R.; Zhu, L-G. Novel approach to 1,5-benzodiazepine-2-ones containing peptoid backbone via one-pot diketene-based Ugi-4CR. J. Comb. Chem., 2010, 12(4), 497-502.
(a) Kaur, N. Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2014, 49, 86-119.
(b) Kaur, N.; Kishore, D. Nitrogen-containing six-membered heterocycles: solid-phase synthesis. Synth. Commun., 2014, 44(9), 1173-1211.
(c) Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen containing heterocycles. Synth. Commun., 2014, 44(8), 1019-1042.
(d) Kaur, N. Microwave-assisted synthesis of five membered O-heterocycles. Synth. Commun., 2014, 44(24), 3483-3508.
(e) Kaur, N. Microwave-assisted synthesis of five membered O,N-heterocycles. Synth. Commun., 2014, 44(24), 3509-3537.
(f) Kaur, N. Microwave-assisted synthesis of five membered O,N,N-heterocycles. Synth. Commun., 2014, 44(22), 3229-3247.
(g) Párkányi, C.; Schmidt, D.S. Synthesis of 5-chloro-2-methyl-3-(5-methylthiazol-2-yl)-4(3H)-quinazolinone and related compounds with potential biological activity. J. Heterocycl. Chem., 2000, 37, 725-729.
(h) Kaur, N. Ruthenium catalysis in six-membered O-heterocycles synthesis. Synth. Commun., 2018, 48, 1551-1587.
(i)Kaur, N. Green synthesis of three to five-membered O-heterocycles using ionic liquids. Synth. Commun., 2018, 48, 1588-1613.
(j)Kaur, N. Ultrasound-assisted green synthesis of five-membered O- and S-heterocycles. Synth. Commun., 2018, 48, 1715-1738.
(k)Kaur, N. Photochemical mediated reactions in five-membered O-heterocycles synthesis. Synth. Commun., 2018, 48(17), 2119-2149.
(l)Kaur, N. Ruthenium catalyzed synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2018, 99, 82-107.
(a) Dabiri, M.; Salehi, P.; Baghbanzadeh, M. Ionic liquid promoted eco-friendly and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Monatshefte fur Chemie-Chem. Monthly, 2007, 138, 1191-1194.
(b) Kaur, N. Palladium-catalyzed approach to the synthesis of S-heterocycles. Catal. Rev., 2015, 57(4), 478-564.
(a) Kaur, N. Benign approaches for the microwave-assisted synthesis of five-membered 1,2-N,N-heterocycles. J. Heterocycl. Chem., 2015, 52, 953-973.
(b) Kaur, N. Methods for metal and non-metal catalyzed synthesis of six-membered oxygen containing poly-heterocycles. Curr. Org. Synth., 2017, 14(4), 531-556.
(c) Kaur, N. Photochemical reactions: synthesis of six-membered N-heterocycles. Curr. Org. Synth., 2017, 14(7), 972-998.
(d) Kaur, N. Ionic liquids: promising but challenging solvents for the synthesis of N-heterocycles. Mini Rev. Org. Chem., 2017, 14(1), 3-23.
(e) Kaur, N. Metal catalysts for the formation of six-membered N-polyheterocycles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46(7), 983-1020.
(f) Kaur, N. Applications of gold catalysts for the synthesis of five-membered O-heterocycles. Inorg. Nano-Met. Chem, 2017, 47(2), 163-187.
(g) Khurana, J.M.; Kumar, S. Ionic liquid: an efficient and recyclable medium for the synthesis of octahydroquinazolinone and biscoumarin derivatives. Monatsh. Chem., 2010, 141, 561-564.
(a) Kaur, N. Metal catalysts: applications in higher membered N-heterocycles synthesis. J. Iran. Chem. Soc., 2015, 12, 9-45.
(b) Kaur, N. Insight into microwave-assisted synthesis of benzo derivatives of five membered N,N-heterocycles. Synth. Commun., 2015, 45(11), 1269-1300.
(c) Kaur, N. Synthesis of fused five-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45(12), 1379-1410.
(d) Kaur, N. Microwave-assisted synthesis of seven membered S-heterocycles. Synth. Commun., 2014, 44(22), 3201-3228.
(e) Kaur, N. Six membered N-heterocycles: microwave-assisted synthesis. Synth. Commun., 2015, 45(1), 1-34.
(f) Kaur, N. Polycyclic six membered N-heterocycles: microwave-assisted synthesis. Synth. Commun., 2015, 45(1), 35-69.
(g) Hazarkhani, H.; Karimi, B. A facile synthesis of new 3-(2-benzimidazoyl)-2-alkyl-4-(3H)-quinazolinones under microwave irradiation. Tetrahedron, 2003, 59(26), 4757-4760.
Maarouf, A.R.; El-Bendary, E.R.; Goda, F.E. Synthesis and evaluation of some novel quinazolinone derivatives as diuretic agents. Arch. Pharm. Med. Chem., 2004, 337(10), 527-532.
(a) Kaur, N. Microwave-assisted synthesis: fused five membered N-heterocycles. Synth. Commun., 2015, 45(7), 789-823.
(b) Kaur, N. Six membered heterocycles with three and four N-heteroatoms: microwave-assisted synthesis. Synth. Commun., 2015, 45(2), 151-172.
(c) Kaur, N. Application of microwave-assisted synthesis in the synthesis of fused six-membered heterocycles with N-heteroatom. Synth. Commun., 2015, 45(2), 173-201.
(d) Kaur, N. Microwave-assisted synthesis of fused polycyclic six membered N-heterocycles. Synth. Commun., 2015, 45(3), 273-299.
(e) Kaur, N. Review of microwave-assisted synthesis of benzo fused six-membered N,N-heterocycles. Synth. Commun., 2015, 45(3), 300-330.
(f) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-benzodiazepine. Synth. Commun., 2014, 44(10), 1375-1413.
(g) Orru, R.V.A.; De Greef, M. Recent advances in solution-phase multi-component methodology for the synthesis of heterocyclic compounds. Synthesis, 2003, 10, 1471-1499.
Wassercheid, P.; Keim, W. Ionic liquids - new ‘solutions’ for transition metal catalysis. Angew. Chem. Int. Ed., 2000, 39, 3772-3789.
Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun., 2001, 23, 2399-2407.
(a) Zhao, D.; Wu, M.; Kou, Y.; Min, K. Ionic liquids: applications in catalysis. Catal. Today, 2002, 74(1-2), 157-189.
(b) Kaur, N. Perspectives of ionic liquids applications for the synthesis of five and six-membered O,N-heterocycles. Synth. Commun., 2018, 48(5), 473-495.
(c) Kaur, N. Gold catalysts in the synthesis of five-membered N-heterocycles. Curr. Organocatal., 2017, 4, 122-154.
(d) Kaur, N. Photochemical reactions for the synthesis of six-membered O-heterocycles. Curr. Org. Synth., 2018, 15, 298-320.
Wang, Y.Y.; Li, W.; Dai, L.Y. Brønsted acidic ionic liquids as efficient reaction medium for cyclodehydration of diethylene glycol. Chin. J. Chem., 2008, 26(8), 1390-1394.
(a) Kaur, N. Environmentally benign synthesis of five membered 1,3-N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(8), 909-943.
(b) Kaur, N. Advances in microwave-assisted synthesis for five membered N-heterocycles synthesis. Synth. Commun., 2015, 45(4), 432-457.
(c) Kaur, N. Microwave-assisted synthesis of five membered S-heterocycles. J. Iran. Chem. Soc., 2014, 11, 523-564.
(d) Kaur, N. Review on the synthesis of six membered N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(10), 1145-1182.
(e) Kaur, N. Greener and expeditious synthesis of fused six-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45(13), 1493-1519.
(f) Kaur, N. Applications of microwaves in the synthesis of polycyclic six membered N,N-heterocycles. Synth. Commun., 2015, 45(14), 1599-1631.
(g) Kaur, N. Synthesis of five-membered N,N,N- and N,N,N,N-heterocyclic compounds: applications of microwaves. Synth. Commun., 2015, 45(15), 1711-1742.
(h) Bao, Q.; Qiao, K.; Tomida, D.; Yokoyama, C. Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid. Catal. Commun., 2008, 9(6), 1383-1388.
Shen, J.; Wang, H.; Liu, H.; Sun, Y.; Liu, Z. Brønsted acidic ionic liquids as dual catalyst and solvent for environmentally friendly synthesis of chalcone. J. Mol. Catal. Chem., 2008, 280, 24-28.
Wang, W.; Shao, L.; Cheng, W.; Yang, J.; He, M. Brønsted acidic ionic liquids as novel catalysts for Prins reaction. Catal.A: Commun., 2008, 9(3), 337-341.
(a) Kaur, N. Role of microwaves in the synthesis of fused five membered heterocycles with three N-heteroatoms. Synth. Commun., 2015, 45(4), 403-431.
(b) Kaur, N. Recent impact of microwave-assisted synthesis on benzo derivatives of five membered N-heterocycles. Synth. Commun., 2015, 45(5), 539-568.
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered N-heterocycles. Synth. Commun., 2014, 44(18), 2577-2614.
(d) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered S-heterocycles. Synth. Commun., 2014, 44(18), 2615-2644.
(e) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered O-heterocycles. Synth. Commun., 2014, 44(19), 2739-2755.
(f) Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xua, H.; Cheng, J.P. Functionalized ionic liquids catalyzed direct aldol reactions. Tetrahedron, 2007, 63(9), 1923-1930.
Carvalho, P.J.; Alvarez, V.H.; Marrucho, I.M.; Aznar, M.; Coutinho, J.A.P. High pressure phase behavior of carbon dioxide in 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide and 1-butyl-3-methylimidazolium dicyanamide ionic liquids. J. Supercritical. Fluids, 2009, 50(2), 105-111.
Le, Z-G.; Chen, Z-C.; Hu, Y.; Zheng, Q-G. Organic reactions in ionic liquids: a simple and highly regioselective N-substitution of pyrrole. Synlett, 2004, 1951-1954.
Nara, S.J.; Naik, P.U.; Harjani, J.R.; Salunkhe, M.M. Potential of ionic liquids in greener methodologies involving biocatalysis and other synthetically important transformations. Indian J. Chem., 2006, 45B, 2257-2268.
(a) Kaur, N. Palladium catalysts: synthesis of five-membered N-heterocycles fused with other heterocycles. Catal. Rev., 2015, 57(1), 1-78.
(b) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O,O-heterocycles. Synth. Commun., 2014, 44(21), 3082-3111.
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O-heterocycles. Synth. Commun., 2014, 44(21), 3047-3081.
(d) Nair, V.; Vellalath, S.; Poonoyh, M.; Suresh, E.; Viji, S. N-Heterocyclic carbene catalyzed reaction of enals and diaryl-1,2 diones via homoenolate: synthesis of 4,5,5-trisubstituted γ-butyrolactones. Synthesis, 2007, 3195-3200.
Potewar, T.M.; Siddiqui, S.A.; Lahoti, R.J.; Srinivasan, K.V. Efficient and rapid synthesis of 1-substituted-1H-1,2,3,4-tetrazoles in the acidic ionic liquid 1-nbutylimidazolium tetrafluoroborate. Tetrahedron Lett., 2007, 48, 1721-1724.
Xu, J.M.; Qian, C.; Liu, B.K.; Wu, Q.; Lin, X.F. A fast and highly efficient protocol for Michael addition of N-heterocycles to α,β-unsaturated compound using basic ionic liquid [bmim]OH as catalyst and green solvent. Tetrahedron, 2007, 63, 986-990.
Hutka, M.; Toma, S. Hydrogen-transfer reduction of aromatic ketones in basic ionic liquids. Monatsh. Chem., 2009, 140, 1189-1194.
Ye, C.; Xiao, J.C.; Twamley, B.; LaLonde, A.D.; Norton, M.G.; Shreeve, J.M. Basic ionic liquids: facile solvents for carbon-carbon bond formation reactions and ready access to palladium nanoparticles. Eur. J. Org. Chem., 2007, 30, 5095-5011.
Xiao, L.F.; Yue, Q.F.; Xia, C.G.; Xu, L. Supported basic ionic liquid: highly effective catalyst for the synthesis of 1,2-propylene glycol from hydrolysis of propylene carbonate. J. Mol. Catal.A: Chem., 2008, 279(2), 230-234.
Liebert, T.; Heinze, T. Interaction of ionic liquids with polysaccharides. Solvents and reaction media for the modification of cellulose. BioResources, 2008, 3, 576-601.
Pinkert, A.; Marsh, K.N.; Pang, S.S.; Staiger, M.P. Ionic liquids and their interaction with cellulose. Chem. Rev., 2009, 109, 6712-6728.
Kosan, B.; Michels, C.; Meister, F. Dissolution and forming of cellulose with ionic liquids. Cellulose, 2008, 15, 59-66.
Wendler, F.; Kosan, B.; Krieg, M.; Meister, F. Possibilities for the physical modification of cellulose shapes using ionic liquids. Macromol. Symp., 2009, 280, 112-122.
Cao, Y.; Li, H.; Zhang, Y.; Zhang, J.; He, J. Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids. J. Appl. Polym. Sci., 2010, 116, 547-554.
Sescousse, R.; Gavillon, R.; Budtova, T. Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr. Polym., 2011, 83, 1766-1774.
Stark, A. Ionic liquids in the biorefinery: A critical assessment of their potential. Energ Environ. Sci., 2011, 4, 19-32.
Mora-Pale, M.; Meli, L.; Doherty, T.V.; Linhardt, R.J.; Dordick, J.S. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol. Bioeng., 2011, 108, 1229-1245.
Sun, N.; Rodriguez, H.; Rahman, M.; Rogers, R.D. Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem. Commun., 2011, 47, 1405-1421.
Yue, C.; Fang, D.; Liu, L.; Yi, T-F. Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J. Mol. Liq., 2011, 163, 99-121.
Wender, P.A.; Verma, V.A.; Paxton, T.J.; Pillow, T.H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res., 2008, 41, 40-49.
Candeias, N.R.; Branco, L.C.; Gois, P.M.P.; Afonso, C.A.M.; Trindade, A.F. More sustainable approaches for the synthesis of N-based heterocycles. Chem. Rev., 2009, 109, 2703-2802.
Smiglak, M.; Metlen, A.; Rogers, R.D. The second evolution of ionic liquids: from solvents and separations to advanced materials-energetic examples from the ionic liquid cookbook. Acc. Chem. Res., 2007, 40(11), 1182-1192.
Zorn, D.D.; Boatz, J.A.; Gordon, M.S. Electronic structure studies of tetrazolium-based ionic liquids. J. Phys. Chem. B, 2006, 110(23), 11110-11119.
Joo, Y-H.; Gao, H.; Zhang, Y.; Shreeve, J.M. Inorganic or organic azide-containing hypergolic ionic liquids. Inorg. Chem., 2010, 49(7), 3282-3288.
Schneider, S.; Hawkins, T.; Rosander, M.; Vaghjiani, G.; Chambreau, S.; Drake, G. Ionic liquids as hypergolic fuels. Energy Fuels, 2008, 22(4), 2871-2872.
Shamshina, J.L.; Smiglak, M.; Drab, D.M.; Parker, T.G.; Dykes, Jr , H.W.H.; Di Salvo, R.; Reich, A.J.; Rogers, R.D. Catalytic ignition of ionic liquids for propellant applications. Chem. Commun., 2010, 46, 8965-8967.
Singh, R.P.; Verma, R.D.; Meshri, D.T.; Shreeve, J.M. Energetic nitrogen-rich salts and ionic liquids. Angew. Chem. Int. Ed., 2006, 45(22), 3584-3601.
Lin, J.H.; Zhang, C.P.; Zhu, Z.Q.; Chen, Q.Y.; Xiao, J.C. A novel pyrrolidinium ionic liquid with 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoroethoxy) ethanesulfonate anion as a recyclable reaction medium and efficient catalyst for Friedel-Crafts alkylations of indoles with nitroalkenes. J. Fluorine. Chem., 2009, 130(4), 394-398.
Liu, S.; Xie, C.; Yu, S.; Liu, F. Dimerization of rosin using Brønsted-Lewis acidic ionic liquid as catalyst. Catal. Commun., 2008, 9(10), 2030-2034.
Chaskar, A.C.; Bhandari, S.R.; Patil, A.B.; Sharma, O.P.; Mayeker, S. Solvent-free oxidation of alcohols with potassium persulphate in the presence of Brønsted acidic ionic liquids. Synth. Commun., 2009, 39, 366-370.
Chaturvedi, D. Recent developments on task specific ionic liquids. Curr. Org. Chem., 2011, 15, 1236-1248.
Toma, S.; Meciarova, M.; Sebesta, R. Are ionic liquids suitable media for organocatalytic reactions? Eur. J. Org. Chem., 2009, 3, 321-327.
Giernoth, R. Task-specific ionic liquids. Angew. Chem. Int. Ed., 2010, 49(16), 2834-2839.
Wu, B.; Liu, W.W.; Zhang, Y.; Wang, H. Do we understand the recyclability of ionic liquids? Chem. Eur. J., 2009, 15, 1804-1810.
Jain, N.; Kumar, A.; Chauhan, S.; Chausan, S.M.S. Chemical and biochemical transformations in ionic liquids. Tetrahedron, 2005, 61, 1015-1060.
El Seoud, O.A.; Koschella, A.; Fidale, L.C.; Dorn, S.; Heinze, T. Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules, 2007, 8, 2629-2647.
Xu, J.M.; Wu, Q.; Zhang, Q.Y.; Zhang, F.; Fu, X. Basic ionic liquid as catalyst and reaction medium: a rapid and facile protocol for Aza-Michael addition reactions. Eur. J. Org. Chem., 2007, 1798-1802.
Chowdhury, S.; Mohan, R.S.; Scott, J.L. Reactivity of ionic liquids. Tetrahedron, 2007, 63, 2363-2389.
Gupta, N.S.; Kad, G.L.; Singh, J. Acidic ionic liquid [bmim]HSO4: an efficient catalyst for acetalization and thioacetalization of carbonyl compounds and their subsequent deprotection. Catal. Commun., 2007, 8, 1323-1328.
Wu, H.H.; Yang, F.; Cui, P.; Tang, J.; He, M.Y. An efficient procedure for protection of carbonyls in Brønsted acidic ionic liquid [hmim]BF4. Tetrahedron Lett., 2004, 45(25), 4963-4965.
Kim, Y.J.; Varma, R.S. Microwave-assisted preparation of 1-butyl-3-methylimidazolium tetrachlorogallate and its catalytic use in acetal formation under mild conditions. Tetrahedron Lett., 2005, 46(43), 7447-7449.
Hajipour, A.R.; Hosseini, P.; Ruoho, A.E. Application of Bu4N+ HSO4 as an ionic liquid and acid catalyst for thioacetalization of aldehydes and ketones. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(10), 2502-2508.
Cui, S.; Lu, B.; Cai, Q.; Cai, X.; Li, X.; Xiao, X.; Hou, L.; Han, Y. Highly selective synthesis of diphenylmethane with acidic ionic liquids. Ind. Eng. Chem. Res., 2006, 45(5), 1571-1574.
Hajipour, A.R.; Rafiee, F.; Ruoho, A.E. Facile and selective oxidation of benzylic alcohols to their corresponding carbonyl compounds with sodium nitrate in the presence of Brønsted acidic ionic liquids. Synlett, 2007, 7, 1118-1120.
Li, S.; Lin, Y.; Xie, H.; Zhang, S.; Xu, J. Brønsted guanidine acid-base ionic liquids: novel reaction media for the palladium-catalyzed Heck reaction. Org. Lett., 2006, 8(3), 391-394.
Zhang, J.; Jiang, T.; Han, B.; Zhu, A. Knoevenagel condensation catalyzed by 1, 1, 3, 3‐tetramethylguanidium lactate. Synth. Commun., 2006, 36(22), 3305-3317.
Yavari, I.; Kowsari, E. Ionic liquids as novel and recyclable reaction media for N-alkylation of amino-9, 10-anthraquinones by trialkyl phosphites. Tetrahedron Lett., 2007, 48(21), 3753-3756.
Gong, K.; Wang, H.L.; Fang, D.; Liu, Z.L. Basic ionic liquid as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes in aqueous media. Catal. Commun., 2008, 9(5), 650-653.
Hajipour, A.R.; Khazdooz, L.; Ruoho, A.E. Brønsted acidic ionic liquid as an efficient catalyst for chemoselective synthesis of 1,1 diacetates under solvent free. Catal. Commun., 2008, 9, 89-96.
Qiao, K.; Yokoyama, C. Koch carbonylation of tertiary alcohols in the presence of acidic ionic liquids. Catal. Commun., 2006, 7, 450-453.
(a) Ogoshi, T.; Onodera, T.; Yamagishi, T.; Nakamoto, Y. Green polymerization of phenol in ionic liquids. Macromolecules, 2008, 41, 8533-8536.
(b) Gericke, M.; Fardim, P.; Heinze, T. Ionic liquids- promising but challenging solvents for homogeneous derivatization of cellulose. Molecules, 2012, 17(6), 7458-7502.
Shekouhy, M.; Hasaninejad, A. Ultrasound-promoted catalyst-free one pot four component synthesis of 2H-indazolo[2,1-b]phthalazine-triones in neutral ionic liquid 1-butyl-3-methylimidazolium bromide. Ultrason. Sonochem., 2012, 19, 307-313.
Raghuvanshi, D.S.; Singh, K.N. Microwave-assisted one-pot synthesis of functionalized pyrimidines using ionic liquid. J. Heterocycl. Chem., 2011, 48, 582-585.
Abdelrazeka, F.M.; Bahbouh, M.S. Recent advances in the chemistry of nitriles and enaminonitriles. Jordan J. Earth Environ. Sci., 2012, 4, 47-61.
Peng, J.; Deng, Y. Ionic liquid catalyzed Biginelli reaction under solvent-free conditions. Tetrahedron Lett., 2001, 42, 5917-5919.
Zheng, R.; Wang, X.; Xu, H.; Du, J. Brønsted acidic ionic liquid: an efficient and reusable catalyst for the synthesis of 3,4‐dihydropyrimidin‐2(1H)‐ones. Synth. Commun., 2006, 36, 1503-1513.
Shaabani, A.; Rahmati, A. Ionic liquid promoted efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Catal. Lett., 2005, 100, 177-179.
Kolosov, M.A.; Orlov, V.D.; Beloborodov, D.A.; Dotsenko, V.V. A chemical placebo: NaCl as an effective, cheapest, non-acidic and greener catalyst for Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones (-thiones) synthesis. Mol. Divers., 2009, 13, 5-25.
Ming, L.; Wei-Si, G.; Li-Rong, W.; Ya-Feng, L.; Hua-Zheng, Y. One-pot synthesis of Biginelli and Hantzsch products catalyzed by non-toxic ionic liquid (bmimSac) and structural determination of two products. J. Mol. Catal. Chem., 2006, 258, 133-138.
Greaves, T.L.; Drummond, C.J. Protic ionic liquids: properties and applications. Chem. Rev., 2008, 108, 206-237.
Isambert, N.; Duque, M.M.S.; Plaquevent, J-C.; Genisson, Y.; Rodriguez, J.; Constantieux, T. Multi-component reactions and ionic liquids: a perfect synergy for eco-compatible heterocyclic synthesis. Chem. Soc. Rev., 2011, 40, 1347-1357.
Hajipour, A.R.; Ghayeb, Y.; Sheikhan, N.; Ruoho, A.E. Brønsted acidic ionic liquid as an efficient and reusable catalyst for one-pot, three-component synthesis of pyrimidinone derivatives via Biginelli-type reaction under solvent-free conditions. Synth. Commun., 2011, 41, 2226-2233.
Peng, J.; Deng, Y. Ionic liquid catalyzed Biginelli reaction under solvent-free conditions. Tetrahedron Lett., 2001, 42, 5917-5919.
Srivastava, G.V.P.; Yadav, L.D.S. Biginelli reaction starting directly from alcohols. Tetrahedron Lett., 2010, 51, 6436-6438.
Khosropour, A.R.; Khodaei, M.M.; Beygzadeh, M.; Jokar, M. A one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones from primary alcohols promoted by Bi(NO3)3·5H2O in two different media: organic solvent and ionic liquid. Heterocycles, 2005, 65, 767-773.
Zhang, M-M.; Lu, L.; Zhou, Y-J.; Wang, X-S. Iodine-catalyzed synthesis of pyrrolo[1,2-a]quinazoline-3a-carboxylic acid derivatives in ionic liquids. Res. Chem. Intermed., 2012, 52, 12897-12905.
Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G. Ionic liquids in heterocyclic synthesis. Chem. Rev., 2008, 108(6), 2015-2050.
Gholap, A.R.; Venkatesan, K.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Ionic liquid promoted novel and efficient one pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones at ambient temperature under ultrasound irradiation. Green Chem., 2004, 6, 147-150.
Agarwal, A.; Srinivas, K.; Puri, S.K.; Chauhan, P.M.S. Synthesis of 2,4,6-trisubstituted pyrimidines as antimalarial agents. Bioorg. Med. Chem., 2005, 13, 4645-4650.
Banerjee, B. [bmim]BF4: a versatile ionic liquid for the synthesis of diverse bioactive heterocycles. Chem. Select., 2017, 2(27), 8362-8376.
Singh, K.; Singh, S.; Kaur, P. Efficacious preparation of Biginelli compounds. A comparative study of different reaction techniques. Lett. Org. Chem., 2006, 3, 201-203.
Li, J-T.; Han, J-F.; Yang, J-H.; Li, T-S. An efficient synthesis of 3,4-dihydropyrimidin-2-ones catalyzed by NH2SO3H under ultrasound irradiation. Ultrason. Sonochem., 2003, 10, 119-122.
Sharma, R.; Abdullaha, M.; Bharate, S.B. Metal‐free ionic‐liquid‐mediated synthesis of benzimidazoles and quinazolin‐4(3H)‐ones from benzylamines. Asian J. Org. Chem., 2017, 6(10), 1370-1374.
Stefani, H.A.; Oliveira, C.B.; Almeida, R.B.; Pereira, C.M.P.; Braga, R.C.; Cella, R.; Borges, V.C.; Savegnago, L.; Nogueira, C.W. Dihydropyrimidin-(2H)-ones obtained by ultrasound irradiation: a new class of potential antioxidant agents. Eur. J. Med. Chem., 2006, 41, 513-518.
Zhidovinova, M.S.; Fedorova, O.V.; Rusinov, G.L.; Ovchinnikova, I.G. Multi-component sonochemical synthesis of podands. Mol. Divers., 2003, 6, 323-326.
Luche, J.L. Synthetic Organic Sonochemistry; Plenum Press: New York, 1998.
Liu, X.; Lu, M.; Lu, T.; Mai, C. An efficient protocol for the synthesis of 3,4-dihydropyrimidine-2-(1H)-ones catalyzed by functionalized ionic liquid. J. Sci., 2011, 38, 263-269. [DDPA]. [HSO4].
Wang, Z.T.; Wang, S.C.; Xu, L.W. Polymer‐supported ionic‐liquid‐catalyzed synthesis of 1,2,3,4‐tetrahydro‐2‐oxopyrimidine‐5‐carboxylates via Biginelli reaction. Helv. Chim. Acta, 2005, 88, 986-989.
Putilova, E.S.; Troitskii, N.A.; Zlotin, S.G. Reaction of aromatic aldehydes with β-dicarbonyl compounds in a catalytic system: piperidinium acetate-1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Russ. Chem. Bull. Int. Ed., 2005, 54, 1233-1238.
Kang, L.Q.; Cai, Y.Q.; Peng, Y.Q.; Ying, X.L.; Song, G.H. Silica-supported sulfonic acid-functionalized ionic liquid coated with [bmim][PF6] as a scavenger for the synthesis of amides. Mol. Divers., 2011, 15, 109-113.
Kang, L-Q.; Jin, D-Y.; Cai, Y-Q. Silica-supported ionic liquid Si-[SbSipim][PF6]: an efficient catalyst for the synthesis of 3,4-dihydropyrimidine-2-(1H)-ones. Synth. Commun., 2013, 43, 1896-1901.
Dadhania, A.N.; Patel, V.K.; Raval, D.K. A facile approach for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones using a microwave promoted Biginelli protocol in ionic liquid. J. Chem. Sci., 2012, 124, 921-926.
Zolfigol, M.A.; Khazaei, A.; Moosavi-Zare, A.R.; Zare, A. 3-Methyl-1-sulfonic acid imidazolium chloride as a new, efficient and recyclable catalyst and solvent for the preparation of N-sulfonyl imines at room temperature. J. Iranian Chem. Soc., 2010, 7, 646-651.
Cole, A.C.; Jensen, J.L.; Ntai, I.; Tran, K.L.T.; Weaver, K.J.; Forbes, D.C.; Davis, J. Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc., 2002, 124, 5962-5963.
Hajipour, A.R.; Seddighi, M. Pyridinium-based Brønsted acidic ionic liquid as a highly efficient catalyst for one-pot synthesis of dihydropyrimidinones. Synth. Commun., 2012, 42, 227-235.
Fang, D.; Zhang, D.Z.; Liu, Z.L. One-pot three-component Biginelli-type reaction catalyzed by ionic liquids in aqueous media. Monatshefte fur Chemie., 2010, 141, 419-423.
Mirzai, M.; Valizadeh, H. Microwave-promoted synthesis of 3,4-dihydropyrimidin-2(1H)-(thio)ones using IL-ONO as recyclable base catalyst under solvent-free conditions. Synth. Commun., 2012, 42, 1268-1277.
Valizadeh, H.; Heravi, M.M.; Amiri, M. Unexpected synthesis of N-methylbenzo[d]isoxazolium hydroxides under microwave irradiation conditions. Mol. Divers., 2010, 14, 575-579.
(a) Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 1999, 286, 971-974.
(b) Yadav, J.S.; Reddy, S.; Basi, V.; Sridhar, P.; Reddy, J.S.S.; Nagaiah, K.; Lingaiah, N.; Saiprasad, P.S. Green protocol for the Biginelli three-component reaction: Ag3PW12O40 as a novel, water tolerant heteropolyacid for the synthesis of 3, 4-dihydropyrimidinones. Eur. J. Org. Chem., 2004, 3, 552-557.
Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Shakouri, M.; Otokesh, S.; Ekrami, T.; Doosti, R. Efficient and eco-friendly synthesis of dihydropyrimidinones, bis(indolyl)methanes, and N-alkyl and N-arylimides in ionic liquids. J. Iran. Chem. Soc., 2007, 4, 393-401.
Candeias, N.R.; Branco, L.C.; Gois, P.M.P.; Afonso, C.A.M.; Trindade, A.F. More sustainable approaches for the synthesis of N-based heterocycles. Chem. Rev., 2009, 109, 2703-2802.
Zhao , G.; Jiang, , T.; Gao, , H.; Han, , B; Huang, , J. Sun, D. Mannich reaction using acidic ionic liquids as catalysts and solvents. Green Chem.., 2004, 6, 75-77.
Arduengo, A.J.; Harlow, R.L.; Kline, M. A stable crystalline carbene. J. Am. Chem. Soc., 1991, 113, 361-363.
Arduengo, A.J.; Dias, H.V.R.; Harlow, R.L.; Kline, M. Electronic stabilization of nucleophilic carbenes. J. Am. Chem. Soc., 1992, 114, 5530-5534.
Avent, A.G.; Chaloner, P.A.; Day, M.P.; Seddon, K.R.; Welton, T. Evidence for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room-temperature halogenoaluminate(III) ionic liquids. J. Chem. Soc., Dalton Trans., 1994, 3405-3413.
Howarth, J.; Hanlon, K.; Fayne, D.; McCormac, P. Moisture stable dialkylimidazolium salts as heteroge-neous and homogeneous lewis acids in the Diels-Alder reaction. Tetrahedron Lett., 1997, 38, 3097-3100.
(a) Dandia, A.; Jain, A.K. Ionic liquid-mediated facile synthesis of novel spiroheterobicyclic rings as potential antifungal and antibacterial drugs. J. Heterocycl. Chem., 2013, 50, 104-113.
(b) Jarikote, D.V.; Siddiqui, S.A.; Rajagopal, R.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Room temperature ionic liquid promoted synthesis of 1,5-benzodiazepine derivatives under ambient conditions. Tetrahedron Lett., 2003, 44, 1835-1838.
Asri, Z.E.; Nisson, Y.G.; Guillen, F.D.R.; Basle, O.; Isambert, N.; Duque, M.D.M.S.; Ladeira, S.; Rodriguez, J.; Constantieux, T.; Plaquevent, J.C. Multi-component reactions in ionic liquids: convenient and ecocompatible access to the 2,6-DABCO core. Green Chem., 2011, 13, 2549-2552.
Liéby-Muller, F.; Constantieux, T.; Rodriguez, J. Multi-component Domino reaction from β-ketoamides: highly efficient access to original polyfunctionalized 2,6-diazabicyclo[2.2.2]octane cores. J. Am. Chem. Soc., 2005, 127, 17176-17177.
Balaskar, R.S.; Gavade, S.N.; Mane, M.S.; Shingate, B.B.; Shingare, M.S.; Mane, D.V. Greener approach towards the facile synthesis of 1,4-dihydropyrano[2,3-c]pyrazol-5-yl cyanide derivatives at room temperature. Chinese . Chem. Lett., 2010, 21, 1175-1179.
Hakkou, H.; Vanden, J.J.E.; Hamelina, J.; Bazureau, J.P. Ionic liquid phase organic synthesis (IoLiPOS) methodology applied to the three component preparation of 2-thioxo tetrahydropyrimidin-4-(1H)-ones under microwave dielectric heating. Tetrahedron, 2004, 60, 3745-3753.
Legeay, J.C.; Eynde, J.J.V.; Bazureau, J.P. A new approach to N-3 functionalized 3,4-dihydropyrimidine-2(1H)-ones with 1,2,4-oxadiazole group as amide isostere via ionic liquid-phase technology. Tetrahedron Lett., 2007, 48, 1063-1068.
Guerrero, L.; Rivero, I.A. Reaction of o-aminobenzamides with dialkyl carbonates and ionic liquids: a novel one-pot, high-yield, microwave-assisted synthesis of 1-alkylquinazoline-2,4-diones. J. Mex. Chem. Soc., 2012, 56, 201-206.
Kikuchi, H.; Tasaka, H.; Hirai, S.; Takaya, Y.; Iwabuchi, Y.; Ooi, H.; Hatakeyama, S.; Kim, H.S.; Wataya, Y.; Oshima, Y. Potent antimalarial febrifugine analogues against the plasmodium malaria parasite. J. Med. Chem., 2002, 45(12), 2563-2570.
Dabiri, M.; Baghbanzadeh, M.; Delbari, A.S. Novel and efficient one-pot tandem synthesis of 2-styryl-substituted 4(3H)-quinazolinones. J. Comb. Chem., 2008, 10, 700-703.
Dabiri, M.; Baghbanzadeh, M.; Arzroomchilar, E. 1-Methylimidazolium triflouroacetate ([hmim]TFA): an efficient reusable acidic ionic liquid for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines. Catal. Commun., 2008, 9, 939-942.
Darvatkar, N.B.; Deorukhkar, A.R.; Bhilare, S.V.; Salunkhe, M.M. Ionic liquid-mediated Knoevenagel condensation of Meldrum’s acid and aldehydes. Synth. Commun., 2006, 36, 3043-3051.
Martin, T.A.; Wheller, A.G.; Majewski, R.F.; Corrigan, J.R. Sulfanilamidoquinazolines. J. Med. Chem., 1964, 7, 812-814.
Kurogi, Y.; Inoue, Y.; Tsutsumi, K.; Nakamura, S.; Nagao, K.; Yohsitsugu, H.; Tsuda, Y. Synthesis and hypolipidemic activities of novel 2-[4-[(diethoxyphosphoryl)methyl]phenyl]quinazolines and 4(3H)-quinazolin-ones. J. Med. Chem., 1996, 39, 1433-1437.
Sakirolla, R.; Krishnaji, T.; Yaeghoobi, M.; Rahman, N.A. Di-cationic ionic liquid catalyzed synthesis of 1,5-benzothiazepines. Asian J. Chem., 2018, 30(1), 107-115.
Jen, T.; Dienel, B.; Dowalo, F.; Van Hoeven, H.; Bender, P.; Loev, B. Synthesis of pyrrolo[2,3,-b]isoquinoline imidazo[1,2-b]isoquinoline, pyrrolo[2,1-b]quinazoline, and 1,3-thiazino[2,3-b]quinazoline derivatives and related heterocycles as potential antihypertensive agents. J. Med. Chem., 1973, 16, 633-637.
Ravishankar, C.H.; Devender, A.R.; Bhaskar, A.R.; Malla, V.R.; Sattur, P.B. Synthesis and biological activities of N-4[N-(6,8-dibromo-2-methyl-3-quinazoline-4(3H)-onyl)acetamido]-N1-substituded sulphanilamides. Curr. Sci., 1984, 53, 1069-1071.
Alvim, H.G.O.; Correa, J.R.; Assumpçao, J.A.F.; da Silva, W.A.; Rodrigues, M.O.; de Macedo, J.L.; Fioramonte, M.; Gozzo, F.C.; Gatto, C.C.; Neto, B.A.D. Heteropolyacid-containing ionic liquid-catalyzed multi-component synthesis of bridgehead nitrogen heterocycles: mechanisms and mitochondrial staining. J. Org. Chem., 2018, 83(7), 4044-4053.
Kaur, N. Aditi, Kishore, D. A facile synthesis of face ‘D’ quinolino annulated benzazepinone analogues with its quinoline framework appended to oxadiazole, triazole and pyrazole heterocycles. J. Heterocycl. Chem., 2016, 53, 457-460.
Dempcy, R.O.; Skibo, E.B. Kinetic studies of 2-(2′-haloethyl) and 2-ethenyl substituted quinazolinone alkylating agents. Acid-catalyzed dehydrohalogenation and alkylation involving a quinazolinone prototropic tautomer. Bioorg. Med. Chem. Lett., 1993, 1, 39-43.
Tereshima, K.; Shimamura, H.; Kawase, A.; Tanaka, Y.; Tanimura, T.; Kamisaki, T.; Ishizuka, Y.; Sato, M. Studies on antiulcer agents. IV. Antiulcer effects of 2-benzylthio5,6,7,8-tetrahydro-4(3H)-quinazolinones and related compounds. Chem. Pharm. Bull., 1995, 43, 2021-2023.
Zarnegar, Z.; Safari, J. Heterogenization of an imidazolium ionic liquid based on magnetic carbon nanotubes as a novel organocatalyst for the synthesis of 2-amino-chromenes via a microwave-assisted multi-component strategy. New J. Chem., 2016, 40, 7986-7995.
Kobayashi, S.; Ueno, M.; Suzuki, R.; Ishitani, H. Catalytic asymmetric synthesis of febrifugine and isofebrifugine. Tetrahedron Lett., 1999, 40, 2175-2178.
Gueyrard, D.; Gurnel, V.; Leoni, O.; Palmieri, S.; Rollin, P. Reactivity range of a chiral 1,3-oxazolidine-2-thione obtained from vegetable source through chemo-enzymatic processing. Heterocycles, 2000, 52, 827-843.
Cao, S-L.; Feng, Y-P.; Jiang, Y-Y.; Liu, S-Y.; Ding, G-Y.; Li, R-T. Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains. Bioorg. Med. Chem. Lett., 2005, 15, 1915-1917.
Pathak, A.K.; Ameta, C.; Ameta, R.; Punjabi, P.B. Microwave‐assisted organic synthesis in ionic liquids. J. Heterocycl. Chem., 2016, 53(6), 1697-1705.
Chenard, B.L.; Welch, W.M.; Blake, J.F.; Butler, T.W.; Reinhold, A.; Ewing, F.E.; Menniti, F.S.; Pagnozzi, M.J. Quinazolin-4-one alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists: structure-activity relationship of the C-2 side chain tether. J. Med. Chem., 2001, 44, 1710-1717.
Connolly, D.J.; Guiry, P.J. A facile and versatile route to 2-substituted-4(3H)-quinazolinones and quinazolines. Synlett, 2001, 11, 1707-1710.
Wang, L.; Xia, J.; Qin, F.; Qian, C.; Sun, J. Yb(OTf)3-catalyzed one-pot synthesis of quinazolin-4(3H)-ones from anthranilic acid, amines and ortho esters (or formic acid) in solvent-free conditions. Synthesis, 2003, 8, 1241-1247.
Xue, S.; McKenna, J.; Shineh, W-C.; Repic, O. A facile synthesis of C2,N3-disubstituted-4-quinazolone. J. Org. Chem., 2004, 69, 6474-6477.
Abdel-Jalil, R.J.; Voelter, W.; Saeed, M. A novel method for the synthesis of 4(3H)-quinazolinones. Tetrahedron Lett., 2004, 45, 3475-3476.
Khosropour, A.R.; Mohammadpoor-Baltork, I.; Gohrbankhani, H. Bi (TFA)3-[nbp] FeCl4: a new, efficient and reusable promoter system for the synthesis of 4(3H)-quinazolinone derivatives. Tetrahedron Lett., 2006, 47, 3561-3564.
Connolly, D.J.; Cusack, D.; O’Sullivan, T.P.; Guiry, P.J. Synthesis of quinazolinones and quinazolines. Tetrahedron, 2005, 61, 10153-10202.
Dabiri, M.; Salehi, P.; Bahramnejad, M. Ecofriendly and efficient one-pot procedure for the synthesis of quinazoline derivatives catalyzed by an acidic ionic liquid under aerobic oxidation conditions. Synth. Commun., 2010, 40, 3214-3225.
Shaabani, A.; Maleki, A.; Behnam, M. Tandem oxidation process using ceric ammonium nitrate: three-component synthesis of trisubstituted imidazoles under aerobic oxidation conditions. Synth. Commun., 2009, 39, 102-110.
Portela-Cubillo, F.; Scott, J.S.; Walton, J.C. Microwave-promoted syntheses of quinazolines and dihydroquinazolines from 2-aminoarylalkanone o-phenyl oximes. J. Org. Chem., 2009, 74, 4934-4942.
Patil, Y.P.; Tambede, P.J.; Deshmukh, K.M.; Bhanage, B.M. Synthesis of quinazoline-2, 4 (1H, 3H)-diones from carbon dioxide and 2-aminobenzonitriles using [bmim]OH as a homogeneous recyclable catalyst. Catal. Today, 2009, 148, 355-360.
Sun, J.; Liu, R.; Fujita, S-I.; Arai, M. (2011). Ionic liquids in green carbonate synthesis, ionic liquids - classes and properties, Prof. Scott ; Handy (Ed.), ISBN: 978-953-307-634-8, InTech, 2011.
[ DOI: 10.5772/24373.]
Hajipour, A.R.; Rafiee, F. Basic ionic liquids. A short review. J. Iran. Chem. Soc., 2009, 6, 647-678.
Pawar, O.B.; Chavan, F.R.; Sakate, S.S.; Shinde, N.D. Ultrasound promoted and ionic liquid catalyzed cyclocon densation reaction for the synthesis of 4(3H)-quinazolinones. Chinese. J. Chem., 2010, 28, 69-71.
Shaabani, A.; Rahmati, A.; Rad, J.M. Ionic liquid promoted synthesis of 3- (2′-benzothiazolo)-2,3-dihydroquinazolin-4(1H)-ones. Chimie, C. R., 2008, 11, 759-764.
Connolly, D.J.; Cusack, D.; O’Sullivan, T.P.; Guiry, P.J. Synthesis of quinazolinones and quinazolines. Tetrahedron, 2006, 61, 10153-10202.
Qadir, S.; Dar, A.A.; Khan, K.Z. Synthesis of biscoumarins from 4-hydroxycoumarin and aromatic aldehydes- a comparative assessment of percentage yield under thermal and microwave-assisted conditions. Synth. Commun., 2008, 38, 3490-3499.
Shaabani, A.; Sarvary, A.; Rahmati, A.; Rezayan, A.H. Ionic liquid/silica sulfuric acid promoted fast synthesis of a Biginelli-like scaffold reaction. Lett. Org. Chem., 2007, 4, 68-71.
Portela-Cubillo, F.; Scott, J.S.; Walton, J.C. 2-(Aminoaryl)alkanone O-phenyl oximes: versatile reagents for syntheses of quinazolines. Chem. Commun., 2008, 2935-2937.
Majumder, A.; Gupta, R.; Jain, A. Microwave-assisted synthesis of nitrogen-containing heterocycles. Green Chem. Lett. Rev., 2013, 6, 151-182.
Cao, S.L.; Zhang, M.; Feng, Y.P.; Jiang, Y.Y.; Zhang, N. Synthesis of 3-aryl-4(3H)-quinazolinones from anthranilic acids and triethyl orthoformate. Synth. Commun., 2008, 38, 2227-2236.
Aridoss, G.; Laali, K.K. Building heterocyclic systems with RC(OR)2 + carbocations in recyclable Brønsted acidic ionic liquids: facile synthesis of 1-substituted 1H-1,2,3,4-tetrazoles, benzazoles and other ring systems with CH(OEt)3 and EtC(OEt)3 in [EtNH3][NO3] and.[PMIM(SO3H)]. [OTf]. Eur. J. Org. Chem., 2011, 2827-2835.
Raghuvanshi, D.S.; Singh, K.N. A highly efficient green synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives and their photophysical studies. Tetrahedron Lett., 2011, 52, 5702-5705.
Yao, C.; Lei, S.; Wang, C.; Li, T.; Yu, C.; Wang, X.; Tua, S. Three-component synthesis of 4-aryl-1H-pyrimido[1,2-a] benzimidazole derivatives in ionic liquid. J. Heterocycl. Chem., 2010, 26, 47-32.
Fan, X.; Hu, X.; Zhang, X.; Wang, J. Ionic liquid promoted Knoevenagel and Michael reactions. Australian . J. Chem., 2004, 57, 1067-1071.
Shi, D.Q.; Ni, S.N.; Yang, F.; Shi, J.W.; Dou, G.L.; Li, X.Y.; Wang, X.S.; Ji, S.J. An efficient synthesis of pyrimido[4,5-b]quinoline and indeno[2′,1′:5,6] pyrido[2,3-d]pyrimidine derivatives via multi-component reactions in ionic liquid. J. Heterocycl. Chem., 2008, 45, 963-702.
(a) Rajendran, A.; Raghupathy, D.; Priyadarshini, M. Green synthesis of biologically active pyrazolopyrimidine derivatives using an ionic liquid 2-methyl-3-butylimidazolium chloride. Int. J. ChemTech Res., 2011, 3, 293-297.
(b) Gharib, A.; Jahangir, M.; Roshani, M.; Moghadasi, S.; Safee, R. Catalytic synthesis of pyrazolo[3,4-d]pyrimidin-6-ol and pyrazolo[3,4- d]pyrimidine-6-thiol derivatives using nanoparticles of NaX zeolite as green catalyst. J. Catalysts., 2013, 1-4.
Kappe, C.O. High-speed combinatorial synthesis utilizing microwave irradiation. Curr. Opin. Chem. Biol., 2002, 6, 314-320.
Domling, A.; Ugi, I. Multi-component reacitons with isocyanides. Angew. Chem. Int. Ed., 2000, 39, 3168-3210.
Zhu, J.; Bienayme, H., Eds.; Multi-component Reactions; Wiley: Weinheim, Germany, 2005.
Biginelli, P. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Gazz. Chim. Ital., 1893, 23, 360-416.
Kappe, C.O. 100 Years of the biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 49, 6937-6963.
Sabitha, G.; Reddy, G.S.K.K.; Reddy, K.B.; Yadav, J.S. Vanadium(III) chloride catalyzed Biginelli condensation: solution phase library generation of dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2003, 44, 6497-6499.
Shaabani, A.; Samadi, S.; Badri, Z.; Rahmati, A. Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems. Catal. Lett., 2005, 104, 39-43.
Hu, E.H.; Sidler, D.R.; Dolling, U.H. Unprecedented catalytic three component one-pot condensation reaction: an efficient synthesis of 5-alkoxycarbonyl- 4-aryl-3,4-dihydropyrimidin-2(1H)-ones. J. Org. Chem., 1998, 63, 3454-3457.
Shaabani, A.; Rahmati, A.; Naderi, S. A novel one-pot three-component reaction: synthesis of triheterocyclic 4H-pyrimido[2,1-b]benzazoles ring systems. Bioorg. Med. Chem. Lett., 2005, 15, 5553-5557.
Zhang, N.; Ayral-Kaloustian, S.; Nguyen, T.; Afragola, J.; Hernandez, R.; Lucas, J. Synthesis and SAR of [1,2,4]triazolo[1,5-a]pyrimidines, a class of anticancer agents with a unique mechanism of tubulin inhibition. J. Med. Chem., 2007, 50, 319-327.
Li, T.; Yao, C.; Lei, S.; Yu, C.; Tu, S. A facile one-pot three-component synthesis of 5-(trifluoromethyl)-4,7-dihydro-[1,2,4]-triazolo[1,5-a]pyrimi-dine derivatives in ionic liquid. Chinese . J. Chem., 2011, 29, 2427-2432.
Cingolant, G.M.; Pigini, M. Research in the field of antiviral compounds. Mannich bases of 3-hydroxycoumarin. J. Med. Chem., 1969, 12, 531-532.
Peng, Y.; Song, G.; Huang, F. Tetramethylguanidine-[bmim][BF4]. An efficient and recyclable catalytic system for one-pot synthesis of 4H-pyrans. Monatshefte fur Chemie., 2005, 136, 727-731.
Wiener, C.; Schroeder, C.C.; Bruce, D.W.; Karl, P.L. Studies on the 4-hydroxycoumarins. XVIII. 3-[α-(Acetamidomethyl)benzyl]-4-hydroxycou-marin and related products. J. Org. Chem., 1962, 27(9), 3086-3088.
Debray, J.; Leveque, J-M.; Philouze, C.; Draye, M.; Demeunynck, M. Swift and efficient synthesis of 4-phenylquinazolines: involvement of N-heterocyclic carbene in the key cyclization step. J. Org. Chem., 2010, 75, 2092-2095.
Chitre, T.S.; Bothara, K.G. Synthesis of some uracil derivatives using ionic liquid. Der Chemica Sinica, 2011, 2(2), 187-193.
Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; Clercq, E.D. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg. Med. Chem., 2007, 15, 1725-1731.
Srivastava, T.; Gaikwad, A.K.; Haq, W.; Sinha, S.; Katti, S.B. Synthesis and biological evaluation of 4-thiazolidinone derivatives as potential antimycobacterial agents (NA-1265FP). Arkivoc, 2005, 2, 120-130.
Veeresena, G.; Vie, N.; James, T.D.; Duane, D.M. Efficient microwave enhanced synthesis of 4-thiazolidinones. Synth. Lett., 2004, 13, 2357-2358.
Fraga-Dubreuil, J.; Bazureau, J.P. Efficient combination of task-specific ionic liquid and microwave dielectric heating applied to one-pot three component synthesis of a small library of 4-thiazolidinones. Tetrahedron, 2003, 59, 6121-6130.
Lingampalle, D.; Jawale, D.; Waghmare, R.; Mane, R. Ionic liquid-mediated, one-pot synthesis for 4-thiazolidinones. Synth. Commun., 2010, 40, 2397-2401.
Kroutil, J.; Budesınsky, M. Preparation of diamino pseudodisaccharide derivatives from 1,6-anhydro-β-d-hexopyranoses via aziridine-ring cleavage. Carbohydrate . Res., 2007, 342, 147-153.
Yang, Z-Z.; He, L-N.; Peng, S-Y.; Liu, A-H. Lewis basic ionic liquids-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Green Chem., 2010, 12, 1850-1854.
Vahdat, S.M.; Baharfar, R.; Tajbakhsh, M.; Heydari, A.; Baghbanian, S.M.; Khaksar, S. Organocatalytic synthesis of hydroxy and aminophosphonates. Tetrahedron Lett., 2008, 49, 6501-6504.
Bao, S.; Chen, L.; Ji, Y. Yang, Efficient prodecure for oxathioacetalization using the novel ionic liquid. J. Chin. J. Chem., 2010, 28, 2119-2122.
Vahdat, S.M.; Baghery, S. Sulfonated organic salts: recyclable green catalysts for the facile and rapid route synthesis of 2,3-dissubstituted quinoxaline derivatives in water. World Appl. Sci. J., 2013, 21, 394-401.
Zare, A.; Parhami, A.; Moosavi-Zare, A.R.; Hasaninejad, A.; Khalafi-Nezhad, A.; Beyzavi, M.H. A catalyst-free protocol for the green and efficient condensation of indoles with aldehydes in ionic liquids. Can. J. Chem., 2009, 87, 416-421.
Zare, A.; Moosavi-Zare, A.R.; Hasaninejad, A.; Parhami, A.; Khalafi-Nezhad, A.; Beyzavi, M.H. Green, catalyst-free protocol for the efficient synthesis of N-sulfonyl aldimines and ketimines in ionic liquid [bmim]Br. Synth. Commun., 2009, 39, 3156-3165.
Zare, A.; Hasaninejad, A.; Parhami, A.; Moosavi-Zare, A.R.; Khedri, F.; Parsaee, Z.; Abdolalipoor-Saretoli, M.; Khedri, M.; Roshankar, M.; Deisi, H. Ionic liquid 1-butyl-3-methylimidazolium bromide ([bmim]Br): a green and neutral reaction media for the efficient, catalyst-free synthesis of quinoxaline derivatives. J. Serb. Chem. Soc., 2010, 75, 1315-1324.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [76 - 96]
Pages: 21
DOI: 10.2174/1385272823666190111152917
Price: $58

Article Metrics

PDF: 35