Therapeutic Applications of Peptides against Zika Virus: A Review

Author(s): Preeti Karwal, Ishwar Dutt Vats, Niharika Sinha, Anchal Singhal, Teena Sehgal, Pratibha Kumari*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 23 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Zika Virus (ZIKV) belongs to the class of flavivirus that can be transmitted by Aedes mosquitoes. The number of Zika virus caused cases of acute infections, neurological disorders and congenital microcephaly are rapidly growing and therefore, in 2016, the World Health Organization declared a global “Public Health Emergency of International Concern”. Anti-ZIKV therapeutic and vaccine development strategies are growing worldwide in recent years, however, no specific and safe treatment is available till date to save the human life. Currently, development of peptide therapeutics against ZIKV has attracted rising attention on account of their high safety concern and low development cost, in comparison to small therapeutic molecules and antibody-based anti-viral drugs. In present review, an overview of ZIKV inhibition by peptide-based inhibitors including E-protein derived peptides, antimicrobial peptides, frog skin peptides and probiotic peptides has been discussed. Peptides inhibitors have also been reported to act against NS5, NS2B-NS3 protease and proteasome in order to inhibit ZIKV infection. Recent advances in peptide-based therapeutics and vaccine have been reviewed and their future promise against ZIKV infections has been explored.

Keywords: Zika virus, peptide, vaccine, therapeutic, inhibition of zika virus, mosquito-borne disease, Anti-ZIKV, antiviral.

[1]
Rasmussen, S.A.; Jamieson, D.J.; Honein, M.A.; Petersen, L.R. Zika virus and birth defects-reviewing the evidence for causality. N. Engl. J. Med., 2016, 374(20), 1981-1987.
[http://dx.doi.org/10.1056/NEJMsr1604338] [PMID: 27074377]
[2]
Arzuza-Ortega, L.; Polo, A.; Pérez-Tatis, G.; López-García, H.; Parra, E.; Pardo-Herrera, L.C.; Rico-Turca, A.M.; Villamil-Gómez, W.; Rodríguez-Morales, A.J. Fatal sickle cell disease and zika virus infection in girl from Colombia. Emerg. Infect. Dis., 2016, 22(5), 925-927.
[http://dx.doi.org/10.3201/eid2205.151934] [PMID: 27089120]
[3]
Ashraf, U.; Zhu, B.; Ye, J.; Wan, S.; Nie, Y.; Chen, Z.; Cui, M.; Wang, C.; Duan, X.; Zhang, H.; Chen, H.; Cao, S. MicroRNA-19b-3p modulates Japanese encephalitis virus-mediated inflammation via targeting RNF11. J. Virol., 2016, 90(9), 4780-4795.
[http://dx.doi.org/10.1128/JVI.02586-15] [PMID: 26937036]
[4]
Gulland, A. Zika virus is a global public health emergency, declares WHO. BMJ, 2016, 352, i657.
[http://dx.doi.org/10.1136/bmj.i657] [PMID: 26839247]
[5]
Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis., 2008, 14(8), 1232-1239.
[http://dx.doi.org/10.3201/eid1408.080287] [PMID: 18680646]
[6]
Gautam, R.; Mishra, S.; Milhotra, A.; Nagpal, R.; Mohan, M.; Singhal, A.; Kumari, P. Challenges with mosquito-borne viral diseases: outbreak of the monsters. Curr. Top. Med. Chem., 2017, 17(19), 2199-2214.
[http://dx.doi.org/10.2174/1568026617666170130122921] [PMID: 28137229]
[7]
Lindenbach, B.D.; Thiel, H.J.; Rice, C.M. Flaviviridae: the viruses and their replication.Fields Virol, 2007, 1101-1133.
[8]
Unni, S.K.; Růžek, D.; Chhatbar, C.; Mishra, R.; Johri, M.K.; Singh, S.K. Japanese encephalitis virus: from genome to infectome. Microbes Infect., 2011, 13(4), 312-321.
[http://dx.doi.org/10.1016/j.micinf.2011.01.002] [PMID: 21238600]
[9]
Hayes, E.B. Zika virus outside Africa. Emerg. Infect. Dis., 2009, 15(9), 1347-1350.
[http://dx.doi.org/10.3201/eid1509.090442] [PMID: 19788800]
[10]
Weissenböck, H.; Hubálek, Z.; Bakonyi, T.; Nowotny, N. Zoonotic mosquito-borne flaviviruses: worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol., 2010, 140(3-4), 271-280.
[http://dx.doi.org/10.1016/j.vetmic.2009.08.025] [PMID: 19762169]
[11]
Dick, G.W.; Kitchen, S.F.; Haddow, A.J. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg., 1952, 46(5), 509-520.
[http://dx.doi.org/10.1016/0035-9203(52)90042-4] [PMID: 12995440]
[12]
Moore, D.L.; Causey, O.R.; Carey, D.E.; Reddy, S.; Cooke, A.R.; Akinkugbe, F.M.; David-West, T.S.; Kemp, G.E. Arthropod-borne viral infections of man in Nigeria, 1964-1970. Ann. Trop. Med. Parasitol., 1975, 69(1), 49-64.
[http://dx.doi.org/10.1080/00034983.1975.11686983] [PMID: 1124969]
[13]
Smithburn, K.C. Neutralizing antibodies against certain recently isolated viruses in the sera of human beings residing in East Africa. J. Immunol., 1952, 69(2), 223-234.
[PMID: 14946416]
[14]
MacNamara, F.N. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans. R. Soc. Trop. Med. Hyg., 1954, 48(2), 139-145.
[http://dx.doi.org/10.1016/0035-9203(54)90006-1] [PMID: 13157159]
[15]
Olson, J.G.; Ksiazek, T.G.; Suhandiman, ; Triwibowo, Zika virus, a cause of fever in Central Java, Indonesia. Trans. R. Soc. Trop. Med. Hyg., 1981, 75(3), 389-393.
[http://dx.doi.org/10.1016/0035-9203(81)90100-0] [PMID: 6275577]
[16]
Duffy, M.R.; Chen, T.H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; Guillaumot, L.; Griggs, A.; Bel, M.; Lambert, A.J.; Laven, J.; Kosoy, O.; Panella, A.; Biggerstaff, B.J.; Fischer, M.; Hayes, E.B. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med., 2009, 360(24), 2536-2543.
[http://dx.doi.org/10.1056/NEJMoa0805715] [PMID: 19516034]
[17]
European Centre for Disease Prevention and Control Rapid risk assessment: Zika virus infection outbreak, French Polynesia, 2014.Available at:. https://ecdc.europa. eu/en/publications-data/rapid-risk-assessment-zika-virus-infection-outbreak-french-polynesia
[18]
European Centre for Disease Prevention and Control Rapid risk assessment: Zika virus disease epidemic: potential association with microcephaly and Guillain-Barré syndrome - 6th update, 2016.Available at:. https://ecdc.europa.eu/en/publications-data/rapid-risk-assessment-zika-virus-disease-epidemic-potential-association-4
[19]
Roth, A.; Mercier, A.; Lepers, C.; Hoy, D.; Duituturaga, S.; Benyon, E.; Guillaumot, L.; Souares, Y. Concurrent outbreaks of dengue, chikungunya and Zika virus infections - an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012-2014. Euro Surveill., 2014, 19(41), 20929.
[http://dx.doi.org/10.2807/1560-7917.es2014.19.41.20929] [PMID: 25345518]
[20]
Dupont-Rouzeyrol, M.; Biron, A.; O’Connor, O.; Huguon, E.; Descloux, E. Infectious Zika viral particles in breastmilk. Lancet, 2016, 387(10023), 1051.
[http://dx.doi.org/10.1016/S0140-6736(16)00624-3] [PMID: 26944028]
[21]
Campos, G.S.; Bandeira, A.C.; Sardi, S.I. Zika virus outbreak, Bahia, Brazil. Emerg. Infect. Dis., 2015, 21(10), 1885-1886.
[http://dx.doi.org/10.3201/eid2110.150847] [PMID: 26401719]
[22]
World Health Organization. Zika virus outbreaks in the Americas. Weekly Epidemiological Record: Relevé épidémiologique hebdomadaire, 2015, 90(45), 609-616.Available at:. http://www.who.int/wer/2015/wer9045. pdf?ua=1
[23]
Gatherer, D.; Kohl, A. Zika virus: a previously slow pandemic spreads rapidly through the Americas. J. Gen. Virol., 2016, 97(2), 269-273.
[http://dx.doi.org/10.1099/jgv.0.000381] [PMID: 26684466]
[24]
Hennessey, M.; Fischer, M.; Staples, J.E. Zika virus spreads to new areas- region of the Americas, May 2015-January 2016. MMWR Morb. Mortal. Wkly. Rep., 2016, 65(3), 55-58.
[http://dx.doi.org/10.15585/mmwr.mm6503e1] [PMID: 26820163]
[25]
Fauci, A.S.; Morens, D.M. Zika virus in the Americas yet another arbovirus threat. N. Engl. J. Med., 2016, 374(7), 601-604.
[http://dx.doi.org/10.1056/NEJMp1600297] [PMID: 26761185]
[26]
Chen, L.H.; Hamer, D.H. Zika virus: rapid spread in the Western Hemisphere. Ann. Intern. Med., 2016, 164(9), 613-615.
[http://dx.doi.org/10.7326/M16-0150] [PMID: 26832396]
[27]
Lednicky, J.; Beau De Rochars, V.M.; El Badry, M.; Loeb, J.; Telisma, T.; Chavannes, S.; Anilis, G.; Cella, E.; Ciccozzi, M.; Rashid, M.; Okech, B.; Salemi, M.; Morris, J.G., Jr Zika virus outbreak in Haiti in 2014: molecular and clinical data. PLoS Negl. Trop. Dis., 2016, 10(4)e0004687
[http://dx.doi.org/10.1371/journal.pntd.0004687] [PMID: 27111294]
[28]
Hajra, A.; Bandyopadhyay, D.; Hajra, S.K. Zika virus: a global threat to humanity: a comprehensive review and current developments. N. Am. J. Med. Sci., 2016, 8(3), 123-128.
[http://dx.doi.org/10.4103/1947-2714.179112] [PMID: 27114968]
[29]
Centers for Disease Control and Prevention CDC adds countries to interim travel guidance related to Zika virus,, 2012.Available at:. https://www.cdc.gov/media/releases/ 2016/s0122-zika-travel-guidance.html
[30]
Kindhauser, M.K.; Allen, T.; Frank, V.; Santhana, R.S.; Dye, C. Zika: the origin and spread of a mosquito-borne virus. Bull. World Health Organ., 2016, 94(9), 675-686C.
[http://dx.doi.org/10.2471/BLT.16.171082] [PMID: 27708473]
[31]
Zhu, J.; Trang, P.; Kim, K.; Zhou, T.; Deng, H.; Liu, F. Effective inhibition of Rta expression and lytic replication of Kaposi’s sarcoma-associated herpesvirus by human RNase P. Proc. Natl. Acad. Sci. USA, 2004, 101(24), 9073-9078.
[http://dx.doi.org/10.1073/pnas.0403164101] [PMID: 15184661]
[32]
Düzgüneş, N.; Simões, S.; Slepushkin, V.; Pretzer, E.; Flasher, D.; Salem, I.I.; Steffan, G.; Konopka, K.; Pedroso de Lima, M.C. Delivery of antiviral agents in liposomes. Methods Enzymol., 2005, 391, 351-373.
[http://dx.doi.org/10.1016/S0076-6879(05)91020-3] [PMID: 15721391]
[33]
Clayton, R.; Ohagen, A.; Nicol, F.; Del Vecchio, A.M.; Jonckers, T.H.M.; Goethals, O.; Van Loock, M.; Michiels, L.; Grigsby, J.; Xu, Z.; Zhang, Y.P.; Gutshall, L.L.; Cunningham, M.; Jiang, H.; Bola, S.; Sarisky, R.T.; Hertogs, K. Sustained and specific in vitro inhibition of HIV-1 replication by a protease inhibitor encapsulated in gp120-targeted liposomes. Antiviral Res., 2009, 84(2), 142-149.
[http://dx.doi.org/10.1016/j.antiviral.2009.08.003] [PMID: 19699239]
[34]
Pan, W.H.; Xin, P.; Morrey, J.D.; Clawson, G.A. A self-processing ribozyme cassette: utility against human papillomavirus 11 E6/E7 mRNA and hepatitis B virus. Mol. Ther., 2004, 9(4), 596-606.
[http://dx.doi.org/10.1016/j.ymthe.2003.12.013] [PMID: 15093190]
[35]
Vivès, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem., 1997, 272(25), 16010-16017.
[http://dx.doi.org/10.1074/jbc.272.25.16010] [PMID: 9188504]
[36]
Frankel, A.D.; Pabo, C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55(6), 1189-1193.
[http://dx.doi.org/10.1016/0092-8674(88)90263-2] [PMID: 2849510]
[37]
Derossi, D.; Joliot, A.H.; Chassaing, G.; Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem., 1994, 269(14), 10444-10450.
[PMID: 8144628]
[38]
Baud, D.; Gubler, D.J.; Schaub, B.; Lanteri, M.C.; Musso, D. An update on Zika virus infection. Lancet, 2017, 390(10107), 2099-2109.
[http://dx.doi.org/10.1016/S0140-6736(17)31450-2] [PMID: 28647173]
[39]
Loe, M.W.C.; Lee, R.C.H.; Chu, J.J.H. Antiviral activity of the FDA-approved drug candesartan cilexetil against Zika virus infection. Antiviral Res., 2019, 172, 104637
[http://dx.doi.org/10.1016/j.antiviral.2019.104637] [PMID: 31669333]
[40]
Savidis, G.; Perreira, J.M.; Portmann, J.M.; Meraner, P.; Guo, Z.; Green, S.; Brass, A.L. The IFITMs inhibit zika virus replication. Cell Rep., 2016, 15(11), 2323-2330.
[http://dx.doi.org/10.1016/j.celrep.2016.05.074] [PMID: 27268505]
[41]
Xu, M.; Lee, E.M.; Wen, Z.; Cheng, Y.; Huang, W.K.; Qian, X.; Tcw, J.; Kouznetsova, J.; Ogden, S.C.; Hammack, C.; Jacob, F.; Nguyen, H.N.; Itkin, M.; Hanna, C.; Shinn, P.; Allen, C.; Michael, S.G.; Simeonov, A.; Huang, W.; Christian, K.M.; Goate, A.; Brennand, K.J.; Huang, R.; Xia, M.; Ming, G.L.; Zheng, W.; Song, H.; Tang, H. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med., 2016, 22(10), 1101-1107.
[http://dx.doi.org/10.1038/nm.4184] [PMID: 27571349]
[42]
Bullard-Feibelman, K.M.; Govero, J.; Zhu, Z.; Salazar, V.; Veselinovic, M.; Diamond, M.S.; Geiss, B.J. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral Res., 2017, 137, 134-140.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.023] [PMID: 27902933]
[43]
Petersen, L.R.; Jamieson, D.J.; Powers, A.M.; Honein, M.A. Zika Virus. N. Engl. J. Med., 2016, 374(16), 1552-1563.
[http://dx.doi.org/10.1056/NEJMra1602113] [PMID: 27028561]
[44]
Musso, D.; Roche, C.; Robin, E.; Nhan, T.; Teissier, A.; Cao-Lormeau, V.M. Potential sexual transmission of Zika virus. Emerg. Infect. Dis., 2015, 21(2), 359-361.
[http://dx.doi.org/10.3201/eid2102.141363] [PMID: 25625872]
[45]
Oster, A.M.; Brooks, J.T.; Stryker, J.E.; Kachur, R.E.; Mead, P.; Pesik, N.T.; Petersen, L.R. Interim guidelines for prevention of sexual transmission of zika virus- United States, 2016. MMWR Morb. Mortal. Wkly. Rep., 2016, 65(5), 120-121.
[http://dx.doi.org/10.15585/mmwr.mm6505e1] [PMID: 26866485]
[46]
Musso, D.; Nhan, T.; Robin, E.; Roche, C.; Bierlaire, D.; Zisou, K.; Shan Yan, A.; Cao-Lormeau, V.M.; Broult, J. Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Euro Surveill., 2014, 19(14), 20761.
[http://dx.doi.org/10.2807/1560-7917.ES2014.19.14.20761] [PMID: 24739982]
[47]
Aubry, M.; Finke, J.; Teissier, A.; Roche, C.; Broult, J.; Paulous, S.; Desprès, P.; Cao-Lormeau, V.M.; Musso, D. Seroprevalence of arboviruses among blood donors in French Polynesia, 2011-2013. Int. J. Infect. Dis., 2015, 41, 11-12.
[http://dx.doi.org/10.1016/j.ijid.2015.10.005] [PMID: 26482390]
[48]
Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev., 2016, 29(3), 487-524.
[http://dx.doi.org/10.1128/CMR.00072-15] [PMID: 27029595]
[49]
Rasmussen, S.A.; Jamieson, D.J.; Honein, M.A.; Petersen, L.R. Zika virus and birth defects-reviewing the evidence for causality. N. Engl. J. Med., 2016, 374(20), 1981-1987.
[http://dx.doi.org/10.1056/NEJMsr1604338] [PMID: 27074377]
[50]
Petersen, E.E.; Polen, K.N.D.; Meaney-Delman, D.; Ellington, S.R.; Oduyebo, T.; Cohn, A.; Oster, A.M.; Russell, K.; Kawwass, J.F.; Karwowski, M.P.; Powers, A.M.; Bertolli, J.; Brooks, J.T.; Kissin, D.; Villanueva, J.; Muñoz-Jordan, J.; Kuehnert, M.; Olson, C.K.; Honein, M.A.; Rivera, M.; Jamieson, D.J.; Rasmussen, S.A. Update: Interim guidance for health care providers caring for women of reproductive age with possible zika virus exposure-united states, 2016. MMWR Morb. Mortal. Wkly. Rep., 2016, 65(12), 315-322.
[http://dx.doi.org/10.15585/mmwr.mm6512e2] [PMID: 27031943]
[51]
Johansson, M.A.; Mier-y-Teran-Romero, L.; Reefhuis, J.; Gilboa, S.M.; Hills, S.L. Zika and the risk of microcephaly. N. Engl. J. Med., 2016, 375(1), 1-4.
[http://dx.doi.org/10.1056/NEJMp1605367] [PMID: 27222919]
[52]
Abushouk, A.I.; Negida, A.; Ahmed, H. An updated review of Zika virus. J. Clin. Virol., 2016, 84, 53-58.
[http://dx.doi.org/10.1016/j.jcv.2016.09.012] [PMID: 27721110]
[53]
Moghadam, S.R.J.; Bayrami, S.; Moghadam, S.J.; Golrokhi, R.; Pahlaviani, F.G. SayedAlinaghi, S. Zika virus: a review of literature. Asian Pac. J. Trop. Biomed., 2016, 6, 989-994.
[http://dx.doi.org/10.1016/j.apjtb.2016.09.007]
[54]
CENTERS FOR DISEASE CONTROL AND PREVENTION Zika Virus, 2016.Available at:. http://ww.cdc.gov/ zika/pdfs/denvchikvzikv-testing-algorithm.pdf
[55]
Yuan, L.; Huang, X.Y.; Liu, Z.Y.; Zhang, F.; Zhu, X.L.; Yu, J.Y.; Ji, X.; Xu, Y.P.; Li, G.; Li, C.; Wang, H.J.; Deng, Y.Q.; Wu, M.; Cheng, M.L.; Ye, Q.; Xie, D.Y.; Li, X.F.; Wang, X.; Shi, W.; Hu, B.; Shi, P.Y.; Xu, Z.; Qin, C.F. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science, 2017, 358(6365), 933-936.
[http://dx.doi.org/10.1126/science.aam7120] [PMID: 28971967]
[56]
Cunha, A.J.; de Magalhães-Barbosa, M.C.; Lima-Setta, F.; Medronho, R.A.; Prata-Barbosa, A. Microcephaly case fatality rate associated with zika virus infection in Brazil: current estimates. Pediatr. Infect. Dis. J., 2017, 36(5), 528-530.
[http://dx.doi.org/10.1097/INF.0000000000001486] [PMID: 28403061]
[57]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[58]
Buchwald, H.; Dorman, R.B.; Rasmus, N.F.; Michalek, V.N.; Landvik, N.M.; Ikramuddin, S. Effects on GLP-1, PYY, and leptin by direct stimulation of terminal ileum and cecum in humans: implications for ileal transposition. Surg. Obes. Relat. Dis., 2014, 10(5), 780-786.
[http://dx.doi.org/10.1016/j.soard.2014.01.032] [PMID: 24837556]
[59]
Padhi, A.; Sengupta, M.; Sengupta, S.; Roehm, K.H.; Sonawane, A. Antimicrobial peptides and proteins in mycobacterial therapy: current status and future prospects. Tuberculosis (Edinb.), 2014, 94(4), 363-373.
[http://dx.doi.org/10.1016/j.tube.2014.03.011] [PMID: 24813349]
[60]
Giordano, C.; Marchiò, M.; Timofeeva, E.; Biagini, G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front. Neurol., 2014, 5, 63.
[http://dx.doi.org/10.3389/fneur.2014.00063] [PMID: 24808888]
[61]
Robinson, S.D.; Safavi-Hemami, H.; McIntosh, L.D.; Purcell, A.W.; Norton, R.S.; Papenfuss, A.T. Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae. PLoS One, 2014, 9(2)e87648
[http://dx.doi.org/10.1371/journal.pone.0087648] [PMID: 24505301]
[62]
Puttagunta, A.L.; Toth, E.L. Insulin lispro (Humalog), the first marketed insulin analogue: indications, contraindications and need for further study. CMAJ, 1998, 158(4), 506-511.
[PMID: 9627564]
[63]
Recio, C.; Maione, F.; Iqbal, A.J.; Mascolo, N.; De Feo, V. The potential therapeutic application of peptides and peptidomimetics in cardiovascular disease. Front. Pharmacol., 2017, 7, 526.
[http://dx.doi.org/10.3389/fphar.2016.00526] [PMID: 28111551]
[64]
Lax, R.; Meenan, C. Challenges for therapeutic peptides part1: on the inside, looking out. Innov. Pharm.Technol., 2012, 42(42), 54-56.
[65]
Uhlig, T.; Kyprianou, T.; Martinelli, F.G.; Oppici, C.A.; Heiligers, D.; Hills, D.; Calvo, X.R.; Verhaert, P. The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom., 2014, 4, 58-69.
[http://dx.doi.org/10.1016/j.euprot.2014.05.003]
[66]
Bruckdorfer, T.; Marder, O.; Albericio, F. From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr. Pharm. Biotechnol., 2004, 5(1), 29-43.
[http://dx.doi.org/10.2174/1389201043489620] [PMID: 14965208]
[67]
Zompra, A.A.; Galanis, A.S.; Werbitzky, O.; Albericio, F. Manufacturing peptides as active pharmaceutical ingredients. Future Med. Chem., 2009, 1(2), 361-377.
[http://dx.doi.org/10.4155/fmc.09.23] [PMID: 21425973]
[68]
Tripathi, S.; Wang, G.; White, M.; Qi, L.; Taubenberger, J.; Hartshorn, K.L. Antiviral activity of the human cathelicidin, LL37, and derived peptides on seasonal and pandemic influenza A viruses. PLoS One, 2015, 10(4)e0124706
[http://dx.doi.org/10.1371/journal.pone.0124706] [PMID: 25909853]
[69]
Hou, M.; Zhang, N.; Yang, J.; Meng, X.; Yang, R.; Li, J.; Sun, T. Antimicrobial peptide LL-37 and IDR-1 ameliorate MRSA pneumonia in vivo. Cell. Physiol. Biochem., 2013, 32(3), 614-623.
[http://dx.doi.org/10.1159/000354465] [PMID: 24021961]
[70]
Belaid, A.; Aouni, M.; Khelifa, R.; Trabelsi, A.; Jemmali, M.; Hani, K. In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J. Med. Virol., 2002, 66(2), 229-234.
[http://dx.doi.org/10.1002/jmv.2134] [PMID: 11782932]
[71]
Gokhale, A.S.; Satyanarayanajois, S. Peptides and peptidomimetics as immunomodulators. Immunotherapy, 2014, 6(6), 755-774.
[http://dx.doi.org/10.2217/imt.14.37] [PMID: 25186605]
[72]
Sun, G.; Larsen, C.N.; Baumgarth, N.; Klem, E.B.; Scheuermann, R.H. Comprehensive annotation of mature peptides and genotypes for zika virus. PLoS One, 2017, 12(1)e0170462
[http://dx.doi.org/10.1371/journal.pone.0170462] [PMID: 28125631]
[73]
Kuhn, R.J.; Zhang, W.; Rossmann, M.G.; Pletnev, S.V.; Corver, J.; Lenches, E.; Jones, C.T.; Mukhopadhyay, S.; Chipman, P.R.; Strauss, E.G.; Baker, T.S.; Strauss, J.H. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 2002, 108(5), 717-725.
[http://dx.doi.org/10.1016/S0092-8674(02)00660-8] [PMID: 11893341]
[74]
Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. Structure of the dengue virus envelope protein after membrane fusion. Nature, 2004, 427(6972), 313-319.
[http://dx.doi.org/10.1038/nature02165] [PMID: 14737159]
[75]
Klein, D.E.; Choi, J.L.; Harrison, S.C. Structure of a dengue virus envelope protein late-stage fusion intermediate. J. Virol., 2013, 87(4), 2287-2293.
[http://dx.doi.org/10.1128/JVI.02957-12] [PMID: 23236058]
[76]
Schmidt, A.G.; Yang, P.L.; Harrison, S.C. Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLoS Pathog., 2010, 6(4)e1000851
[http://dx.doi.org/10.1371/journal.ppat.1000851] [PMID: 20386713]
[77]
Lok, S.M.; Costin, J.M.; Hrobowski, Y.M.; Hoffmann, A.R.; Rowe, D.K.; Kukkaro, P.; Holdaway, H.; Chipman, P.; Fontaine, K.A.; Holbrook, M.R.; Garry, R.F.; Kostyuchenko, V.; Wimley, W.C.; Isern, S.; Rossmann, M.G.; Michael, S.F. Release of dengue virus genome induced by a peptide inhibitor. PLoS One, 2012, 7(11)e50995
[http://dx.doi.org/10.1371/journal.pone.0050995] [PMID: 23226444]
[78]
Schmidt, A.G.; Yang, P.L.; Harrison, S.C. Peptide inhibitors of flavivirus entry derived from the E protein stem. J. Virol., 2010, 84(24), 12549-12554.
[http://dx.doi.org/10.1128/JVI.01440-10] [PMID: 20881042]
[79]
Phoo, W.W.; Li, Y.; Zhang, Z.; Lee, M.Y.; Loh, Y.R.; Tan, Y.B.; Ng, E.Y.; Lescar, J.; Kang, C.; Luo, D. Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. Nat. Commun., 2016, 7, 13410.
[http://dx.doi.org/10.1038/ncomms13410] [PMID: 27845325]
[80]
Wang, L.; Liang, R.; Gao, Y.; Li, Y.; Deng, X.; Xiang, R.; Zhang, Y.; Ying, T.; Jiang, S.; Yu, F. Development of small-molecule inhibitors against zika virus infection. Front. Microbiol., 2019, 10, 2725.
[http://dx.doi.org/10.3389/fmicb.2019.02725] [PMID: 31866959]
[81]
Choksupmanee, O.; Hodge, K.; Katzenmeier, G.; Chimnaronk, S. Structural platform for the autolytic activity of an intact NS2B-NS3 protease complex from dengue virus. Biochemistry, 2012, 51(13), 2840-2851.
[http://dx.doi.org/10.1021/bi2018267] [PMID: 22401173]
[82]
Kang, C.; Keller, T.H.; Luo, D. Zika virus protease: an antiviral drug target. Trends Microbiol., 2017, 25(10), 797-808.
[http://dx.doi.org/10.1016/j.tim.2017.07.001] [PMID: 28789826]
[83]
Poulsen, A.; Kang, C.; Keller, T.H. Drug design for flavivirus proteases: what are we missing? Curr. Pharm. Des., 2014, 20(21), 3422-3427.
[http://dx.doi.org/10.2174/13816128113199990633] [PMID: 24001226]
[84]
Barrows, N.J.; Campos, R.K.; Powell, S.T.; Prasanth, K.R.; Schott-Lerner, G.; Soto-Acosta, R.; Galarza-Muñoz, G.; McGrath, E.L.; Urrabaz-Garza, R.; Gao, J.; Wu, P.; Menon, R.; Saade, G.; Fernandez-Salas, I.; Rossi, S.L.; Vasilakis, N.; Routh, A.; Bradrick, S.S.; Garcia-Blanco, M.A. A Screen of FDA-approved drugs for inhibitors of zika virus infection. Cell Host Microbe, 2016, 20(2), 259-270.
[http://dx.doi.org/10.1016/j.chom.2016.07.004] [PMID: 27476412]
[85]
Phoo, W.W.; Zhang, Z.; Wirawan, M.; Chew, E.J.C.; Chew, A.B.L.; Kouretova, J.; Steinmetzer, T.; Luo, D. Structures of Zika virus NS2B-NS3 protease in complex with peptidomimetic inhibitors. Antiviral Res., 2018, 160, 17-24.
[http://dx.doi.org/10.1016/j.antiviral.2018.10.006] [PMID: 30315877]
[86]
Chaudhuri, S.; Symons, J.A.; Deval, J. Innovation and trends in the development and approval of antiviral medicines: 1987-2017 and beyond. Antiviral Res., 2018, 155, 76-88.
[http://dx.doi.org/10.1016/j.antiviral.2018.05.005] [PMID: 29758235]
[87]
Chen, L.; Liu, Y.; Wang, S.; Sun, J.; Wang, P.; Xin, Q.; Zhang, L.; Xiao, G.; Wang, W. Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Res., 2017, 141, 140-149.
[http://dx.doi.org/10.1016/j.antiviral.2017.02.009] [PMID: 28232248]
[88]
Kaufmann, B.; Rossmann, M.G. Molecular mechanisms involved in the early steps of flavivirus cell entry. Microbes Infect., 2011, 13(1), 1-9.
[http://dx.doi.org/10.1016/j.micinf.2010.09.005] [PMID: 20869460]
[89]
Zhang, X.; Jia, R.; Shen, H.; Wang, M.; Yin, Z.; Cheng, A. Structures and functions of the envelope glycoprotein in flavivirus infections. Viruses, 2017, 9(11), 338.
[http://dx.doi.org/10.3390/v9110338] [PMID: 29137162]
[90]
Yu, Y.; Deng, Y.Q.; Zou, P.; Wang, Q.; Dai, Y.; Yu, F.; Du, L.; Zhang, N.N.; Tian, M.; Hao, J.N.; Meng, Y.; Li, Y.; Zhou, X.; Fuk-Woo Chan, J.; Yuen, K.Y.; Qin, C.F.; Jiang, S.; Lu, L. A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. Nat. Commun., 2017, 8, 15672.
[http://dx.doi.org/10.1038/ncomms15672] [PMID: 28742068]
[91]
Lorin, C.; Saidi, H.; Belaid, A.; Zairi, A.; Baleux, F.; Hocini, H.; Bélec, L.; Hani, K.; Tangy, F. The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology, 2005, 334(2), 264-275.
[http://dx.doi.org/10.1016/j.virol.2005.02.002] [PMID: 15780876]
[92]
Barlow, P.G.; Svoboda, P.; Mackellar, A.; Nash, A.A.; York, I.A.; Pohl, J.; Davidson, D.J.; Donis, R.O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One, 2011, 6(10)e25333
[http://dx.doi.org/10.1371/journal.pone.0025333] [PMID: 22031815]
[93]
Currie, S.M.; Findlay, E.G.; McHugh, B.J.; Mackellar, A.; Man, T.; Macmillan, D.; Wang, H.; Fitch, P.M.; Schwarze, J.; Davidson, D.J. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One, 2013, 8(8)e73659
[http://dx.doi.org/10.1371/journal.pone.0073659] [PMID: 24023689]
[94]
Howell, M.D.; Jones, J.F.; Kisich, K.O.; Streib, J.E.; Gallo, R.L.; Leung, D.Y.M. Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J. Immunol., 2004, 172(3), 1763-1767.
[http://dx.doi.org/10.4049/jimmunol.172.3.1763] [PMID: 14734759]
[95]
He, M.; Zhang, H.; Li, Y.; Wang, G.; Tang, B.; Zhao, J.; Huang, Y.; Zheng, J. Cathelicidin-derived antimicrobial peptides inhibit zika virus through direct inactivation and Interferon pathway. Front. Immunol., 2018, 9, 722.
[http://dx.doi.org/10.3389/fimmu.2018.00722] [PMID: 29706959]
[96]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[97]
NEWS, N.B.C. Infected Mosquitoes Can't Transmit Zika Virus, Study Finds,, 2016.Available at:. https://www. nbcnews.com/storyline/zika-virus-outbreak/infected-mosquitoes-can-t-transmit-zika-virus-study-finds-n568261
[98]
Park, Y.H.; Lim, J.H.; Seo, B.J. Rice-fermented food composition containing a rice-sweetened liquid, fermented by means of kimchi lactobacillus, as an effective ingredient, and having antibacterial and antiviraleffects., U.S. Patent: 20140356338. 2014.
[99]
Liderot, K.; Ahl, M.; Ozenci, V. Secondary bacterial infections in patients with seasonal influenza A and pandemic H1N1. BioMed Res. Int., 2013, 2013, 376219
[http://dx.doi.org/10.1155/2013/376219] [PMID: 23865050]
[100]
Bajpai, V.K.; Chandra, V.; Kim, N.H.; Rai, R.; Kumar, P.; Kim, K.; Aeron, A.; Kang, S.C.; Maheshwari, D.K.; Na, M.; Rather, I.A.; Park, Y.H. Ghost probiotics with a combined regimen: a novel therapeutic approach against the Zika virus, an emerging world threat. Crit. Rev. Biotechnol., 2018, 38(3), 438-454.
[http://dx.doi.org/10.1080/07388551.2017.1368445] [PMID: 28877637]
[101]
Zhang, Z.; Li, Y.; Loh, Y.R.; Phoo, W.W.; Hung, A.W.; Kang, C.; Luo, D. Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Science, 2016, 354(6319), 1597-1600.
[http://dx.doi.org/10.1126/science.aai9309] [PMID: 27940580]
[102]
Erbel, P.; Schiering, N.; D’Arcy, A.; Renatus, M.; Kroemer, M.; Lim, S.P.; Yin, Z.; Keller, T.H.; Vasudevan, S.G.; Hommel, U. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat. Struct. Mol. Biol., 2006, 13(4), 372-373.
[http://dx.doi.org/10.1038/nsmb1073] [PMID: 16532006]
[103]
Gruba, N.; Rodriguez Martinez, J.I.; Grzywa, R.; Wysocka, M.; Skoreński, M.; Burmistrz, M.; Łęcka, M.; Lesner, A.; Sieńczyk, M.; Pyrć, K. Substrate profiling of Zika virus NS2B-NS3 protease. FEBS Lett., 2016, 590(20), 3459-3468.
[http://dx.doi.org/10.1002/1873-3468.12443] [PMID: 27714789]
[104]
Nitsche, C.; Zhang, L.; Weigel, L.F.; Schilz, J.; Graf, D.; Bartenschlager, R.; Hilgenfeld, R.; Klein, C.D. Peptide-boronic acid inhibitors of flaviviral proteases: medicinal chemistry and structural biology. J. Med. Chem., 2017, 60(1), 511-516.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01021] [PMID: 27966962]
[105]
Lei, J.; Hansen, G.; Nitsche, C.; Klein, C.D.; Zhang, L.; Hilgenfeld, R. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science, 2016, 353(6298), 503-505.
[http://dx.doi.org/10.1126/science.aag2419] [PMID: 27386922]
[106]
Li, Y.; Zhang, Z.; Phoo, W.W.; Loh, Y.R.; Wang, W.; Liu, S.; Chen, M.W.; Hung, A.W.; Keller, T.H.; Luo, D.; Kang, C. Structural dynamics of zika virus NS2B-NS3 protease binding to dipeptide inhibitors. Structure, 2017, 25(8), 1242-1250.e3.
[http://dx.doi.org/10.1016/j.str.2017.06.006] [PMID: 28689970]
[107]
Lin, K-H.; Ali, A.; Rusere, L.; Soumana, D.I.; Kurt Yilmaz, N.; Schiffer, C.A. Dengue virus NS2B/NS3 protease inhibitors exploiting the prime side. J. Virol., 2017, 91(10), e00045-e17.
[http://dx.doi.org/10.1128/JVI.00045-17] [PMID: 28298600]
[108]
Zhao, B.; Yi, G.; Du, F.; Chuang, Y.C.; Vaughan, R.C.; Sankaran, B.; Kao, C.C.; Li, P. Structure and function of the Zika virus full-length NS5 protein. Nat. Commun., 2017, 8, 14762.
[http://dx.doi.org/10.1038/ncomms14762] [PMID: 28345656]
[109]
Best, S.M. The Many Faces of the Flavivirus NS5 protein in antagonism of type I interferon signaling. J. Virol., 2017, 91(3), e01970-e16.
[http://dx.doi.org/10.1128/JVI.01970-16] [PMID: 27881649]
[110]
Wang, C.; Yang, S.N.Y.; Smith, K.; Forwood, J.K.; Jans, D.A. Nuclear import inhibitor N-(4-hydroxyphenyl) retinamide targets Zika virus (ZIKV) nonstructural protein 5 to inhibit ZIKV infection. Biochem. Biophys. Res. Commun., 2017, 493(4), 1555-1559.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.016] [PMID: 28988109]
[111]
Jans, D.A.; Martin, A.J. Nucleocytoplasmic trafficking of dengue non-structural protein 5 as a target for antivirals. Adv. Exp. Med. Biol., 2018, 1062, 199-213.
[http://dx.doi.org/10.1007/978-981-10-8727-1_15] [PMID: 29845535]
[112]
Xin, Q-L.; Deng, C-L.; Chen, X.; Wang, J.; Wang, S-B.; Wang, W.; Deng, F.; Zhang, B.; Xiao, G.; Zhang, L-K. Quantitative proteomic analysis of mosquito C6/36 cells reveals host proteins involved in zika virus infection. J. Virol., 2017, 91(12), e00554-e17.
[http://dx.doi.org/10.1128/JVI.00554-17] [PMID: 28404849]
[113]
Kisselev, A.F.; van der Linden, W.A.; Overkleeft, H.S. Proteasome inhibitors: an expanding army attacking a unique target. Chem. Biol., 2012, 19(1), 99-115.
[http://dx.doi.org/10.1016/j.chembiol.2012.01.003] [PMID: 22284358]
[114]
Adams, J.; Behnke, M.; Chen, S.; Cruickshank, A.A.; Dick, L.R.; Grenier, L.; Klunder, J.M.; Ma, Y.T.; Plamondon, L.; Stein, R.L. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg. Med. Chem. Lett., 1998, 8(4), 333-338.
[http://dx.doi.org/10.1016/S0960-894X(98)00029-8] [PMID: 9871680]
[115]
UPI Skin mucus of South Indian frog kills flu virus,, 2017.Available at:. https://www.upi.com/Science_News/ 2017/04/18/Skin-mucus-of-South-Indian-frog-kills-flu-virus/1771492534343/
[116]
Gopala Reddy, S.B.; Chin, W.X.; Shivananju, N.S. Dengue virus NS2 and NS4: Minor proteins, mammoth roles. Biochem. Pharmacol., 2018, 154, 54-63.
[http://dx.doi.org/10.1016/j.bcp.2018.04.008] [PMID: 29674002]
[117]
Lescar, J.; Soh, S.; Lee, L.T.; Vasudevan, S.G.; Kang, C.; Lim, S.P. The dengue virus replication complex: From RNA replication to protein-protein interactions to evasion of innate immunity. Adv. Exp. Med. Biol., 2018, 1062, 115-129.
[http://dx.doi.org/10.1007/978-981-10-8727-1_9] [PMID: 29845529]
[118]
Zhu, Z.; Chan, J.F-W.; Tee, K-M.; Choi, G.K-Y.; Lau, S.K-P.; Woo, P.C-Y.; Tse, H.; Yuen, K-Y. Comparative genomic analysis of pre-epidemic and epidemic zika virus strains for virological factors potentially associated with the rapidly expanding epidemic. Emerg. Microbes Infect,, 2016. 5e22
[http://dx.doi.org/10.1038/emi.2016.48]
[119]
Laureti, M.; Narayanan, D.; Rodriguez-Andres, J.; Fazakerley, J.K.; Kedzierski, L. Flavivirus receptors: diversity, identity, and cell entry. Front. Immunol., 2018, 9, 2180.
[http://dx.doi.org/10.3389/fimmu.2018.02180] [PMID: 30319635]
[120]
Kazmirchuk, T.; Dick, K.; Burnside, D.J.; Barnes, B.; Moteshareie, H.; Hajikarimlou, M.; Omidi, K.; Ahmed, D.; Low, A.; Lettl, C.; Hooshyar, M.; Schoenrock, A.; Pitre, S.; Babu, M.; Cassol, E.; Samanfar, B.; Wong, A.; Dehne, F.; Green, J.R.; Golshani, A. Designing anti-Zika virus peptides derived from predicted human-Zika virus protein-protein interactions. Comput. Biol. Chem., 2017, 71, 180-187.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.10.011] [PMID: 29112936]
[121]
Shan, C.; Muruato, A.E.; Nunes, B.T.D.; Luo, H.; Xie, X.; Medeiros, D.B.A.; Wakamiya, M.; Tesh, R.B.; Barrett, A.D.; Wang, T.; Weaver, S.C.; Vasconcelos, P.F.C.; Rossi, S.L.; Shi, P.Y. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat. Med., 2017, 23(6), 763-767.
[http://dx.doi.org/10.1038/nm.4322] [PMID: 28394328]
[122]
Levine, M.M.; Sztein, M.B. Vaccine development strategies for improving immunization: the role of modern immunology. Nat. Immunol., 2004, 5(5), 460-464.
[http://dx.doi.org/10.1038/ni0504-460] [PMID: 15116108]
[123]
Englund, J.A.; Karron, R.A.; Cunningham, C.K.; Larussa, P.; Melvin, A.; Yogev, R.; Handelsman, E.; Siberry, G.K.; Thumar, B.; Schappell, E.; Bull, C.V.; Chu, H.Y.; Schaap-Nutt, A.; Buchholz, U.; Collins, P.L.; Schmidt, A.C. International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) P1096 Study Group. Safety and infectivity of two doses of live-attenuated recombinant cold-passaged human parainfluenza type 3 virus vaccine rHPIV3cp45 in HPIV3-seronegative young children. Vaccine, 2013, 31(48), 5706-5712.
[http://dx.doi.org/10.1016/j.vaccine.2013.09.046] [PMID: 24103895]
[124]
Liljeqvist, S.; Ståhl, S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J. Biotechnol., 1999, 73(1), 1-33.
[http://dx.doi.org/10.1016/S0168-1656(99)00107-8] [PMID: 10483112]
[125]
Moisa, A.A.; Kolesanova, E.F. Synthetic Peptide Vaccines: Insight and Control of Infectious Disease in Global Scenario, 2012.Available at:. https://www.intechopen. com/books/insight-and-control-of-infectious-disease-in-global-scenario/synthetic-peptide-vaccines
[http://dx.doi.org/10.5772/33496]
[126]
Wahid, B.; Ali, A.; Rafique, S.; Idrees, M. Current status of therapeutic and vaccine approaches against Zika virus. Eur. J. Intern. Med., 2017, 44, 12-18.
[http://dx.doi.org/10.1016/j.ejim.2017.08.001] [PMID: 28797534]
[127]
Skwarczynski, M.; Toth, I. Peptide-based subunit nanovaccines. Curr. Drug Deliv., 2011, 8(3), 282-289.
[http://dx.doi.org/10.2174/156720111795256192] [PMID: 21291373]
[128]
Poland, G.A.; Ovsyannikova, I.G.; Jacobson, R.M. Application of pharmacogenomics to vaccines. Pharmacogenomics, 2009, 10(5), 837-852.
[http://dx.doi.org/10.2217/pgs.09.25] [PMID: 19450131]
[129]
Rappuoli, R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine, 2001, 19(17-19), 2688-2691.
[http://dx.doi.org/10.1016/S0264-410X(00)00554-5] [PMID: 11257410]
[130]
Barocchi, M.A.; Censini, S.; Rappuoli, R. Vaccines in the era of genomics: the pneumococcal challenge. Vaccine, 2007, 25(16), 2963-2973.
[http://dx.doi.org/10.1016/j.vaccine.2007.01.065] [PMID: 17324490]
[131]
Dar, H.; Zaheer, T.; Rehman, M.T.; Ali, A.; Javed, A.; Khan, G.A.; Babar, M.M.; Waheed, Y. Prediction of promiscuous T-cell epitopes in the Zika virus polyprotein: An in silico approach. Asian Pac. J. Trop. Med., 2016, 9(9), 844-850.
[http://dx.doi.org/10.1016/j.apjtm.2016.07.004] [PMID: 27633296]
[132]
Dikhit, M.R.; Ansari, M.Y.; Vijaymahantesh, ; Kalyani, ; Mansuri, R.; Sahoo, B.R.; Dehury, B.; Amit, A.; Topno, R.K.; Sahoo, G.C.; Ali, V.; Bimal, S.; Das, P. Computational prediction and analysis of potential antigenic CTL epitopes in Zika virus: A first step towards vaccine development. Infect. Genet. Evol., 2016, 45, 187-197.
[http://dx.doi.org/10.1016/j.meegid.2016.08.037] [PMID: 27590716]
[133]
Weltman, J.K. Computer-assisted vaccine design by analysis of zika virus E proteins obtained either from humans or from Aedes mosquitos. J. Med. Microb. Diagn, 2016, 5, 235.
[http://dx.doi.org/10.4172/2161-0703.1000235]
[134]
Prasasty, V.D.; Grazzolie, K.; Rosmalena, R.; Yazid, F.; Ivan, F.X.; Sinaga, E. Peptide-based subunit vaccine design of T- and B-cells multi-epitopes against zika virus using immunoinformatics approaches. Microorganisms, 2019, 7(8), 226.
[http://dx.doi.org/10.3390/microorganisms7080226] [PMID: 31370224]
[135]
Ashfaq, U.A.; Ahmed, B. De Novo structural modeling and conserved epitopes prediction of zika virus envelop protein for vaccine development. Viral Immunol., 2016, 29(7), 436-443.
[http://dx.doi.org/10.1089/vim.2016.0033] [PMID: 27438351]
[136]
Gupta, P. Computer aided drug design and discovery-an economical approach to drug discovery industry. Austin. J. Biotechnol. Bioeng, 2014, 1(4), 2.
[137]
Badawi, M.M.; Osman, M.M.; Alla, A.A.F.; Ahmedani, A.M.; Abdalla, M.H.; Gasemelseed, M.M.; Elsayed, A.A.; Salih, M.A. Highly conserved epitopes of zika envelope glycoprotein may act as a novel peptide vaccine with high coverage: immunoinformatics approach. Am. J. Biomed. Res., 2016, 4, 46-60.
[138]
Shawan, M.M.A.K.; Mahmud, H.A.; Hasan, M.; Parvin, A.; Rahman, N.; Rahman, S.M.B. In silico modelling and immunoinformatics probing disclose the epitope based peptide vaccine against zika virus envelope glycoprotein. Ind. J. Pharm. Biol. Res, 2014, 2(4), 44-45.
[http://dx.doi.org/10.30750/ijpbr.2.4.10]
[139]
Alam, A.; Ali, S.; Ahamad, S.; Malik, M.Z.; Ishrat, R. From ZikV genome to vaccine: in silico approach for the epitope-based peptide vaccine against Zika virus envelope glycoprotein. Immunology, 2016, 149(4), 386-399.
[http://dx.doi.org/10.1111/imm.12656] [PMID: 27485738]
[140]
Mirza, M.U.; Rafique, S.; Ali, A.; Munir, M.; Ikram, N.; Manan, A.; Salo-Ahen, O.M.; Idrees, M. Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Sci. Rep., 2016, 6, 37313.
[http://dx.doi.org/10.1038/srep37313] [PMID: 27934901]
[141]
De Gregorio, E.; Rappuoli, R. Vaccines for the future: learning from human immunology. Microb. Biotechnol., 2012, 5(2), 149-155.
[http://dx.doi.org/10.1111/j.1751-7915.2011.00276.x] [PMID: 21880117]
[142]
Patronov, A.; Doytchinova, I. T-cell epitope vaccine design by immunoinformatics. Open Biol., 2013, 3(1)120139
[http://dx.doi.org/10.1098/rsob.120139] [PMID: 23303307]
[143]
Yang, X.; Yu, X. An introduction to epitope prediction methods and software. Rev. Med. Virol., 2009, 19(2), 77-96.
[http://dx.doi.org/10.1002/rmv.602] [PMID: 19101924]
[144]
Singh, M.V.; Weber, E.A.; Singh, V.B.; Stirpe, N.E.; Maggirwar, S.B. Preventive and therapeutic challenges in combating Zika virus infection: are we getting any closer? J. Neurovirol., 2017, 23(3), 347-357.
[http://dx.doi.org/10.1007/s13365-017-0513-4] [PMID: 28116673]
[145]
Yamaguchi, Y.; Miura, M. Programmed cell death in neurodevelopment. Dev. Cell, 2015, 32(4), 478-490.
[http://dx.doi.org/10.1016/j.devcel.2015.01.019] [PMID: 25710534]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 23
Year: 2020
Page: [3906 - 3923]
Pages: 18
DOI: 10.2174/0929867326666190111115132
Price: $65

Article Metrics

PDF: 23
HTML: 3
EPUB: 1
PRC: 1