Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

O-(2-[18F]-Fluoroethyl)-L-Tyrosine (FET) in Neurooncology: A Review of Experimental Results

Author(s): Carina Stegmayr, Antje Willuweit, Philipp Lohmann and Karl-Josef Langen*

Volume 12, Issue 3, 2019

Page: [201 - 210] Pages: 10

DOI: 10.2174/1874471012666190111111046

Price: $65

Abstract

In recent years, PET using radiolabelled amino acids has gained considerable interest as an additional tool besides MRI to improve the diagnosis of cerebral gliomas and brain metastases. A very successful tracer in this field is O-(2-[18F]fluoroethyl)-L-tyrosine (FET) which in recent years has replaced short-lived tracers such as [11C]-methyl-L-methionine in many neuro-oncological centers in Western Europe. FET can be produced with high efficiency and distributed in a satellite concept like 2- [18F]fluoro-2-deoxy-D-glucose. Many clinical studies have demonstrated that FET PET provides important diagnostic information regarding the delineation of cerebral gliomas for therapy planning, an improved differentiation of tumor recurrence from treatment-related changes and sensitive treatment monitoring. In parallel, a considerable number of experimental studies have investigated the uptake mechanisms of FET on the cellular level and the behavior of the tracer in various benign lesions in order to clarify the specificity of FET uptake for tumor tissue. Further studies have explored the effects of treatment related tissue alterations on tracer uptake such as surgery, radiation and drug therapy. Finally, the role of blood-brain barrier integrity for FET uptake which presents an important aspect for PET tracers targeting neoplastic lesions in the brain has been investigated in several studies. Based on a literature research regarding experimental FET studies and corresponding clinical applications this article summarizes the knowledge on the uptake behavior of FET, which has been collected in more than 30 experimental studies during the last two decades and discusses the role of these results in the clinical context.

Keywords: Brain tumor diagnosis, cerebral glioma, brain metastasis, rat glioma, radiolabelled amino acids, O-(2-[18F]- fluoroethyl)-L-tyrosine (FET) PET.

Graphical Abstract
[1]
Galldiks, N.; Langen, K.J. Amino Acid PET - An imaging option to identify treatment response, posttherapeutic effects, and tumor recurrence? Front. Neurol., 2016, 7, 120.
[2]
Langen, K.J.; Stoffels, G.; Filss, C.; Heinzel, A.; Stegmayr, C.; Lohmann, P.; Willuweit, A.; Neumaier, B.; Mottaghy, F.M.; Galldiks, N. Imaging of amino acid transport in brain tumours: Positron emission tomography with O-(2-[18F]fluoroethyl)-L-tyrosine (FET). Methods, 2017, 130, 124-134.
[3]
Hamacher, K.; Coenen, H.H. Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl. Radiat. Isot., 2002, 57(6), 853-856.
[4]
Langen, K.J.; Galldiks, N.; Hattingen, E.; Shah, N.J. Advances in neuro-oncology imaging. Nat. Rev. Neurol., 2017.
[5]
Weckesser, M.; Langen, K.J.; Rickert, C.H.; Kloska, S.; Straeter, R.; Hamacher, K.; Kurlemann, G.; Wassmann, H.; Coenen, H.H.; Schober, O.O. -(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur. J. Nucl. Med. Mol. Imaging, 2005, 32(4), 422-429.
[6]
Galldiks, N.; Stoffels, G.; Filss, C.; Rapp, M.; Blau, T.; Tscherpel, C.; Ceccon, G.; Dunkl, V.; Weinzierl, M.; Stoffel, M.; Sabel, M.; Fink, G.R.; Shah, N.J.; Langen, K.J. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro-oncol., 2015, 17(9), 1293-1300.
[7]
Pöpperl, G.; Kreth, F.W.; Mehrkens, J.H.; Herms, J.; Seelos, K.; Koch, W.; Gildehaus, F.J.; Kretzschmar, H.A.; Tonn, J.C.; Tatsch, K. FET PET for the evaluation of untreated gliomas: Correlation of FET uptake and uptake kinetics with tumour grading. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(12), 1933-1942.
[8]
Moulin-Romsee, G.; D’Hondt, E.; de Groot, T.; Goffin, J.; Sciot, R.; Mortelmans, L.; Menten, J.; Bormans, G.; Van Laere, K. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(12), 2082-2087.
[9]
Kratochwil, C.; Combs, S.E.; Leotta, K.; Afshar-Oromieh, A.; Rieken, S.; Debus, J.; Haberkorn, U.; Giesel, F.L. Intra-individual comparison of (18)F-FET and (18)F-DOPA in PET imaging of recurrent brain tumors. Neuro-oncol., 2014, 16(3), 434-440.
[10]
Albert, N.L.; Weller, M.; Suchorska, B.; Galldiks, N.; Soffietti, R.; Kim, M.M.; la Fougere, C.; Pope, W.; Law, I.; Arbizu, J.; Chamberlain, M.C.; Vogelbaum, M.; Ellingson, B.M.; Tonn, J.C. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-oncol., 2016, 18(9), 1199-1208.
[11]
Swissmedic. Swiss agency for therapeutic products. J. Swissmedic., 2014, 13, 651.
[12]
Heiss, P.; Mayer, S.; Herz, M.; Wester, H.J.; Schwaiger, M.; Senekowitsch-Schmidtke, R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J. Nucl. Med., 1999, 40(8), 1367-1373.
[13]
Wester, H.J.; Herz, M.; Weber, W.; Heiss, P.; Senekowitsch-Schmidtke, R.; Schwaiger, M.; Stocklin, G. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J. Nucl. Med., 1999, 40(1), 205-212.
[14]
Wang, H.E.; Wu, S.Y.; Chang, C.W.; Liu, R.S.; Hwang, L.C.; Lee, T.W.; Chen, J.C.; Hwang, J.J. Evaluation of F-18-labeled amino acid derivatives and [18F]FDG as PET probes in a brain tumor-bearing animal model. Nucl. Med. Biol., 2005, 32(4), 367-375.
[15]
Pauleit, D.; Floeth, F.; Herzog, H.; Hamacher, K.; Tellmann, L.; Muller, H.W.; Coenen, H.H.; Langen, K.J. Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-L-tyrosine. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(4), 519-524.
[16]
Langen, K.J.; Jarosch, M.; Muhlensiepen, H.; Hamacher, K.; Broer, S.; Jansen, P.; Zilles, K.; Coenen, H.H. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl. Med. Biol., 2003, 30(5), 501-508.
[17]
Richard, M.A.; Fouquet, J.P.; Lebel, R.; Lepage, M. Determination of an optimal pharmacokinetic model of (18)F-FET for quantitative applications in rat brain tumors. J. Nucl. Med., 2017, 58(8), 1278-1284.
[18]
Bolcaen, J.; Lybaert, K.; Moerman, L.; Descamps, B.; Deblaere, K.; Boterberg, T.; Kalala, J.P.; Van den Broecke, C.; De Vos, F.; Vanhove, C.; Goethals, I. kinetic modeling and graphical analysis of 18F-Fluoromethylcholine (FCho), 18F-Fluoroethyltyrosine (FET) and 18F-Fluorodeoxyglucose (FDG) PET for the fiscrimination between high-grade glioma and radiation necrosis in rats. PLoS One, 2016, 11(8)e0161845
[19]
Thiele, F.; Ehmer, J.; Piroth, M.D.; Eble, M.J.; Coenen, H.H.; Kaiser, H.J.; Schaefer, W.M.; Buell, U.; Boy, C. The quantification of dynamic FET PET imaging and correlation with the clinical outcome in patients with glioblastoma. Phys. Med. Biol., 2009, 54, 5525-5539.
[20]
Prante, O.; Blaser, D.; Maschauer, S.; Kuwert, T. In vitro characterization of the thyroidal uptake of O-(2-[(18)F]fluoroethyl)-L-tyrosine. Nucl. Med. Biol., 2007, 34(3), 305-314.
[21]
Wiriyasermkul, P.; Nagamori, S.; Tominaga, H.; Oriuchi, N.; Kaira, K.; Nakao, H.; Kitashoji, T.; Ohgaki, R.; Tanaka, H.; Endou, H.; Endo, K.; Sakurai, H.; Kanai, Y. Transport of 3-fluoro-L-alpha-methyl-tyrosine by tumor-upregulated L-type amino acid transporter 1: A cause of the tumor uptake in PET. J. Nucl. Med., 2012, 53(8), 1253-1261.
[22]
Hawkins, R.A.; O’Kane, R.L.; Simpson, I.A.; Vina, J.R. Structure of the blood-brain barrier and its role in the transport of amino acids. J. Nutr., 2006, 136(1), 218s-226s.
[23]
Broer, S. Xenopus laevis Oocytes. Methods Mol. Biol., 2003, 227, 245-258.
[24]
Lahoutte, T.; Caveliers, V.; Camargo, S.M.; Franca, R.; Ramadan, T.; Veljkovic, E.; Mertens, J.; Bossuyt, A.; Verrey, F. SPECT and PET amino acid tracer influx via system L (h4F2hc-hLAT1) and its transstimulation. J. Nucl. Med., 2004, 45(9), 1591-1596.
[25]
Habermeier, A.; Graf, J.; Sandhofer, B.F.; Boissel, J.P.; Roesch, F.; Closs, E.I. System L amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-L-tyrosine (FET). Amino Acids, 2015, 47(2), 335-344.
[26]
Meier, C.; Ristic, Z.; Klauser, S.; Verrey, F. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J., 2002, 21(4), 580-589.
[27]
Laique, S.; Egrise, D.; Monclus, M.; Schmitz, F.; Garcia, C.; Lemaire, C.; Luxen, A.; Goldman, S. L-amino acid load to enhance PET differentiation between tumor and inflammation: an in vitro study on (18)F-FET uptake. Contrast Media Mol. Imaging, 2006, 1(5), 212-220.
[28]
Lahoutte, T.; Caveliers, V.; Franken, P.R.; Bossuyt, A.; Mertens, J.; Everaert, H. Increased tumor uptake of 3-(123)I-Iodo-L-alpha-methyltyrosine after preloading with amino acids: An in vivo animal imaging study. J. Nucl. Med., 2002, 43(9), 1201-1206.
[29]
Tsukada, H.; Sato, K.; Fukumoto, D.; Kakiuchi, T. Evaluation of D-isomers of O-18F-fluoromethyl, O-18F-fluoroethyl and O-18F-fluoropropyl tyrosine as tumour imaging agents in mice. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(9), 1017-1024.
[30]
Makrides, V.; Bauer, R.; Weber, W.; Wester, H.J.; Fischer, S.; Hinz, R.; Huggel, K.; Opfermann, T.; Herzau, M.; Ganapathy, V.; Verrey, F.; Brust, P. Preferred transport of O-(2-[18F]fluoroethyl)-D-tyrosine (D-FET) into the porcine brain. Brain Res., 2007, 1147, 25-33.
[31]
Stegmayr, C.; Schoneck, M.; Oliveira, D.; Willuweit, A.; Filss, C.; Galldiks, N.; Shah, N.J.; Coenen, H.H.; Langen, K.J. Reproducibility of O-(2-(18)F-fluoroethyl)-L-tyrosine uptake kinetics in brain tumors and influence of corticoid therapy: An experimental study in rat gliomas. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(6), 1115-1123.
[32]
Stegmayr, C.; Stoffels, G.; Kops, E.R.; Lohmann, P.; Galldiks, N.; Shah, N.J.; Neumaier, B.; Langen, K.J. Influence of dexamethasone on O-(2-[(18)F]-Fluoroethyl)-L-Tyrosine uptake in the human brain and quantification of tumor uptake. Mol. Imaging Biol., 2018.
[33]
Fuchs, B.C.; Bode, B.P. Amino acid transporters ASCT2 and LAT1 in cancer: Partners in crime? Semin. Cancer Biol., 2005, 15(4), 254-266.
[34]
Nawashiro, H.; Otani, N.; Shinomiya, N.; Fukui, S.; Ooigawa, H.; Shima, K.; Matsuo, H.; Kanai, Y.; Endou, H. L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int. J. Cancer, 2006, 119(3), 484-492.
[35]
Pauleit, D.; Stoffels, G.; Schaden, W.; Hamacher, K.; Bauer, D.; Tellmann, L.; Herzog, H.; Broer, S.; Coenen, H.H.; Langen, K.J. PET with O-(2-18F-Fluoroethyl)-L-Tyrosine in peripheral tumors: first clinical results. J. Nucl. Med., 2005, 46(3), 411-416.
[36]
Ikotun, O.F.; Marquez, B.V.; Huang, C.; Masuko, K.; Daiji, M.; Masuko, T.; McConathy, J.; Lapi, S.E. Imaging the L-type amino acid transporter-1 (LAT1) with Zr-89 immunoPET. PLoS One, 2013, 8(10)e77476
[37]
Langen, K.J.; Bartenstein, P.; Boecker, H.; Brust, P.; Coenen, H.H.; Drzezga, A.; Grunwald, F.; Krause, B.J.; Kuwert, T.; Sabri, O.; Tatsch, K.; Weber, W.A.; Schreckenberger, M. [German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids]. Nucl. Med. (Stuttg.), 2011, 50(4), 167-173.
[38]
Vander Borght, T.; Asenbaum, S.; Bartenstein, P.; Halldin, C.; Kapucu, O.; Van Laere, K.; Varrone, A.; Tatsch, K. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(11), 1374-1380.
[39]
Law, I.; Albert, N.L.; Arbizu, J.; Boellaard, R.; Drzezga, A.; Galldiks, N.; la Fougere, C.; Langen, K.J.; Lopci, E.; Lowe, V.; McConathy, J.; Quick, H.H.; Sattler, B.; Schuster, D.M.; Tonn, J.C.; Weller, M. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: version 1.0. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(3), 540-557.
[40]
Langen, K.J.; Roosen, N.; Coenen, H.H.; Kuikka, J.T.; Kuwert, T.; Herzog, H.; Stocklin, G.; Feinendegen, L.E. Brain and brain tumor uptake of L-3-[123I]iodo-alpha-methyl tyrosine: competition with natural L-amino acids. J. Nucl. Med., 1991, 32(6), 1225-1229.
[41]
Bergstrom, M.; Ericson, K.; Hagenfeldt, L.; Mosskin, M.; von Holst, H.; Noren, G.; Eriksson, L.; Ehrin, E.; Johnstrom, P. PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids. J. Comput. Assist. Tomogr., 1987, 11(2), 208-213.
[42]
Jansen, N.L.; Graute, V.; Armbruster, L.; Suchorska, B.; Lutz, J.; Eigenbrod, S.; Cumming, P.; Bartenstein, P.; Tonn, J.C.; Kreth, F.W.; la Fougere, C. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(6), 1021-1029.
[43]
Hutterer, M.; Nowosielski, M.; Putzer, D.; Jansen, N.L.; Seiz, M.; Schocke, M.; McCoy, M.; Gobel, G.; la Fougere, C.; Virgolini, I.J.; Trinka, E.; Jacobs, A.H.; Stockhammer, G. [F-18]-fluoro-ethyl-L-tyrosine PET: A valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro-oncol., 2013, 15(3), 341-351.
[44]
Floeth, F.W.; Pauleit, D.; Sabel, M.; Stoffels, G.; Reifenberger, G.; Riemenschneider, M.J.; Jansen, P.; Coenen, H.H.; Steiger, H.J.; Langen, K.J. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J. Nucl. Med., 2007, 48(4), 519-527.
[45]
Yen, L.F.; Wei, V.C.; Kuo, E.Y.; Lai, T.W. Distinct patterns of cerebral extravasation by Evans blue and sodium fluorescein in rats. PLoS One, 2013, 8(7)e68595
[46]
Spaeth, N.; Wyss, M.T.; Weber, B.; Scheidegger, S.; Lutz, A.; Verwey, J.; Radovanovic, I.; Pahnke, J.; Wild, D.; Westera, G.; Weishaupt, D.; Hermann, D.M.; Kaser-Hotz, B.; Aguzzi, A.; Buck, A. Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: Implications for separation of radiation necrosis from tumor recurrence. J. Nucl. Med., 2004, 45(11), 1931-1938.
[47]
Spaeth, N.; Wyss, M.T.; Pahnke, J.; Biollaz, G.; Lutz, A.; Goepfert, K.; Westera, G.; Treyer, V.; Weber, B.; Buck, A. Uptake of 18F-fluorocholine, 18F-fluoro-ethyl-L: -tyrosine and 18F-fluoro-2-deoxyglucose in F98 gliomas in the rat. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(6), 673-682.
[48]
Stegmayr, C.; Bandelow, U.; Oliveira, D.; Lohmann, P.; Willuweit, A.; Filss, C.; Galldiks, N.; Lubke, J.H.; Shah, N.J.; Ermert, J.; Langen, K.J. Influence of blood-brain barrier permeability on O-(2-(18)F-fluoroethyl)-L-tyrosine uptake in rat gliomas. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(3), 408-416.
[49]
Stegmayr, C.; Oliveira, D.; Niemietz, N.; Willuweit, A.; Lohmann, P.; Galldiks, N.; Shah, N.J.; Ermert, J.; Langen, K.J. Influence of bevacizumab on blood-brain barrier permeability and O-(2-(18)F-Fluoroethyl)-l-Tyrosine uptake in rat gliomas. J. Nucl. Med., 2017, 58(5), 700-705.
[50]
Darpolor, M.M.; Molthen, R.C.; Schmainda, K.M. Multimodality imaging of abnormal vascular perfusion and morphology in preclinical 9L gliosarcoma model. PLoS One, 2011, 6(1)e16621
[51]
Badruddoja, M.A.; Krouwer, H.G.; Rand, S.D.; Rebro, K.J.; Pathak, A.P.; Schmainda, K.M. Antiangiogenic effects of dexamethasone in 9L gliosarcoma assessed by MRI cerebral blood volume maps. Neuro-oncol., 2003, 5(4), 235-243.
[52]
Stober, B.; Tanase, U.; Herz, M.; Seidl, C.; Schwaiger, M.; Senekowitsch-Schmidtke, R. Differentiation of tumour and inflammation: characterisation of [methyl-3H]methionine (MET) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(8), 932-939.
[53]
Lee, T.S.; Ahn, S.H.; Moon, B.S.; Chun, K.S.; Kang, J.H.; Cheon, G.J.; Choi, C.W.; Lim, S.M. Comparison of 18F-FDG, 18F-FET and 18F-FLT for differentiation between tumor and inflammation in rats. Nucl. Med. Biol., 2009, 36(6), 681-686.
[54]
Kaim, A.H.; Weber, B.; Kurrer, M.O.; Westera, G.; Schweitzer, A.; Gottschalk, J.; von Schulthess, G.K.; Buck, A. (18)F-FDG and (18)F-FET uptake in experimental soft tissue infection. Eur. J. Nucl. Med. Mol. Imaging, 2002, 29, 648-654.
[55]
Rau, F.C.; Weber, W.A.; Wester, H.J.; Herz, M.; Becker, I.; Kruger, A.; Schwaiger, M.; Senekowitsch-Schmidtke, R.O. -(2-[(18)F]Fluoroethyl)- L-tyrosine (FET): A tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur. J. Nucl. Med. Mol. Imaging, 2002, 29(8), 1039-1046.
[56]
Floeth, F.W.; Pauleit, D.; Sabel, M.; Reifenberger, G.; Stoffels, G.; Stummer, W.; Rommel, F.; Hamacher, K.; Langen, K.J. 18F-FET PET differentiation of ring-enhancing brain lesions. J. Nucl. Med., 2006, 47(5), 776-782.
[57]
Salber, D.; Stoffels, G.; Pauleit, D.; Oros-Peusquens, A.M.; Shah, N.J.; Klauth, P.; Hamacher, K.; Coenen, H.H.; Langen, K.J. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. J. Nucl. Med., 2007, 48(12), 2056-2062.
[58]
Salber, D.; Stoffels, G.; Oros-Peusquens, A.M.; Shah, N.J.; Reifenberger, G.; Hamacher, K.; Coenen, H.H.; Langen, K.J. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine and L-3H-methionine uptake in cerebral hematomas. J. Nucl. Med., 2010, 51(5), 790-797.
[59]
Salber, D.; Stoffels, G.; Pauleit, D.; Reifenberger, G.; Sabel, M.; Shah, N.J.; Hamacher, K.; Coenen, H.H.; Langen, K.J. Differential uptake of [18F]FET and [3H]l-methionine in focal cortical ischemia. Nucl. Med. Biol., 2006, 33(8), 1029-1035.
[60]
Pauleit, D.; Floeth, F.; Hamacher, K.; Riemenschneider, M.J.; Reifenberger, G.; Muller, H.W.; Zilles, K.; Coenen, H.H.; Langen, K.J.O. -(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain, 2005, 128(Pt 3), 678-687.
[61]
Piroth, M.D.; Prasath, J.; Willuweit, A.; Stoffels, G.; Sellhaus, B.; van Osterhout, A.; Geisler, S.; Shah, N.J.; Eble, M.J.; Coenen, H.H.; Langen, K.J. Uptake of O-(2-[18F]fluoroethyl)-L-tyrosine in reactive astrocytosis in the vicinity of cerebral gliomas. Nucl. Med. Biol., 2013, 40(6), 795-800.
[62]
Bolcaen, J.; Descamps, B.; Deblaere, K.; Boterberg, T.; De Vos Pharm, F.; Kalala, J.P.; Van den Broecke, C.; Decrock, E.; Leybaert, L.; Vanhove, C.; Goethals, I. (18)F-fluoromethylcholine (FCho), (18)F-fluoroethyltyrosine (FET), and (18)F-fluorodeoxyglucose (FDG) for the discrimination between high-grade glioma and radiation necrosis in rats: A PET study. Nucl. Med. Biol., 2015, 42(1), 38-45.
[63]
Ceccon, G.; Lohmann, P.; Stoffels, G.; Judov, N.; Filss, C.P.; Rapp, M.; Bauer, E.; Hamisch, C.; Ruge, M.I.; Kocher, M.; Kuchelmeister, K.; Sellhaus, B.; Sabel, M.; Fink, G.R.; Shah, N.J.; Langen, K.J.; Galldiks, N. Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro-oncol., 2016.
[64]
Galldiks, N.; Stoffels, G.; Filss, C.P.; Piroth, M.D.; Sabel, M.; Ruge, M.I.; Herzog, H.; Shah, N.J.; Fink, G.R.; Coenen, H.H.; Langen, K.J. Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J. Nucl. Med., 2012, 53(9), 1367-1374.
[65]
Ellingson, B.M.; Wen, P.Y.; Cloughesy, T.F. Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics, 2017, 14(2), 307-320.
[66]
Klasner, B.; Buchmann, N.; Gempt, J.; Ringel, F.; Lapa, C.; Krause, B.J. Early [18F]FET-PET in gliomas after surgical resection: Comparison with MRI and histopathology. PLoS One, 2015, 10(10)e0141153
[67]
Buchmann, N.; Klasner, B.; Gempt, J.; Bauer, J.S.; Pyka, T.; Delbridge, C.; Meyer, B.; Krause, B.J.; Ringel, F. (18)F-Fluoroethyl-l-thyrosine positron emission tomography to delineate tumor residuals after glioblastoma resection: A comparison with standard postoperative magnetic resonance imaging. World Neurosurg., 2016, 89, 420-426.
[68]
Hutterer, M.; Ebner, Y.; Riemenschneider, M.J.; Willuweit, A.; McCoy, M.; Egger, B.; Schroder, M.; Wendl, C.; Hellwig, D.; Grosse, J.; Menhart, K.; Proescholdt, M.; Fritsch, B.; Urbach, H.; Stockhammer, G.; Roelcke, U.; Galldiks, N.; Meyer, P.T.; Langen, K.J.; Hau, P.; Trinka, E. Epileptic activity increases cerebral amino acid transport assessed by 18F-Fluoroethyl-l-tyrosine amino acid PET: A potential brain tumor mimic. J. Nucl. Med., 2017, 58(1), 129-137.
[69]
Theodore, W.H. Presurgical focus localization in epilepsy: PET and SPECT. Semin. Nucl. Med., 2017, 47(1), 44-53.
[70]
Ebenhan, T.; Honer, M.; Ametamey, S.M.; Schubiger, P.A.; Becquet, M.; Ferretti, S.; Cannet, C.; Rausch, M.; McSheehy, P.M. Comparison of [18F]-tracers in various experimental tumor models by PET imaging and identification of an early response biomarker for the novel microtubule stabilizer patupilone. Mol. Imaging Biol., 2009, 11(5), 308-321.
[71]
Wang, H.E.; Yu, H.M.; Liu, R.S.; Lin, M.; Gelovani, J.G.; Hwang, J.J.; Wei, H.J.; Deng, W.P. Molecular imaging with 123I-FIAU, 18F-FUdR, 18F-FET, and 18F-FDG for monitoring herpes simplex virus type 1 thymidine kinase and ganciclovir prodrug activation gene therapy of cancer. J. Nucl. Med., 2006, 47(7), 1161-1171.
[72]
Hayashi, K.; Anzai, N. Novel therapeutic approaches targeting L-type amino acid transporters for cancer treatment. World J. Gastrointest. Oncol., 2017, 9(1), 21-29.
[73]
Menichetti, L.; Petroni, D.; Panetta, D.; Burchielli, S.; Bortolussi, S.; Matteucci, M.; Pascali, G.; Del Turco, S.; Del Guerra, A.; Altieri, S.; Salvadori, P.A. A micro-PET/CT approach using O-(2-[18F]fluoroethyl)-L-tyrosine in an experimental animal model of F98 glioma for BNCT. Appl. Radiat. Isot., 2011, 69(12), 1717-1720.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy