3D-QSAR Assisted Design of Novel 7-Deazapurine Derivatives as TNNI3K Kinase Inhibitors Using Molecular Docking and Molecular Dynamics Simulation

Author(s): Pavithra K. Balasubramanian, Anand Balupuri, Swapnil P. Bhujbal, Seung Joo Cho*.

Journal Name: Letters in Drug Design & Discovery

Volume 17 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Cardiac troponin I-interacting kinase (TNNI3K) is a cardiac-specific kinase that belongs to MAPKKK family. It is a dual-function kinase with tyrosine and serine/threonine kinase activity. Over-expression of TNNI3K results in various cardiovascular diseases such as cardiomyopathy, ischemia/reperfusion injury, heart failure, etc. Since, it is a cardiac-specific kinase and expressed only in heart tissue, it is an ideal molecular target to treat cardiac diseases. The main objective of the work is to study and understand the structure-activity relationship of the reported deazapurine derivatives and to use the 3D-QSAR and docking results to design potent and novel TNNI3K inhibitors of this series.

Methods: In the present study, we have used molecular docking 3D QSAR, and molecular dynamics simulation to understand the structure-activity correlation of reported TNNI3K inhibitors and to design novel compounds of deazapurine derivatives with increased activity.

Results: Both CoMFA (q2=0.669, NOC=5, r2=0.944) and CoMSIA (q2=0.783, NOC=5, r2=0.965) have resulted in satisfactory models. The models were validated using external test set, Leave-out- Five, bootstrapping, progressive scrambling, and rm2 metrics calculations. The validation procedures showed the developed models were robust and reliable. The docking results and the contour maps analysis helped in the better understanding of the structure-activity relationship.

Conclusion: This is the first report on 3D-QSAR modeling studies of TNNI3K inhibitors. Both docking and MD results were consistent and showed good correlation with the previous experimental data. Based on the information obtained from contour maps, 31 novel TNNI3K inhibitors were designed. These designed compounds showed higher activity than the existing dataset compounds.

Keywords: TNNI3Kkinase, design, CoMFA, CoMSIA, molecular docking, molecular dynamics simulation.

Fuster, V. Global burden of cardiovascular disease: time to implement feasible strategies and to monitor results. J. Am. Coll. Cardiol., 2014, 64(5), 520-522.
[http://dx.doi.org/10.1016/j.jacc.2014.06.1151] [PMID: 25082587]
Levy, D.; Kenchaiah, S.; Larson, M.G.; Benjamin, E.J.; Kupka, M.J.; Ho, K.K.; Murabito, J.M.; Vasan, R.S. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med., 2002, 347(18), 1397-1402.
[http://dx.doi.org/10.1056/NEJMoa020265] [PMID: 12409541]
Heeringa, J.; van der Kuip, D.A.; Hofman, A.; Kors, J.A.; van Herpen, G.; Stricker, B.H.C.; Stijnen, T.; Lip, G.Y.; Witteman, J.C. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J., 2006, 27(8), 949-953.
[http://dx.doi.org/10.1093/eurheartj/ehi825] [PMID: 16527828]
Anderson, M.E.; Higgins, L.S.; Schulman, H. Disease mechanisms and emerging therapies: protein kinases and their inhibitors in myocardial disease. Nat. Clin. Pract. Cardiovasc. Med., 2006, 3(8), 437-445.
[http://dx.doi.org/10.1038/ncpcardio0585] [PMID: 16874356]
Zhao, Y.; Meng, X-M.; Wei, Y-J.; Zhao, X-W.; Liu, D-Q.; Cao, H-Q.; Liew, C-C.; Ding, J-F. Cloning and characterization of a novel cardiac-specific kinase that interacts specifically with cardiac troponin I. J. Mol. Med. (Berl.), 2003, 81(5), 297-304.
[http://dx.doi.org/10.1007/s00109-003-0427-x] [PMID: 12721663]
Lal, H.; Ahmad, F.; Parikh, S.; Force, T. TNNI3K, a novel cardiac-specific kinase, emerging as a molecular target for the treatment of cardiac disease. Circ. J., 2014, 78(7), 1514.
[http://dx.doi.org/10.1253/circj.CJ-14-0543] [PMID: 24899531]
Luft, F. C. Hearts of this ILK rely on TNNI3K, a MAPKKK that regulates TNNI3. J. Mol. Med., (Berl), 2003, 81(5), 279-280.
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
Pu, W.T. Identification of a cardiac disease modifier gene using forward genetics in the mouse. PLoS Genet., 2009, 5(9)e1000643
[http://dx.doi.org/10.1371/journal.pgen.1000643] [PMID: 19763163]
Tang, H.; Xiao, K.; Mao, L.; Rockman, H.A.; Marchuk, D.A. Overexpression of TNNI3K, a cardiac-specific MAPKKK, promotes cardiac dysfunction. J. Mol. Cell. Cardiol., 2013, 54, 101-111.
[http://dx.doi.org/10.1016/j.yjmcc.2012.10.004] [PMID: 23085512]
Feng, Y.; Cao, H.Q.; Liu, Z.; Ding, J.F.; Meng, X.M. Identification of the dual specificity and the functional domains of the cardiac-specific protein kinase TNNI3K. Gen. Physiol. Biophys., 2007, 26(2), 104-109.
[PMID: 17660584]
Meng, X-M.; Zhao, Y.; Wei, Y-J.; Cao, H-Q.; Zhao, X-W.; Liu, D-Q.; Shi, N.; Ding, J-F. Cloning and characterization of a novel cardiac-specific kinase gene p93 related to sarcomere Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 2003, 35(12), 1083-1089.
[PMID: 14673499]
Feng, Y.; Liu, D-Q.; Wang, Z.; Liu, Z.; Cao, H-Q.; Wang, L-Y.; Shi, N.; Meng, X-M. AOP-1 interacts with cardiac-specific protein kinase TNNI3K and down-regulates its kinase activity. Biochemistry (Mosc.), 2007, 72(11), 1199-1204.
[http://dx.doi.org/10.1134/S0006297907110053] [PMID: 18205602]
Cowan-Jacob, S.W.; Fendrich, G.; Floersheimer, A.; Furet, P.; Liebetanz, J.; Rummel, G.; Rheinberger, P.; Centeleghe, M.; Fabbro, D.; Manley, P.W. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr. D Biol. Crystallogr., 2007, 63(Pt 1), 80-93.
[http://dx.doi.org/10.1107/S0907444906047287] [PMID: 17164530]
Wheeler, F.C.; Tang, H.; Marks, O.A.; Hadnott, T.N.; Chu, P-L.; Mao, L.; Rockman, H.A.; Marchuk, D.A. Tnni3k modifies disease progression in murine models of cardiomyopathy. PLoS Genet., 2009, 5(9)e1000647
[http://dx.doi.org/10.1371/journal.pgen.1000647] [PMID: 19763165]
Vagnozzi, R. J.; Gatto, G. J.; Kallander, L. S.; Hoffman, N. E.; Mallilankaraman, K.; Ballard, V. L.; Lawhorn, B. G.; Stoy, P.; Philp, J.; Graves, A. P. Inhibition of the cardiomyocyte-specific kinase TNNI3K limits oxidative stress, injury, and adverse remodeling in the ischemic heart. Sci. Transl. Med, 2013, 5(207), 207ra141l.,
O’Hare, T.; Walters, D.K.; Stoffregen, E.P.; Jia, T.; Manley, P.W.; Mestan, J.; Cowan-Jacob, S.W.; Lee, F.Y.; Heinrich, M.C.; Deininger, M.W.; Druker, B.J. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res., 2005, 65(11), 4500-4505.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0259] [PMID: 15930265]
Wang, X.; Wang, J.; Su, M.; Wang, C.; Chen, J.; Wang, H.; Song, L.; Zou, Y.; Zhang, L.; Zhang, Y.; Hui, R. TNNI3K, a cardiac-specific kinase, promotes physiological cardiac hypertrophy in transgenic mice. PLoS One, 2013, 8(3)e58570
[http://dx.doi.org/10.1371/journal.pone.0058570] [PMID: 23472207]
Lodder, E.M.; Scicluna, B.P.; Milano, A.; Sun, A.Y.; Tang, H.; Remme, C.A.; Moerland, P.D.; Tanck, M.W.; Pitt, G.S.; Marchuk, D.A.; Bezzina, C.R. Dissection of a quantitative trait locus for PR interval duration identifies Tnni3k as a novel modulator of cardiac conduction. PLoS Genet., 2012, 8(12)e1003113
[http://dx.doi.org/10.1371/journal.pgen.1003113] [PMID: 23236294]
Vander Heide, R.S.; Steenbergen, C. Cardioprotection and myocardial reperfusion: pitfalls to clinical application. Circ. Res., 2013, 113(4), 464-477.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.300765] [PMID: 23908333]
Burton, K.P.; McCord, J.M.; Ghai, G. Myocardial alterations due to free-radical generation. Am. J. Physiol., 1984, 246(6 Pt 2), H776-H783.
[PMID: 6331179]
Abraham, D.M.; Marchuk, D.A. Inhibition of the cardiomyocyte-specific troponin I-interacting kinase limits oxidative stress, injury, and adverse remodeling due to ischemic heart disease. Circ. Res., 2014, 114(6), 938-940.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.303238] [PMID: 24625723]
Lu, H.; Fedak, P.W.; Dai, X.; Du, C.; Zhou, Y-Q.; Henkelman, M.; Mongroo, P.S.; Lau, A.; Yamabi, H.; Hinek, A.; Husain, M.; Hannigan, G.; Coles, J.G. Integrin-linked kinase expression is elevated in human cardiac hypertrophy and induces hypertrophy in transgenic mice. Circulation, 2006, 114(21), 2271-2279.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.642330] [PMID: 17088456]
Hannigan, G.E.; Coles, J.G.; Dedhar, S. Integrin-linked kinase at the heart of cardiac contractility, repair, and disease. Circ. Res., 2007, 100(10), 1408-1414.
[http://dx.doi.org/10.1161/01.RES.0000265233.40455.62] [PMID: 17525380]
Hannigan, G.; Leung-Hagesteijn, C.; Fitz-Gibbon, L.; Coppolino, M.; Dedhar, S.; Hannigan, G. Regulation of cell adhesion and anchorage- dependent growth by a new. nature, 1996, 379(6560), 91- 96.
Lai, Z-F.; Chen, Y-Z.; Feng, L-P.; Meng, X-M.; Ding, J-F.; Wang, L-Y.; Ye, J.; Li, P.; Cheng, X-S.; Kitamoto, Y.; Monzen, K.; Komuro, I.; Sakaguchi, N.; Kim-Mitsuyama, S. Overexpression of TNNI3K, a cardiac-specific MAP kinase, promotes P19CL6-derived cardiac myogenesis and prevents myocardial infarction-induced injury. Am. J. Physiol. Heart Circ. Physiol., 2008, 295(2), H708-H716.
[http://dx.doi.org/10.1152/ajpheart.00252.2008] [PMID: 18552163]
Wang, H.; Wang, L.; Song, L.; Zhang, Y-W.; Ye, J.; Xu, R-X.; Shi, N.; Meng, X-M. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I. Braz. J. Med. Biol. Res., 2013, 46(2), 128-137.
[http://dx.doi.org/10.1590/1414-431X20122515] [PMID: 23369981]
Vajpai, N.; Strauss, A.; Fendrich, G.; Cowan-Jacob, S.W.; Manley, P.W.; Grzesiek, S.; Jahnke, W. Solution conformations and dynamics of ABL kinase-inhibitor complexes determined by NMR substantiate the different binding modes of imatinib/nilotinib and dasatinib. J. Biol. Chem., 2008, 283(26), 18292-18302.
[http://dx.doi.org/10.1074/jbc.M801337200] [PMID: 18434310]
Cowan-Jacob, S.; Guez, V.; Griffin, J.; Fabbro, D.; Fendrich, G.; Furet, P.; Liebetanz, J.; Mestan, J.; Manley, P. Bcr-Abl kinase mutations and drug resistance to imatinib (STI571) in chronic myelogenous leukemia. Mini Rev. Med. Chem., 2004, 4, 285-299.
[http://dx.doi.org/10.2174/1389557043487321] [PMID: 15032675]
Manley, P.W.; Breitenstein, W.; Brüggen, J.; Cowan-Jacob, S.W.; Furet, P.; Mestan, J.; Meyer, T. Urea derivatives of STI571 as inhibitors of Bcr-Abl and PDGFR kinases. Bioorg. Med. Chem. Lett., 2004, 14(23), 5793-5797.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.042] [PMID: 15501042]
Lai, Z-F.; Chen, Y-Z. Evidence, hypotheses and significance of MAP kinase TNNI3K interacting with its partners. World J. Hypertens., 2012, 2(2), 22-28.
Cardoso, T.C.; Ferrari, H.F.; Garcia, A.F.; Bregano, L.C.; Andrade, A.L.; Nogueira, A.H. Immunohistochemical approach to the pathogenesis of clinical cases of bovine Herpesvirus type 5 infections. Diagn. Pathol., 2010, 5, 57.
[http://dx.doi.org/10.1186/1746-1596-5-57] [PMID: 20831786]
Shih, S-F.; Wu, Y-H.; Hung, C-H.; Yang, H-Y.; Lin, J-Y. Abrin triggers cell death by inactivating a thiol-specific antioxidant protein. J. Biol. Chem., 2001, 276(24), 21870-21877.
[http://dx.doi.org/10.1074/jbc.M100571200] [PMID: 11285261]
Milano, A.; Lodder, E.M.; Bezzina, C.R. TNNI3K in cardiovascular disease and prospects for therapy. J. Mol. Cell. Cardiol., 2015, 82, 167-173.
[http://dx.doi.org/10.1016/j.yjmcc.2015.03.008] [PMID: 25787061]
Lai, Z-F. TNNI3K could be a novel molecular target for the treatment of cardiac diseases. Recent Pat. Cardiovasc. Drug Discov., 2009, 4(3), 203-210.
[http://dx.doi.org/10.2174/157489009789152285] [PMID: 19925440]
Manley, P.W.; Drueckes, P.; Fendrich, G.; Furet, P.; Liebetanz, J.; Martiny-Baron, G.; Mestan, J.; Trappe, J.; Wartmann, M.; Fabbro, D. Extended kinase profile and properties of the protein kinase inhibitor nilotinib. Biochim. Biophys. Acta, 2010, 1804(3), 445-453.
[http://dx.doi.org/10.1016/j.bbapap.2009.11.008] [PMID: 19922818]
Lawhorn, B.G.; Philp, J.; Zhao, Y.; Louer, C.; Hammond, M.; Cheung, M.; Fries, H.; Graves, A.P.; Shewchuk, L.; Wang, L.; Cottom, J.E.; Qi, H.; Zhao, H.; Totoritis, R.; Zhang, G.; Schwartz, B.; Li, H.; Sweitzer, S.; Holt, D.A.; Gatto, G.J., Jr; Kallander, L.S. Identification of Purines and 7-Deazapurines as Potent and Selective Type I Inhibitors of Troponin I-Interacting Kinase (TNNI3K). J. Med. Chem., 2015, 58(18), 7431-7448.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00931] [PMID: 26355916]
Thibaut, U.; Folkers, G.; Klebe, G.; Kubinyi, H.; Merz, A.; Rognan, D. Recommendations for CoMFA studies and 3D QSAR publications. Quant. Struct.-. Act. Relat., 1994, 13(1), 1-3.
YBYL-X 2.1, T. I., 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA
Eswar, N.; Webb, B.; Marti‐Renom, M. A.; Madhusudhan, M.; Eramian, D.; Shen, M.; Pieper, U.; Sali, A. Comparative protein structure modeling using Modeller. Curr. Protoc. Protein Sci., 2006, 5.6. 1-5.6. 30.,
Martí-Renom, M.A.; Stuart, A.C.; Fiser, A.; Sánchez, R.; Melo, F.; Šali, A. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct., 2000, 29(1), 291-325.
[http://dx.doi.org/10.1146/annurev.biophys.29.1.291] [PMID: 10940251]
Fiser, A.; Do, R.K.G.; Šali, A. Modeling of loops in protein structures. Protein Sci., 2000, 9(9), 1753-1773.
[http://dx.doi.org/10.1110/ps.9.9.1753] [PMID: 11045621]
Webb, B.; Sali, A. Protein structure modeling with MODELLER; Protein Structure Prediction, 2014, pp. 1-15.
Melo, F.; Sánchez, R.; Sali, A. Statistical potentials for fold assessment. Protein Sci., 2002, 11(2), 430-448.
[http://dx.doi.org/10.1002/pro.110430] [PMID: 11790853]
Shen, M.Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci., 2006, 15(11), 2507-2524.
[http://dx.doi.org/10.1110/ps.062416606] [PMID: 17075131]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem., 2007, 28(6), 1145-1152.
[http://dx.doi.org/10.1002/jcc.20634] [PMID: 17274016]
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110(18), 5959-5967.
[http://dx.doi.org/10.1021/ja00226a005] [PMID: 22148765]
Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem., 1994, 37(24), 4130-4146.
[http://dx.doi.org/10.1021/jm00050a010] [PMID: 7990113]
Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013, 29(7), 845-854.
[http://dx.doi.org/10.1093/bioinformatics/btt055] [PMID: 23407358]
Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 2006, 65(3), 712-725.
[http://dx.doi.org/10.1002/prot.21123] [PMID: 16981200]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
Sousa da Silva, A.W.; Vranken, W.F. ACPYPE-Antechamber python parser interface. BMC Res. Notes, 2012, 5(1), 367.
[http://dx.doi.org/10.1186/1756-0500-5-367] [PMID: 22824207]
Berendsen, H.J.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
Hess, B. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput., 2008, 4(1), 116-122.
[http://dx.doi.org/10.1021/ct700200b] [PMID: 26619985]
Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys., 1995, 103(19), 8577-8593.
Roy, K.; Chakraborty, P.; Mitra, I.; Ojha, P.K.; Kar, S.; Das, R.N. Some case studies on application of “r(m)2” metrics for judging quality of quantitative structure-activity relationship predictions: emphasis on scaling of response data. J. Comput. Chem., 2013, 34(12), 1071-1082.
[http://dx.doi.org/10.1002/jcc.23231] [PMID: 23299630]
Lawhorn, B.G.; Philp, J.; Graves, A.P.; Holt, D.A.; Gatto, G.J., Jr; Kallander, L.S. Substituent Effects on Drug-Receptor H-bond Interactions: Correlations Useful for the Design of Kinase Inhibitors. J. Med. Chem., 2016, 59(23), 10629-10641.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01342] [PMID: 27933961]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [155 - 168]
Pages: 14
DOI: 10.2174/1570180816666190110121300
Price: $65

Article Metrics

PDF: 23
PRC: 1