In Vitro and In Vivo Profiles and Characterization of Insulin Nanocarriers Based in Flexible Liposomes Designed for Oral Administration

Author(s): Sara Melisa Arciniegas Ruiz, María Josefa Bernad Bernad, Raquel Lopez Arellano, Roberto Diaz Torres, Sara Del Carmen Caballero Chacón, Dinorah Vargas Estrada*

Journal Name: Letters in Drug Design & Discovery

Volume 16 , Issue 8 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: Alternatives routes of delivery for Insulin have been evaluated to improve treatment for Diabetes Mellitus. The oral route is the most convenient physiologically; it releases in a similar way to endogenous secretion. Flexible liposomes have deformable abilities to pass through membranes with adequate therapeutic effects, but they have been tested only dermally.

Objective: Our aim was to develop an oral nanocarrier based on flexible liposomes for insulin with polymer addition to reduce gastrointestinal degradation.

Methods: Different percentages of polyethylene glycol were added to a conventional formulation of flexible liposomes. The manufacturing procedure was the heating method. Z potential, size particle, polydispersity index and encapsulation percentage were evaluated. A release profile was performed in the stomach and intestinal pH mediums by two-stage reverse dialysis method. The in-vivo test was performed in experimental diabetic rats by oral, transdermal and subcutaneous routes.

Results: All the formulations showed polydispersity but adequate Z potential. The 10% PEG formulation obtained the best insulin enclosure with 81.9%. The insulin integrity after preparation was confirmed by polyacrylamide gel electrophoresis. PEG and non-PEG formulations showed similar behavior in acid release profile but the release and stability of lipid structures were better and longer in intestinal pH conditions. In vivo tests showed a reduction to normal glucose levels only in subcutaneous route.

Conclusion: The polymer inclusion in flexible liposomes generates an adequate nanocarrier for proteins in terms of stability and composition; although its in-vivo use reduces glucose levels in subcutaneous route, the effect was not adequate in oral route.

Keywords: liposome, lipid vesicles, insulin, diabetes, PEG formulation, nanocarrier, transfersome, nanoparticle.

Dave, V.; Sharma, R; Sharma, S.; Jain, P; Yadav, S. Experimental models on diabetes: A comprehensive review. Int. J. Adv. Pharm. Sci. 2013. 4, 01-08
Borgoño, C.; Zinman, B. Insulins, past, present, and future. Endocrinol. Metab. Clin. North Am., 2012, 41, 1-24.
Levin, P.; Zhang, Q.; Mersey, J.; Lee, F.; Bromberger, L.; Bhushan, M.; Bhushan, R. Glycemic control with insulin glargine plus insulin glulisine versus premixed insulin analogues in real-world practices: A cost-effectiveness study with a randomized pragmatic trial design. Clin. Ther., 2011, 33(7), 841-850.
Muñoz, M. Degludec, new ultra-slow-acting basal insulin for the treatment of type 1 and 2 diabetes, advances in clinical research. Endocrinol. Nutr., 2014, 61(3), 153-159.
Del Prato, S.; Leonetti, F.; Simonson, D.; Sheehan, P.; Matsuda, M.; De Fronzo, R. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia, 1994, 37, 1025-1035.
Owens, D.; Zinman, B.; Bolli, G. Alternative routes of insulin delivery. Diabet. Med., 2003, 20, 886-898.
Lassmann-Vague, V.; Raccah, D. Alternatives routes of insulin delivery. Diabetes Metab., 2006, 32, 513-522.
Peppas, N.; Kavimandan, N. Nanoscale analysis of protein and peptide absorption: Insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles. Eur. J. Pharm. Sci., 2006, 29, 183-197.
Cefalu, W. Concept, strategies, and feasibility of noninvasive insulin delivery. Diabetes Care, 2004, 27, 239-246.
Pinto-Reis, C.; Damge, C. Nanotechnology as a promising strategy for alternative routes of insulin delivery. Methods Enzymol., 2012, 508, 217-294.
Bartlett, J.; Turner-Henson, A.; Atchinson, J.; Woolley, T.; Pillion, D. Insulin administration to the eyes of normoglycemic human volunteers. J. Ocul. Pharmacol., 1994, 10, 683-690.
Morgan, R.; Huntzicker, M. Delivery of systemic regular insulin via the ocular route in dogs. J. Ocul. Pharmacol. Ther., 1996, 12, 515-526.
Xuan, B.; Mcclellan, D.; Moore, R.; Chiou, G. Alternative delivery of insulin via eye drops. Diabetes Technol. Ther., 2007, 7, 695-698.
Lee, Y.; Yalkowsky, S. Systemic absorption of insulin from a Gelfoam ocular device. Int. J. Pharm., 1999, 10(190), 35-40.
Xu, X.; Khan, M.A.; Burgess, D.J. A two-stage reverse dialysis in vitro dissolution testing method for passive targeted liposomes. Int. J. Pharm., 2012, 426, 211-218.
Cernea, S.; Kidron, M.; Wohlgelernter, J.; Raz, I. Dose-response relationship of an oral insulin spray in six patients with type 1 diabetes: A single-center, randomized, single-blind, 5-way crossover study. Clin. Ther., 2005, 27, 1562-1570.
Spangler, R. Insulin administration via liposomes. Diabetes Care, 1990, 1(9), 911-922.
Sonia, T.; Sharma, C. Oral insulin delivery, 1st ed. United Kindogm, Woodhead Publishing 2014.
Cevc, G.; Gebauer, D.; Stieber, J.; Schatzlein, A.; Blume, G. Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim. Biophys. Acta, 1998, 1368, 201-215.
Jadupati, M.; Suma, S.; Amit, N.; Kalyan, S. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm. J., 2012, 20, 355-363.
Cevc, G. Transdermal drug delivery of insulin with ultradeformable carriers. Clin. Pharmacokinet., 2003, 42(5), 461-474.
Rajan, R.; Jose, S.; Mukund, V.P.; Vasudevan, D.T. Transferosomes - a vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res., 2011, 2(3), 138-143.
Blume, G.; Cevc, G. Liposomes for sustained drug release in vivo. Biochim. Biophys. Acta, 1990, 1029, 91-97.
Simões, S.; Moreiraa, J.; Fonsecab, C.; Düzgünes, Z.; Pedroso De Lima, P. On the formulation of pH-sensitive liposomes with long circulation times. Adv. Drug Deliv. Rev., 2004, 56, 947-965.
Park, S.; Choi, S.; Davaa, E.; Park, J. Encapsulation enhancement and stabilization of insulin in cationic liposomes. Int. J. Pharm., 2011, 415, 267-272.
Kang, H.; Kim, J.; Han, S. Self-aggregates of poly (2-hydroxyethylaspartamide) copolymers loaded with methotrexate by physical and chemical entrapments. J. Contr. Rel., 2002, 81, 135-144.
Degim, Z.; Unal, N.; Eşsiz, D.; Abbasoglu, U. The effect of various liposome formulations on insulin penetration across Caco-2 cell monolayer. Life Sci., 2004, 75(23), 2819-2827.
Mozafari, M. Liposomes, an overview of manufacturing techniques. Cell. Mol. Biol. Lett., 2005, 10(4), 711-719.
Royatvand, S.; Fallah-Hoseini, H.; Ezzatpanah, H.; Sekehchi, M. Determination of insulin concentration in camel milk using ultra violet-visible absorption spectroscopy. J. Food Bioscience. Tech., 2013, 3, 53-60.
Zagatto, E.; Worsfold, P.J. Spectrophotometry: Overview, reference module in chemistry, molecular sciences and chemical engineering; Elsevier, 2017, pp. 1-5.
Tippavajhala, V.; Yamsani, M. Electrophoretic estimation of insulin: A novel approach to an older technique. Int. J. Curr. Pharm. Res, 2010, 2(4), 19-23.
United States Pharmacopeial Convention. Insulin Revision Bulletin. USP 36-NF 31. Second Supplement: Rockville. 2013.
Costa, P.; Lobo, S. J.M. Modeling and comparison of dissolution profiles Eur. J. Pharm. Sci, 2001, 13(2), 123-133.
Berry, M.R.; Likar, M.D. Statistical assessment of dissolution and drug release profile similarity using a model-dependent approach. J. Pharm. Biomed. Anal., 2007, 45(2), 194-200.
Shah, J.C.; Deshpande, A. Kinetic modeling and comparison of in vitro dissolution profiles. World J. Pharm. Sci., 2014, 2(4), 302-309.
Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. An add-in program for modeling and comparison of drug dissolution profiles AAPS J., 2010, 12(3), 263-271.
Burnham, K.P.; Anderson, D.R. Multimodel inference, understanding AIC and BIC in model selection. Sociol. Methods Res., 2004, 33(2), 261-304.
FDA-CDER. Dissolution Testing of Immediate Release Solid Oral Dosage Forms; Guidance for Industry; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research [CDER], U.S. Government Printing Office, Washington, DC. , 1997.
Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res., 2001, 50, 536-546.
Trinder, P. Determination of glucose in blood using glucose oxidase with an alternative oxygen receptor. Ann. Clin. Biochem., 1969, 6, 24-37.
Malvern. 2017a. Technical Notes [Online]. Malvern Instruments Limited. Available from. > [Accessed 01 June 2017]
Wriedt, T. Mie Theory, A review. In, Hergert, W.; Wriedt, T, eds. The Mie Theory. Basics and applications. Germany, Springer Series in Optical Science , 2012. 169, 53-79
Nellans, H. Mechanisms of peptide and protein absorption, Paracellular intestinal transport, modulation of absorption.Adv. Drug Deliv. Rev 1991, 7, 339 364
Bendayan, M.; Ziv, E.; Gingras, D.; Ben-Sasson, R.; Bar-On, H.; Kidron, M. Biochemical and morpho-cytochemical evidence for the intestinal absorption of insulin in control and diabetic rats. Comparison between the effectiveness of duodenal and colon mucosa. Diabetologia, 1994, 37, 119-126.
Mahato, R.; Narang, A.; Thoma, L.; Miller, D. Emerging trends in oral delivery of peptide and protein drugs. Crit. Rev. Ther. Drug Carrier Syst., 2003, 20, 153-214.
Yun, Y.; Cho, Y.; Park, K. Nanoparticles for oral delivery, targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev., 2012, 65(6), 822-832.
Patel, H.; Ryman, B. Oral administration of insulin by encapsulation within liposomes. FEBS Lett., 1976, 62, 60-62.
Patel, H.; Stevenson, R.; Parsons, J.; Ryman, B. Use of liposomes to aid intestinal absorption of entrapped insulin in normal and diabetic dogs. Biochim. Biophys. Acta, 1982, 716, 188-193.
Mustata, G.; Dinh, S. Approaches to oral drug delivery for challenging molecule. Crit. Rev. Ther. Drug Carrier Syst., 2006, 23, 111-135.
Degim, I.; Gumusel, B.; Degim, Z.; Ozcelikay, T.; Tay, A.; Guner, S. Oral administration of liposomal insulin. J. Nanosci. Nanotechnol., 2006, 6, 2945-2949.
Sapai, A.M.; Vandana, D.; Mamatha, Y.; Prasanth, V. Liposomes: An overview. J. pharm. Sci. Innov., 2012, 1(1), 13-21.
Vijayakumar, M.; Kosuru, R.; Vuddanda, P.; Singh, K.S.; Singh, S. Trans resveratrol loaded DSPE PEG 2000 coated liposomes: An evidence for prolonged systemic circulation and passive brain targeting. J. Drug Deliv. Sci. Technol., 2016, 33, 125-135.
Malvern. 2017b. Dynamic light scattering common terms defined [Online]. Malvern Instruments Limited. Available from,. [Accessed, 20 April 2017]
Huus, K.; Havelund, S.; Olsen, H.; Van de Weert, M.; Frokjaer, S. Thermal dissociation and unfolding of insulin. Biochemistry, 2005, 44, 11171-11177.
Mauri, S. Insulin unfolding and aggregation, a multi-disciplinary study. PhD Thesis. University of Liverpool, 2014.
Arciniegas, S.M.; Bernad, M.J.; Caballero, S.C.; Vargas, D. Glucose response in animals induced with experimental diabetes type 1 after treatment with human insulin exposed to high temperatures. Transylv. Rev., 2017, 25(23), 6189-6196.
Todinova, S.; Guncheva, M.; Yancheva, D. Thermal and conformational stability of insulin in the presence of imidazolium-based ionic liquids. J. Therm. Anal. Calorim., 2016, 123(3), 2591-2598.
D’Souza, S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv. Pharm., 2014, 2014, 1-12.
Bhardwaj, U.; Burgess, D.J. A novel USP apparatus 4 based release testing method for dispersed systems. Int. J. Pharm., 2010, 388, 287-294.
Tomlin, J.; Brown, N.; Ellis, A.; Carlsson, A.; Bogentoft, C.; Read, N.W. The effect of liquid Fibre on gastric emptying in the rat and humans and the distribution of small intestinal contents in the rat. Gut, 1993, 4, 1177-1181.
Hellmig, S.; Von Schöning, F.; Gadow, C.; Katsoulis, S.; Hedderich, J.; Fölsch, U.R.; Stüber, E. Gastric emptying time of fluids and solids in healthy subjects determined by C13 breath tests, influence of age, sex and body mass index. J. Gastroenterol. Hepatol., 2006, 21, 1832-1838.
Singhvi, G.; Singh, M. Review, in-vitro drug release characterization models. Int. J. Pharm. Studies Res., 2011, 2(1), 77-84.
Kousar, R.; Ahmad, M.; Khan, S.A.; Aamir, M.N.; Murtaza, G. Preparation and in vitro characterization of microparticles loaded with cimetidine, analysis of dissolution data using DDSolver. Lat. Am. J. Pharm., 2013, 32(8), 1212-1217.
Schatzlein, A.; Richardson, H.; Cevc, G. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers intact: Evidence from double label CLSM experiments and direct size measurements. Biochim. Biophys. Acta, 2002, 1564, 21-30.
Potts, R.O.; Guy, R.H. Prediciting skin permeability. Pharm. Res., 1992, 9, 663-669.
Schreier, H.; Bouwstra, J. Liposomes and niosomes as topical drug carriers, dermal and transdermal drug delivery. J. Control. Release, 1994, 30, 1-15.
Mezei, M. Liposomes and the skin. In: Gregoridadis G, Florence AT, Patel H, editors. Liposomes in drug delivery. Switzerland: Harwood Academic Publishers. , 1993, pp. 24-135.
Martins, S.; Sarmento, B.; Ferreira, D.C.; Souto, E.B. Lipid- based colloidal carriers for peptide and protein delivery - liposomes versus lipid nanoparticles. . Int. J. Nanomedicine, 2007, 2, 595-607.
Lasic, D.D. Liposomes from physics to applications; ElSevier Science BV: Amsterdam, 1993.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 08 August, 2019
Page: [948 - 960]
Pages: 13
DOI: 10.2174/1570180816666190110112929

Article Metrics

PDF: 37