Multi-parametric MR Imaging Biomarkers Associated to Clinical Outcomes in Gliomas: A Systematic Review

Author(s): Miquel Oltra-Sastre*, Elies Fuster-Garcia, Javier Juan-Albarracin, Carlos Sáez, Alexandre Perez-Girbes, Roberto Sanz-Requena, Antonio Revert-Ventura, Antonio Mocholi, Javier Urchueguia, Antonio Hervas, Gaspar Reynes, Jaime Font-de-Mora, Jose Muñoz-Langa, Carlos Botella, Fernando Aparici, Luis Marti-Bonmati, Juan M. Garcia-Gomez

Journal Name: Current Medical Imaging
Formerly: Current Medical Imaging Reviews

Volume 15 , Issue 10 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Purpose: To systematically review evidence regarding the association of multiparametric biomarkers with clinical outcomes and their capacity to explain relevant subcompartments of gliomas.

Materials and Methods: Scopus database was searched for original journal papers from January 1st, 2007 to February 20th, 2017 according to PRISMA. Four hundred forty-nine abstracts of papers were reviewed and scored independently by two out of six authors. Based on those papers we analyzed associations between biomarkers, subcompartments within the tumor lesion, and clinical outcomes. From all the articles analyzed, the twenty-seven papers with the highest scores were highlighted to represent the evidence about MR imaging biomarkers associated with clinical outcomes. Similarly, eighteen studies defining subcompartments within the tumor region were also highlighted to represent the evidence of MR imaging biomarkers. Their reports were critically appraised according to the QUADAS-2 criteria.

Results: It has been demonstrated that multi-parametric biomarkers are prepared for surrogating diagnosis, grading, segmentation, overall survival, progression-free survival, recurrence, molecular profiling and response to treatment in gliomas. Quantifications and radiomics features obtained from morphological exams (T1, T2, FLAIR, T1c), PWI (including DSC and DCE), diffusion (DWI, DTI) and chemical shift imaging (CSI) are the preferred MR biomarkers associated to clinical outcomes. Subcompartments relative to the peritumoral region, invasion, infiltration, proliferation, mass effect and pseudo flush, relapse compartments, gross tumor volumes, and highrisk regions have been defined to characterize the heterogeneity. For the majority of pairwise cooccurrences, we found no evidence to assert that observed co-occurrences were significantly different from their expected co-occurrences (Binomial test with False Discovery Rate correction, α=0.05). The co-occurrence among terms in the studied papers was found to be driven by their individual prevalence and trends in the literature.

Conclusion: Combinations of MR imaging biomarkers from morphological, PWI, DWI and CSI exams have demonstrated their capability to predict clinical outcomes in different management moments of gliomas. Whereas morphologic-derived compartments have been mostly studied during the last ten years, new multi-parametric MRI approaches have also been proposed to discover specific subcompartments of the tumors. MR biomarkers from those subcompartments show the local behavior within the heterogeneous tumor and may quantify the prognosis and response to treatment of gliomas.

Keywords: Biomarkers, tumor, patient outcome assessment, magnetic resonance imaging, magnetic resonance spectroscopy, image processing, computer-assisted, glioma, subependymal.

Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131(6): 803-20.
[] [PMID: 27157931]
Ostrom QT, Gittleman H, Fulop J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-oncol 2015; 17(Suppl. 4): iv1-iv62.
[] [PMID: 26511214]
Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010; 467(7319): 1114-7.
[] [PMID: 20981102]
Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366(10): 883-92.
[] [PMID: 22397650]
Sottoriva A, Spiteri I, Piccirillo SGM, et al. Intratumor heterogeneityin human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 2013; 110(10): 4009-14.
Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011; 155(8): 529-36.
[] [PMID: 22007046]
Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352(10): 987-96.
[] [PMID: 15758009]
Ponte KF, Berro DH, Collet S, et al. In vivo relationship between hypoxia and angiogenesis in human glioblastoma: a multimodal imaging study. J Nucl Med 2017; 58(10): 1574-9.
Pope WB, Kim HJ, Huo J, et al. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 2009; 252(1): 182-9.
[] [PMID: 19561256]
Mörén L, Bergenheim AT, Ghasimi S, Brännström T, Johansson M, Antti H. Metabolomic screening of tumor tissue and serum in glioma patients reveals diagnostic and prognostic information. Metabolites 2015; 5(3): 502-20.
[] [PMID: 26389964]
Prager AJ, Martinez N, Beal K, Omuro A, Zhang Z, Young RJ. Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol 2015; 36(5): 877-85.
[] [PMID: 25593202]
Kickingereder P, Burth S, Wick A, et al. Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 2016; 280(3): 880-9.
[] [PMID: 27326665]
Yoo R-E, Choi SH, Cho HR, et al. Tumor blood flow from arterial spin labeling perfusion MRI: a key parameter in distinguishing high-grade gliomas from primary cerebral lymphomas, and in predicting genetic biomarkers in high-grade gliomas. J Magn Reson Imaging 2013; 38(4): 852-60.
[] [PMID: 23390061]
Liberman G, Louzoun Y, Aizenstein O, et al. Automatic multi-modal MR tissue classification for the assessment of response to bevacizumab in patients with glioblastoma. Eur J Radiol 2013; 82(2): e87-94.
[] [PMID: 23017192]
Ramadan S, Andronesi OC, Stanwell P, Lin AP, Sorensen AG, Mountford CE. Use of in vivo two-dimensional MR spectroscopy to compare the biochemistry of the human brain to that of glioblastoma. Radiology 2011; 259(2): 540-9.
[] [PMID: 21357517]
Xintao H, Wong KK, Young GS, Guo L, Wong ST. Support vector machine multi-parametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging 2011; 33(2): 296.
Ingrisch M, Schneider MJ, Nörenberg D, et al. Radiomic Analysis reveals prognostic information in T1-weighted baseline magnetic resonance imaging in patients with glioblastoma. Invest Radiol 2017; 52(6): 360-6.
[] [PMID: 28079702]
Ulyte A, Katsaros VK, Liouta E, et al. Prognostic value of preoperative dynamic contrast-enhanced MRI perfusion parameters for high-grade glioma patients. Neuroradiology 2016; 58(12): 1197-208.
[] [PMID: 27796446]
O’Neill AF, Qin L, Wen PY, de Groot JF, Van den Abbeele AD, Yap JT. Demonstration of DCE-MRI as an early pharmacodynamic biomarker of response to VEGF Trap in glioblastoma. J Neurooncol 2016; 130(3): 495-503.
[] [PMID: 27576699]
Kickingereder P, Bonekamp D, Nowosielski M, et al. Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional mr imaging features. Radiology 2016; 281(3): 907-18.
[] [PMID: 27636026]
Roberto S-R, Antonio R-V, Luis M-B, Angel A-B, Gracián G-M. Quantitative mr perfusion parameters related to survival time in high-grade gliomas. European Radiology 2013; 23(12): 3456-65.
Jain R, Poisson L, Narang J, et al. Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers. Radiology 2013; 267(1): 212-20.
[] [PMID: 23238158]
Fathi KA, Mohseni M, Rezaei S, Bakhshandehpour G, Saligheh RH. Multi-parametric (ADC/PWI/T2-W) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. MAGMA 2015; 28(1): 13-22.
Caulo M, Panara V, Tortora D, et al. Data-driven grading of brain gliomas: a multiparametric MR imaging study. Radiology 2014; 272(2): 494-503.
[] [PMID: 24661247]
Alexiou GA, Zikou A, Tsiouris S, et al. Comparison of diffusion tensor, dynamic susceptibility contrast MRI and (99m)Tc-Tetrofosmin brain SPECT for the detection of recurrent high-grade glioma. Magn Reson Imaging 2014; 32(7): 854-9.
[] [PMID: 24848292]
Van Cauter S, De Keyzer F, Sima DM, et al. Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro-oncol 2014; 16(7): 1010-21.
[] [PMID: 24470551]
Seeger A, Braun C, Skardelly M, et al. Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiol 2013; 20(12): 1557-65.
[] [PMID: 24200483]
Chawalparit O, Sangruchi T, Witthiwej T, et al. Diagnostic performance of advanced mri in differentiating high-grade from low-grade gliomas in a setting of routine service. J Med Assoc Thai 2013; 96(10): 1365-73.
Li Y, Lupo JM, Parvataneni R, et al. Survival analysis in patients with newly diagnosed glioblastoma using pre- and postradiotherapy MR spectroscopic imaging. Neuro-oncol 2013; 15(5): 607-17.
[] [PMID: 23393206]
Shankar JJS, Woulfe J, Silva VD, Nguyen TB. Evaluation of perfusion CT in grading and prognostication of high-grade gliomas at diagnosis: a pilot study. AJR Am J Roentgenol 2013; 200(5)W504-9
[] [PMID: 23617517]
Zinn PO, Mahajan B, Sathyan P, et al. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 2011; 6(10)e25451
[] [PMID: 21998659]
Matsusue E, Fink JR, Rockhill JK, Ogawa T, Maravilla KR. Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology 2010; 52(4): 297-306.
[] [PMID: 19834699]
Juan-Albarracín J, Fuster-Garcia E, Manjón JV, et al. Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS One 2015; 10(5)e0125143
[] [PMID: 25978453]
Itakura H, Achrol AS, Mitchell LA, et al. Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci Transl Med 2015; 7(303)303ra138
[] [PMID: 26333934]
Ion-Margineanu A, Van Cauter S, Sima DM, et al. Tumour relapse prediction using multiparametric MR data recorded during follow-up of GBM patients. BioMed Res Int 2015; 2015842923
[] [PMID: 26413548]
Durst CR, Raghavan P, Shaffrey ME, et al. Multimodal MR imaging model to predict tumor infiltration in patients with gliomas. Neuroradiology 2014; 56(2): 107-15.
[] [PMID: 24337609]
Yoon JH, Kim JH, Kang WJ, et al. Grading of cerebral glioma with multi-parametric MR Imaging and 18F-FDG-PET: concordance and accuracy. European Radiol 2014; 24(2): 380-9.
Demerath T, Simon-Gabriel CP, Kellner E, et al. Mesoscopic imaging of glioblastomas: are diffusion, perfusion and spectroscopic measures influenced by the radiogenetic phenotype? Neuroradiol J 2017; 30(1): 36-47.
[] [PMID: 27864578]
Qin L, Li X, Stroiney A, et al. Advanced MRI assessment to predict benefit of anti-programmed cell death 1 protein immunotherapy response in patients with recurrent glioblastoma. Neuroradiology 2017; 59(2): 135-45.
[] [PMID: 28070598]
Boult JKR, Borri M, Jury A, et al. Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging. NMR Biomed 2016; 29(11): 1608-17.
[] [PMID: 27671990]
Server A, Kulle B, Gadmar ØB, Josefsen R, Kumar T, Nakstad PH. Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. Eur J Radiol 2011; 80(2): 462-70.
[] [PMID: 20708868]
Chang PD, Chow DS, Yang PH, Filippi CG, Lignelli A. Predicting glioblastoma recurrence by early changes in the apparent diffusion coefficient value and signal intensity on FLAIR images. AJR Am J Roentgenol 2017; 208(1): 57-65.
[] [PMID: 27726412]
Yi C, Shangjie R. Volume of high-risk intratumoralsubregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma. Eur Radiol 2017; 27: 3583-92.
Khalifa J, Tensaouti F, Chaltiel L, et al. Identification of a candidate biomarker from perfusion MRI to anticipate glioblastoma progression after chemoradiation. Eur Radiol 2016; 26(11): 4194-203.
[] [PMID: 26843012]
Prateek P, Jay P, Partovi S, Madabhushi A, Tiwari P. Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastomamultiforme: preliminary findings. Eur Radiol 2017; 27(10): 4188-97.
Lemasson B, Chenevert TL, Lawrence TS, et al. Impact of perfusion map analysis on early survival prediction accuracy in glioma patients. Transl Oncol 2013; 6(6): 766-74.
[] [PMID: 24466380]
Inano R, Oishi N, Kunieda T, et al. Visualization of heterogeneity and regional grading of gliomas by multiple features using magnetic resonance-based clustered images. Sci Rep 2016; 6: 30344.
[] [PMID: 27456199]
Delgado-Goñi T, Ortega-Martorell S, Ciezka M, et al. MRSI-based molecular imaging of therapy response to temozolomide in preclinical glioblastoma using source analysis. NMR Biomed 2016; 29(6): 732-43.
[] [PMID: 27061401]
Cui Y, Tha KK, Terasaka S, et al. Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology 2016; 278(2): 546-53.
[] [PMID: 26348233]
Price SJ, Young AMH, Scotton WJ, et al. Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas. J Magn Reson Imaging 2016; 43(2): 487-94.
[] [PMID: 26140696]
Sauwen N, Acou M, Van Cauter S, et al. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. Neuroimage Clin 2016; 12: 753-64.
[] [PMID: 27812502]
Jena A, Taneja S, Gambhir A, et al. Glioma recurrence versus radiation necrosis: single-session multiparametric approach using simultaneous O-(2-18F-Fluoroethyl)-L-Tyrosine PET/MRI. Clin Nucl Med 2016; 41(5): e228-36.
[] [PMID: 26859208]
Kim HS, Goh MJ, Kim N, Choi CG, Kim SJ, Kim JH. Which combination of MR imaging modalities is best for predicting recurrent glioblastoma? Study of diagnostic accuracy and reproducibility. Radiology 2014; 273(3): 831-43.
[] [PMID: 24885857]
Christoforidis GA, Yang M, Abduljalil A, et al. “Tumoral pseudoblush” identified within gliomas at high-spatial-resolution ultrahigh-field-strength gradient-echo MR imaging corresponds to microvascularity at stereotactic biopsy. Radiology 2012; 264(1): 210-7.
[] [PMID: 22627600]
Wang S, Kim S, Chawla S, et al. Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2011; 32(3): 507-14.
[] [PMID: 21330399]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[] [PMID: 21376230]
Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990; 8(7): 1277-80.
[] [PMID: 2358840]
Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010; 28(11): 1963-72.
[] [PMID: 20231676]
Sorensen AG, Batchelor TT, Wen PY, Zhang W-T, Jain RK. Response criteria for glioma. Nat Clin Pract Oncol 2008; 5(11): 634-44.
[] [PMID: 18711427]
Rosenkrantz AB, Friedman K, Chandarana H, et al. Current status of hybrid PET/MRI in oncologic imaging. AJR Am J Roentgenol 2016; 206(1): 162-72.
[] [PMID: 26491894]
Castiglioni I, Gallivanone F, Canevari C. Hybrid PET/MRI for In vivo imaging of cancer: current clinical experiences and recent advances. Curr Med Imaging 2016; 12: 106.
Mainta IC, Perani D, Delattre BMA, et al. FDG PET/MR imaging in major neurocognitive disorders. Curr Alzheimer Res 2017; 14: 186-97.
Marner L, Henriksen OM, Lundemann M, Larsen VA, Law I. Clinical PET/MRI in neurooncology: opportunities and challenges from a single-institution perspective. Clin Transl Imaging 2017; 5(2): 135-49.
[] [PMID: 28936429]
R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2015. Available from:

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 08 January, 2019
Page: [933 - 947]
Pages: 15
DOI: 10.2174/1573405615666190109100503
Price: $65

Article Metrics

PDF: 46
PRC: 1