Evaluation of the Anti-Hypercholesterolemic and Antioxidant Activity of Mentha pulegium (L.) Aqueous Extract in Normal and Streptozotocin- Induced Diabetic Rats

Author(s): Omar Farid, Mohamed Eddouks*

Journal Name: The Natural Products Journal

Volume 10 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Objective: Mentha pulegium L., an aromatic plant belonging to Lamiaceae family, is widely used by local population against diabetes, hypertension and cardiovascular disorders. The present study aimed to evaluate the in vivo antihypercholesterolemic effect of aerial parts aqueous extract (A.P.A.E) of Mentha pulegium (M. pulegium) in normal and streptozotocin-induced diabetic rat. Additionally, the in vitro antioxidant activity of M. pulegium A.P.A.E has been estimated.

Methods: The effect of M. pulegium (L.) A.P.A.E (20 mg of lyophilized A.P.A.E per kg body weight) on plasma lipid profile was investigated in normal and streptozotocin (STZ) diabetic rats (n=6) treated for 15 days with M. pulegium (L.) A.P.A.E oral administration. The antioxidant activity was evaluated using DPPH (1-1-diphenyl 2-picryl hydrazyl) radical scavenging activity. Estimation of total polyphenol contents in A.P.A.E of M. pulegium was determined with the Folin- Ciocalteu reagent by the method using gallic acid as a standard phenolic compound. Also, flavonoids were estimated according to the method based on the formation of a complex flavonoidaluminium.

Results: The results show that 15 days of M. pulegium A.P.A.E oral administration alleviated hyperlipidemia in diabetic rats by lowering significantly (p<0.01) the plasma cholesterol levels without affecting the triglycerides (TG) levels significantly. However, no significant decrease in plasma cholesterol and plasma triglycerides has been shown in diabetic control rats. In addition, A.P.A.E oral administration has exerted some increasing activity on plasma HDL-c level (54.84 %), whereas the HDL-c level, in diabetic control rats, has significantly decreased (p<0.05). On the other hand, M. pulegium A.P.A.E showed a high amount of flavonoid (83.07 ± 0.58 mg EQ / g of extract) and phenolic compounds (239.08 ± 35.40 mg EAG/g of extract). Also, according to the DPPH radical scavenging activity, this aqueous extract has demonstrated a significant antioxidant activity.

Conclusion: We conclude that 15 days of M. pulegium A.P.A.E oral administration exhibited a significant antihypercholesterolemic effect and has also demonstrated a not negligent increase in HDL-c levels without affecting the triglycerides levels. Furthermore, A.P.A.E exhibited a potent antioxidant activity. Therefore, phytochemical compounds and antioxidant activity of M. pulegium A.P.A.E may be seemingly implicated in the antihypercholesterolemic effect demonstrated in this study.

Keywords: Mentha pulegium (L.), antihypercholesterolemic, antioxidant activity, flavonoids, phenolic compounds, cardiovascular diseases (CVDs).

Kruit, J.K.; Groen, A.K.; van Berkel, T.J.; Kuipers, F. Emerging roles of the intestine in control of cholesterol metabolism. World J. Gastroenterol., 2006, 12(40), 6429-6439.
[http://dx.doi.org/10.3748/wjg.v12.i40.6429] [PMID: 17072974]
Jellinger, P.S.; Handelsman, Y.; Rosenblit, P.D.; Bloomgarden, Z.T.; Fonseca, V.A.; Garber, A.J.; Grunberger, G.; Guerin, C.K.; Bell, D.S.H.; Mechanick, J.I.; Pessah-Pollack, R.; Wyne, K.; Smith, D.; Brinton, E.A.; Fazio, S.; Davidson, M. AACE 2017 Guidelines, American Association of Clinical Endocrinologists and American College of Endocrinology. Guidelines for management of dyslipidemia and prevention of cardiovascular disease. CPG for managing dyslipidemia and prevention of CVD. Endocr. Pract., 2017, 23(2)(Suppl. 2), 1-87.
[http://dx.doi.org/10.4158/EP171764.APPGL] [PMID: 28437620]
Deng, R. Food and food supplements with hypocholesterolemic effects. Recent Pat. Food Nutr. Agric., 2009, 1(1), 15-24.
[http://dx.doi.org/10.2174/2212798410901010015] [PMID: 20653522]
Sheweita, S.A.; Newairy, A.A.; Mansour, H.A.; Yousef, M.I. Effect of some hypoglycemic herbs on the activity of phase I and II drug-metabolizing enzymes in alloxan-induced diabetic rats. Toxicology, 2002, 174(2), 131-139.
[http://dx.doi.org/10.1016/S0300-483X(02)00048-3] [PMID: 11985890]
Hebi, M.; Khallouki, F.; Haidani A, E.L.; Eddouks, M. Aqueous extract of Argania spinosa L. fruits ameliorates diabetes in streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2018, 16(1), 56-65.
[http://dx.doi.org/10.2174/1871525716666180103163107] [PMID: 29299990]
Sharma, S.B.; Nasir, A.; Prabhu, K.M.; Murthy, P.S.; Dev, G. Hypoglycaemic and hypolipidemic effect of ethanolic extract of seeds of Eugenia jambolana in alloxan-induced diabetic rabbits. J. Ethnopharmacol., 2003, 85(2-3), 201-206.
[http://dx.doi.org/10.1016/S0378-8741(02)00366-5] [PMID: 12639741]
Blumenthal, M., Ed.; The Complete German Commission E Monographs; American Botanical Council: Austin, 1999.
Pharmacopoeia, J. European Pharmacopoeia; 4th ed.; Strasbourg Cedex : Council of Europe. , 2002.
Zargari, A. Herbal Medicines, 1st ed; Tehran Publication of Tehran University: Tehran, Iran, 1990.
Newall, C.A.; Anderson, L.A.; Philipson, J.D. Herbal Medicines: A Guide for Health Care Professional, 1st ed; The Pharmaceutical Press: London, UK, 1996.
Eddouks, M.; Maghrani, M.; Lemhadri, A.; Ouahidi, M.L.; Jouad, H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol., 2002, 82(2-3), 97-103.
[http://dx.doi.org/10.1016/S0378-8741(02)00164-2] [PMID: 12241983]
Farid, O.; Khallouki, F.; Akdad, M.; Breuer, A.; Owen, R.W.; Eddouks, M. Phytochemical characterization of polyphenolic compounds with HPLC-DAD-ESI-MS and evaluation of lipid-lowering capacity of aqueous extracts from Saharan plant Anabasis aretioides (Coss & Moq.) in normal and streptozotocin-induced diabetic rats. J. Integr. Med., 2018, 16(3), 185-191.
[http://dx.doi.org/10.1016/j.joim.2018.03.003] [PMID: 29631911]
Farid, O.; Hajji, L.; Eddouks, M. Aqueous extract of anabasis aretioides ameliorates streptozotocin induced diabetes mellitus in rats. Nat. Prod. J., 2018, 8, 2.
Slinkard, K.; Singleton, V.L. Total phenol analyses: Automation and comparison with manual methods. Am. J. Enol. Vitic., 1977, 28, 49-55.
Hebi, M.; Eddouks, M. Évaluation de l’activité antioxydante de Stevia rebaudiana. Phytotherapie, 2016, 14(1), 17-22.
Zhishen, J.; Mengecheng, T.; Jianming, W. The determination of flavonoid contents on mulberry and their scavenging effects on superoxide radical. Food Chem., 1999, 64, 555-559.
Yokozawa, T.; Chen, C.P.; Dong, E.; Tanaka, T.; Nonaka, G.I.; Nishioka, I. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2 picrylhydrazyl radical. Biochem. Pharmacol., 1998, 56(2), 213-222.
[http://dx.doi.org/10.1016/S0006-2952(98)00128-2] [PMID: 9698075]
Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem., 2009, 112(3), 654-658.
Lazar, M.; Golden, P.; Furman, M.; Lieberman, T.W. Resistance of the rabbit to streptozotocin. Lancet, 1968, 2(7574), 919.
[http://dx.doi.org/10.1016/S0140-6736(68)91094-5] [PMID: 4176174]
Stephen Irudayaraj, S.; Sunil, C.; Duraipandiyan, V.; Ignacimuthu, S. Antidiabetic and antioxidant activities of Toddalia asiatica (L.) Lam. leaves in streptozotocin induced diabetic rats. J. Ethnopharmacol., 2012, 143(2), 515-523.
[http://dx.doi.org/10.1016/j.jep.2012.07.006] [PMID: 22842651]
Arulmozhi, S.; Mazumderb, P.M.; Lohidasan, S.; Thakurdesai, P. Antidiabetic and antihyperlipidemic activity of leaves of Alstoniascholaris Linn. Eur. J. Integr. Med., 2010, 2, 23-32.
Anuja, P.; Sunil, N.; Shashikant, P.; Tambe, V.; Tare, M. Antidiabetic effect of polyherbal combinations in STZ- induced diabetes involved inhibition of a-amylase and a-glucosidase with amelioration of lipidprofile. Phytopharmacol, 2012, 2(1), 46-57.
Chattopadhyay, R.R.; Bandyopadhyay, M. Effect of Azadirachtaindica leaf extract on serum lipid profile changes in normal and streptozotocin induced diabetic rats. Afr. J. Biomed. Res., 2005, 8, 101-104.
Parhofer, K.G. Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia. Diabetes Metab. J., 2015, 39(5), 353-362.
[http://dx.doi.org/10.4093/dmj.2015.39.5.353] [PMID: 26566492]
Murali, B.; Upadhyaya, U.M.; Goyal, R.K. Effect of chronic treatment with Enicostemma littorale in non-insulin-dependent diabetic (NIDDM) rats. J. Ethnopharmacol., 2002, 81(2), 199-204.
[http://dx.doi.org/10.1016/S0378-8741(02)00077-6] [PMID: 12065151]
Eliza, J.; Daisy, P.; Ignacimuthu, S.; Duraipandiyan, V. Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.)Sm., in STZ-induced diabetic rats. Chem. Biol. Interact., 2009, 182(1), 67-72.
[http://dx.doi.org/10.1016/j.cbi.2009.08.012] [PMID: 19695236]
Kim, H.J.; Jeon, S.M.; Lee, M.K.; Cho, Y.Y.; Kwon, E.Y.; Lee, J.H.; Choi, M.S. Comparison of hesperetin and its metabolites for cholesterol-lowering and antioxidative efficacy in hypercholesterolemic hamsters. J. Med. Food, 2010, 13(4), 808-814.
[http://dx.doi.org/10.1089/jmf.2009.1320] [PMID: 20553191]
Stange, E.F.; Dietschy, J.M. Cholesterol absorption and metabolism by the intestinal epithelium. New Comprehensive Biochemistry, 1985, 12, 121-149.
Endo, A. Compactin (ML-236B) and related compounds as potential cholesterol-lowering agents that inhibit HMG-CoA reductase. J. Med. Chem., 1985, 28(4), 401-405.
[http://dx.doi.org/10.1021/jm00382a001] [PMID: 3981532]
Watt, S.M.; Simmonds, W.J. The effect of pancreatic diversion on lymphatic absorption and esterification of cholesterol in the rat. J. Lipid Res., 1981, 22(1), 157-165.
[PMID: 7217780]
Stange, E.F.; Suckling, K.E.; Dietschy, J.M. Synthesis and coenzyme A-dependent esterification of cholesterol in rat intestinal epithelium. Differences in cellular localization and mechanisms of regulation. J. Biol. Chem., 1983, 258(21), 12868-12875.
[PMID: 6630210]
Field, F.J.; Cooper, A.D.; Erickson, S.K. Regulation of rabbit intestinal acyl coenzyme A-cholesterol acyltransferase in vivo and in vitro. Gastroenterology, 1982, 83(4), 873-880.
[http://dx.doi.org/10.1016/S0016-5085(82)80019-X] [PMID: 7106517]
Endo, A.; Tsujita, Y.; Kuroda, M.; Tanzawa, K. Effects of ML-236B on cholesterol metabolism in mice and rats: lack of hypocholesterolemic activity in normal animals. Biochim. Biophys. Acta, 1979, 575(2), 266-276.
[http://dx.doi.org/10.1016/0005-2760(79)90028-6] [PMID: 508786]
Satyanarayan, U. Metabolism of lipids. In: Textbook of Biochemistry, 3rd ed; Books and Allied Pvt. Ltd: Kolkata, India, 2006; pp. 309-312.
Chetty, K.N.; Calahan, L.; Harris, K.C.; Dorsey, W.; Hill, D.; Chetty, S.; Jain, S.K. Garlic attenuates hypercholesterolemic risk factors in olive oil fed rats and high cholesterol fed rats. Pathophysiology, 2003, 9(3), 127-132.
[http://dx.doi.org/10.1016/S0928-4680(03)00002-6] [PMID: 14567929]
Lee, J.; Chae, K.; Ha, J.; Park, B.Y.; Lee, H.S.; Jeong, S.; Kim, M.Y.; Yoon, M. Regulation of obesity and lipid disorders by herbal extracts from Morus alba, Melissa officinalis, and Artemisia capillaris in high-fat diet-induced obese mice. J. Ethnopharmacol., 2008, 115(2), 263-270.
[http://dx.doi.org/10.1016/j.jep.2007.09.029] [PMID: 18023310]
Koo, M.; Kim, S.H.; Lee, N.; Yoo, M.Y.; Ryu, S.Y.; Kwon, D.Y.; Kim, Y.S. 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitory effect of Vitis vinifera. Fitoterapia, 2008, 79(3), 204-206.
[http://dx.doi.org/10.1016/j.fitote.2007.11.005] [PMID: 18191910]
Xie, W.; Wang, W.; Su, H.; Xing, D.; Cai, G.; Du, L. Hypolipidemic mechanisms of Ananas comosus L. leaves in mice: different from fibrates but similar to statins. J. Pharmacol. Sci., 2007, 103(3), 267-274.
[http://dx.doi.org/10.1254/jphs.FP0061244] [PMID: 17380035]
Jung, K.A.; Song, T.C.; Han, D.; Kim, I.H.; Kim, Y.E.; Lee, C.H. Cardiovascular protective properties of kiwifruit extracts in vitro. Biol. Pharm. Bull., 2005, 28(9), 1782-1785.
[http://dx.doi.org/10.1248/bpb.28.1782] [PMID: 16141561]
Megalli, S.; Aktan, F.; Davies, N.M.; Roufogalis, B.D. Phytopreventative anti-hyperlipidemic effects of gynostemma pentaphyllum in rats. J. Pharm. Pharm. Sci., 2005, 8(3), 507-515.
[PMID: 16401396]
Ferrebee, C.B.; Dawson, P.A.; Dawson, A. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta Pharm. Sin. B, 2015, 5(2), 129-134.
[http://dx.doi.org/10.1016/j.apsb.2015.01.001] [PMID: 26579438]
Gao, C.; Ma, T.; Pang, L.; Xie, R. The influence of bile acids homeostasis by cryptotanshinone-containing herbs. Afr. Health Sci., 2014, 14(1), 206-210.
[http://dx.doi.org/10.4314/ahs.v14i1.32] [PMID: 26060481]
Chait, A.; Brunzell, J.D. Diabetes, lipids, and atherosclerosis. Diabetes Mellitus, LeRoith, D.; Taylor, S.I; Olefsky, J.M., Ed.; Lippincott-Raven Publishers: Philadelphia, USA, 1996, pp. 467-469.
Nofer, J.R.; Kehrel, B.; Fobker, M.; Levkau, B.; Assmann, G.; von Eckardstein, A. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis, 2002, 161(1), 1-16.
[http://dx.doi.org/10.1016/S0021-9150(01)00651-7] [PMID: 11882312]
Lewis, G.F.; Rader, D.J. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res., 2005, 96(12), 1221-1232.
[http://dx.doi.org/10.1161/01.RES.0000170946.56981.5c] [PMID: 15976321]
Avci, G.; Kupeli, E.; Eryavuz, A.; Yesilada, E.; Kucukkurt, I. Antihypercholesterolaemic and antioxidant activity assessment of some plants used as remedy in Turkish folk medicine. J. Ethnopharmacol., 2006, 107(3), 418-423.
[http://dx.doi.org/10.1016/j.jep.2006.03.032] [PMID: 16713156]
Parab, R.S.; Mengi, S.A. Hypolipidemic activity of Acorus calamus L. in rats. Fitoterapia, 2002, 73(6), 451-455.
[http://dx.doi.org/10.1016/S0367-326X(02)00174-0] [PMID: 12385866]
Sheweita, S.A.; Mashaly, S.; Newairy, A.A.; Abdou, H.M.; Eweda, S.M. Changes in oxidative stress and antioxidant enzyme activities in streptozotocin-induced diabetes mellitus in rats: Role of Alhagi maurorum extracts. Oxid. Med. Cell. Longev., 2016, 20165264064
[http://dx.doi.org/10.1155/2016/5264064] [PMID: 26885249]
Hirasa, K.; Takemasa, M. Spice science and technology, 1st ed; Marcel Dekker: New York, 1998.
Pourmorad, F.; Hosseinimehr, S.J.; Shahabimajd, N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol., 2006, 5(11), 1142-1145.
Wojdyło, A.; Oszmian’ski, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem., 2007, 105, 940-949.
Middleton, E., Jr; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 2000, 52(4), 673-751.
[PMID: 11121513]
Reddy, P.V.; Ahmed, F.; Urooj, A. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase in liver microsmes by Moringa oleifera L polyphenols. IJPSR, 2012, 3(7), 2510-2516.
Ferrali, M.; Signorini, C.; Caciotti, B.; Sugherini, L.; Ciccoli, L.; Giachetti, D.; Comporti, M. Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Lett., 1997, 416(2), 123-129.
[http://dx.doi.org/10.1016/S0014-5793(97)01182-4] [PMID: 9369196]
Elliott, A.J.; Scheiber, S.A.; Thomas, C.; Pardini, R.S. Inhibition of glutathione reductase by flavonoids. A structure-activity study. Biochem. Pharmacol., 1992, 44(8), 1603-1608.
[http://dx.doi.org/10.1016/0006-2952(92)90478-2] [PMID: 1329770]
Hirano, R.; Sasamoto, W.; Matsumoto, A.; Itakura, H.; Igarashi, O.; Kondo, K. Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. J. Nutr. Sci. Vitaminol. (Tokyo), 2001, 47(5), 357-362.
[http://dx.doi.org/10.3177/jnsv.47.357] [PMID: 11814152]
Cos, P.; Ying, L.; Calomme, M.; Hu, J.P.; Cimanga, K.; Van Poel, B.; Pieters, L.; Vlietinck, A.J.; Vanden Berghe, D. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod., 1998, 61(1), 71-76.
[http://dx.doi.org/10.1021/np970237h] [PMID: 9461655]
Kondo, K.; Hirano, R.; Matsumoto, A.; Igarashi, O.; Itakura, H. Inhibition of LDL oxidation by cocoa. Lancet, 1996, 348(9040), 1514-1518.
[http://dx.doi.org/10.1016/S0140-6736(05)65927-2] [PMID: 8942794]
Mazur, A.; Bayle, D.; Lab, C.; Rock, E.; Rayssiguier, Y. Inhibitory effect of procyanidin-rich extracts on LDL oxidation in vitro. Atherosclerosis, 1999, 145(2), 421-422.
[PMID: 10488973]
De Whalley, C.V.; Rankin, S.M.; Hoult, R.S.; Jessup, W.; Leake, D.S. Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochem. Pharmacol., 1990, 39, 1743.
Mangiapane, H.; Thomson, J.; Salter, A.; Brown, S.; Bell, G.D.; White, D.A. The inhibition of the oxidation of low density lipoprotein by (+)-catechin, a naturally occurring flavonoid. Biochem. Pharmacol., 1992, 43(3), 445-450.
[http://dx.doi.org/10.1016/0006-2952(92)90562-W] [PMID: 1540202]
Visavadiya, N.P.; Narasimhacharya, A.V. Asparagus root regulates cholesterol metabolism and improves antioxidant status in hypercholesteremic rats. Evid. Based Complement. Alternat. Med., 2009, 6(2), 219-226.
[http://dx.doi.org/10.1093/ecam/nem091] [PMID: 18955232]
Luo, Q.; Cai, Y.; Yan, J.; Sun, M.; Corke, H. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci., 2004, 76(2), 137-149.
[http://dx.doi.org/10.1016/j.lfs.2004.04.056] [PMID: 15519360]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [236 - 243]
Pages: 8
DOI: 10.2174/1574893614666190103101527
Price: $25

Article Metrics

PDF: 10