Analysis of Four Types of Leukemia Using Gene Ontology Term and Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment Scores

Author(s): Jing Lu*, YuHang Zhang, ShaoPeng Wang, Yi Bi, Tao Huang, Xiaomin Luo*, Yu-Dong Cai*

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 4 , 2020

Become EABM
Become Reviewer

Abstract:

Aim and Objective: Leukemia is the second common blood cancer after lymphoma, and its incidence rate has an increasing trend in recent years. Leukemia can be classified into four types: acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and chronic myelogenous leukemia (CML). More than forty drugs are applicable to different types of leukemia based on the discrepant pathogenesis. Therefore, the identification of specific drug-targeted biological processes and pathways is helpful to determinate the underlying pathogenesis among such four types of leukemia.

Methods: In this study, the gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were highly related to drugs for leukemia were investigated for the first time. The enrichment scores for associated GO terms and KEGG pathways were calculated to evaluate the drugs and leukemia. The feature selection method, minimum redundancy maximum relevance (mRMR), was used to analyze and identify important GO terms and KEGG pathways.

Results: Twenty Go terms and two KEGG pathways with high scores have all been confirmed to effectively distinguish four types of leukemia.

Conclusion: This analysis may provide a useful tool for the discrepant pathogenesis and drug design of different types of leukemia.

Keywords: Leukemia, protein-drug interactions, GO term, KEGG pathway, enrichment score, mRMR

[1]
A Snapshot of Leukemia. https://www.cancer.gov/research/ progress/snapshots/leukemia [Accessed on October 2017].
[2]
Crişan, A.M.; BădeliŢă, S.N.; Jardan, C.; Vasilache, E.D.; Dobrea, C.M.; Gheorghe, A.; Tălmaci, R.; Arion, C.V.; Bardaş, A.; Găman, A.M.; Coriu, D. The occurrence of chronic lymphocytic leukemia after chronic phase of chronic myeloid leukemia: case report and literature review. Rom. J. Morphol. Embryol., 2015, 56(3), 1145-1151.
[PMID: 26662151]
[3]
Nagao, T.; Takahashi, N.; Kameoka, Y.; Noguchi, S.; Shinohara, Y.; Ohyagi, H.; Kume, M.; Sawada, K. Dasatinib-responsive chronic lymphocytic leukemia in a patient treated for coexisting chronic myeloid leukemia. Intern. Med., 2013, 52(22), 2567-2571.
[http://dx.doi.org/10.2169/internalmedicine.52.0392] [PMID: 24240798]
[4]
Mosavi-Jarrahi, A.; Mohagheghi, M.A.; Kalaghchi, B.; Mousavi-Jarrahi, Y.; Kolahi, A.A.; Noori, M.K. Estimating the incidence of leukemia attributable to occupational exposure in Iran. Asian Pac. J. Cancer Prev., 2009, 10(1), 67-70.
[PMID: 19469627]
[5]
Kaufman, D.W.; Anderson, T.E.; Issaragrisil, S. Risk factors for leukemia in Thailand. Ann. Hematol., 2009, 88(11), 1079-1088.
[http://dx.doi.org/10.1007/s00277-009-0731-9] [PMID: 19294385]
[6]
Kim, E.A.; Lee, W.J.; Son, M.; Kang, S.K. Occupational lymphohematopoietic cancer in Korea. J. Korean Med. Sci., 2010, 25(Suppl.), S99-S104.
[http://dx.doi.org/10.3346/jkms.2010.25.S.S99] [PMID: 21258598]
[7]
Zhang, J.; Mullighan, C.G.; Harvey, R.C.; Wu, G.; Chen, X.; Edmonson, M.; Buetow, K.H.; Carroll, W.L.; Chen, I.M.; Devidas, M.; Gerhard, D.S.; Loh, M.L.; Reaman, G.H.; Relling, M.V.; Camitta, B.M.; Bowman, W.P.; Smith, M.A.; Willman, C.L.; Downing, J.R.; Hunger, S.P. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood, 2011, 118(11), 3080-3087.
[http://dx.doi.org/10.1182/blood-2011-03-341412] [PMID: 21680795]
[8]
Levine, R.L.; Loriaux, M.; Huntly, B.J.; Loh, M.L.; Beran, M.; Stoffregen, E.; Berger, R.; Clark, J.J.; Willis, S.G.; Nguyen, K.T.; Flores, N.J.; Estey, E.; Gattermann, N.; Armstrong, S.; Look, A.T.; Griffin, J.D.; Bernard, O.A.; Heinrich, M.C.; Gilliland, D.G.; Druker, B.; Deininger, M.W. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood, 2005, 106(10), 3377-3379.
[http://dx.doi.org/10.1182/blood-2005-05-1898] [PMID: 16081687]
[9]
Lu, D.; Zhao, Y.; Tawatao, R.; Cottam, H.B.; Sen, M.; Leoni, L.M.; Kipps, T.J.; Corr, M.; Carson, D.A. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 3118-3123.
[http://dx.doi.org/10.1073/pnas.0308648100] [PMID: 14973184]
[10]
Wang, Y.; Krivtsov, A.V.; Sinha, A.U.; North, T.E.; Goessling, W.; Feng, Z.; Zon, L.I.; Armstrong, S.A. The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science, 2010, 327(5973), 1650-1653.
[http://dx.doi.org/10.1126/science.1186624] [PMID: 20339075]
[11]
Román-Gómez, J.; Cordeu, L.; Agirre, X.; Jiménez-Velasco, A.; San José-Eneriz, E.; Garate, L.; Calasanz, M.J.; Heiniger, A.; Torres, A.; Prosper, F. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood, 2007, 109(8), 3462-3469.
[http://dx.doi.org/10.1182/blood-2006-09-047043] [PMID: 17148581]
[12]
Sengupta, A.; Banerjee, D.; Chandra, S.; Banerji, S.K.; Ghosh, R.; Roy, R.; Banerjee, S. Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia, 2007, 21(5), 949-955.
[http://dx.doi.org/10.1038/sj.leu.2404657] [PMID: 17361218]
[13]
Drugs Approved for Leukemia. https://www.cancer.gov/about-cancer/treatment/drugs/leukemia [Accessed on October 2017].
[14]
Imatinib Mesylate. https://www.cancer.gov/about-cancer/treatment/drugs/imatinibmesylate [Accessed on October 2017].
[15]
Gambacorti-Passerini, C.; Gasser, M.; Ahmed, S.; Assouline, S.; Scapozza, L. Abl inhibitor BMS354825 binding mode in Abelson kinase revealed by molecular docking studies. Leukemia, 2005, 19(7), 1267-1269.
[http://dx.doi.org/10.1038/sj.leu.2403775] [PMID: 15858616]
[16]
Xu, Y.; Yue, L.; Wang, Y.; Xing, J.; Chen, Z.; Shi, Z.; Liu, R.; Liu, Y.C.; Luo, X.; Jiang, H.; Chen, K.; Luo, C.; Zheng, M. Discovery of novel inhibitors targeting the menin-mixed lineage leukemia interface using pharmacophore- and docking-based virtual screening. J. Chem. Inf. Model., 2016, 56(9), 1847-1855.
[http://dx.doi.org/10.1021/acs.jcim.6b00185] [PMID: 27513308]
[17]
Pérez-Sacau, E.; Díaz-Peñate, R.G.; Estévez-Braun, A.; Ravelo, A.G.; García-Castellano, J.M.; Pardo, L.; Campillo, M. Synthesis and pharmacophore modeling of naphthoquinone derivatives with cytotoxic activity in human promyelocytic leukemia HL-60 cell line. J. Med. Chem., 2007, 50(4), 696-706.
[http://dx.doi.org/10.1021/jm060849b] [PMID: 17249647]
[18]
Naik, P.K.; Santoshi, S.; Joshi, H.C. Noscapinoids with anti-cancer activity against human acute lymphoblastic leukemia cells (CEM): a three dimensional chemical space pharmacophore modeling and electronic feature analysis. J. Mol. Model., 2012, 18(1), 307-318.
[http://dx.doi.org/10.1007/s00894-011-1057-9] [PMID: 21523542]
[19]
Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 2016, 44(Database issue), D457-D462.
[http://dx.doi.org/10.1093/nar/gkv1070] [PMID: 26476454]
[20]
Xing, Z.; Chu, C.; Chen, L.; Kong, X. The use of Gene Ontology terms and KEGG pathways for analysis and prediction of oncogenes. Biochim. Biophys. Acta, 2016, 1860(11, Part B), 2725-2734.
[http://dx.doi.org/10.1016/j.bbagen.2016.01.012] [PMID: 26801878]
[21]
Chen, L.; Chu, C.; Lu, J.; Kong, X.; Huang, T.; Cai, Y.D. Gene ontology and KEGG pathway enrichment analysis of a drug target-based classification system. PLoS One, 2015, 10(5), e0126492
[http://dx.doi.org/10.1371/journal.pone.0126492] [PMID: 25951454]
[22]
Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27(8), 1226-1238.
[http://dx.doi.org/10.1109/TPAMI.2005.159] [PMID: 16119262]
[23]
Blake, J.A.; Christie, K.R.; Dolan, M.E.; Drabkin, H.J.; Hill, D.P.; Ni, L.; Sitnikov, D.; Burgess, S.; Buza, T.; Gresham, C.; McCarthy, F.; Pillai, L.; Wang, H.; Carbon, S.; Dietze, H.; Lewis, S.E.; Mungall, C.J.; Munoz-Torres, M.C.; Feuermann, M.; Gaudet, P.; Basu, S.; Chisholm, R.L.; Dodson, R.J.; Fey, P.; Mi, H.; Thomas, P.D.; Muruganujan, A.; Poudel, S.; Hu, J.C.; Aleksander, S.A.; McIntosh, B.K.; Renfro, D.P.; Siegele, D.A.; Attrill, H.; Brown, N.H.; Tweedie, S.; Lomax, J.; Osumi-Sutherland, D.; Parkinson, H.; Roncaglia, P.; Lovering, R.C.; Talmud, P.J.; Humphries, S.E.; Denny, P.; Campbell, N.H.; Foulger, R.E.; Chibucos, M.C.; Gwinn Giglio, M.; Chang, H.Y.; Finn, R.; Fraser, M.; Mitchell, A.; Nuka, G.; Pesseat, S.; Sangrador, A.; Scheremetjew, M.; Young, S.Y.; Stephan, R.; Harris, M.A.; Oliver, S.G.; Rutherford, K.; Wood, V.; Bahler, J.; Lock, A.; Kersey, P.J.; McDowall, M.D.; Staines, D.M.; Dwinell, M.; Shimoyama, M.; Laulederkind, S.; Hayman, G.T.; Wang, S.J.; Petri, V.; D’Eustachio, P.; Matthews, L.; Balakrishnan, R.; Binkley, G.; Cherry, J.M.; Costanzo, M.C.; Demeter, J.; Dwight, S.S.; Engel, S.R.; Hitz, B.C.; Inglis, D.O.; Lloyd, P.; Miyasato, S.R.; Paskov, K.; Roe, G.; Simison, M.; Nash, R.S.; Skrzypek, M.S.; Weng, S.; Wong, E.D.; Berardini, T.Z.; Li, D.; Huala, E.; Argasinska, J.; Arighi, C.; Auchincloss, A.; Axelsen, K.; Argoud-Puy, G.; Bateman, A.; Bely, B.; Blatter, M.C.; Bonilla, C.; Bougueleret, L.; Boutet, E.; Breuza, L.; Bridge, A.; Britto, R.; Casals, C.; Cibrian-Uhalte, E.; Coudert, E.; Cusin, I.; Duek-Roggli, P.; Estreicher, A.; Famiglietti, L.; Gane, P.; Garmiri, P.; Gos, A.; Gruaz-Gumowski, N.; Hatton-Ellis, E.; Hinz, U.; Hulo, C.; Huntley, R.; Jungo, F.; Keller, G.; Laiho, K.; Lemercier, P.; Lieberherr, D.; MacDougall, A.; Magrane, M.; Martin, M.; Masson, P.; Mutowo, P.; O’Donovan, C.; Pedruzzi, I.; Pichler, K.; Poggioli, D.; Poux, S.; Rivoire, C.; Roechert, B.; Sawford, T.; Schneider, M.; Shypitsyna, A.; Stutz, A.; Sundaram, S.; Tognolli, M.; Wu, C.; Xenarios, I.; Chan, J.; Kishore, R.; Sternberg, P.W.; Van Auken, K.; Muller, H.M.; Done, J.; Li, Y.; Howe, D.; Westerfield, M. Gene Ontology Consortium: going forward. Nucleic Acids Res., 2015, 43(Database issue), D1049-D1056.
[http://dx.doi.org/10.1093/nar/gku1179] [PMID: 25428369]
[24]
Kanehisa, M.; Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[25]
Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res., 2008, 36(Database issue), D684-D688.
[http://dx.doi.org/10.1093/nar/gkm795] [PMID: 18084021]
[26]
Kuhn, M.; Szklarczyk, D.; Franceschini, A.; Campillos, M.; von Mering, C.; Jensen, L.J.; Beyer, A.; Bork, P. STITCH 2: an interaction network database for small molecules and proteins. Nucleic Acids Res., 2010, 38(Database issue), D552-D556.
[http://dx.doi.org/10.1093/nar/gkp937] [PMID: 19897548]
[27]
Carmona-Saez, P.; Chagoyen, M.; Tirado, F.; Carazo, J.M.; Pascual-Montano, A. GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol., 2007, 8(1), R3.
[http://dx.doi.org/10.1186/gb-2007-8-1-r3] [PMID: 17204154]
[28]
Papadopoulos, P.; Tianfield, H.; Moffat, D.; Barrie, P. Deciphering the effects of gene deletion on yeast longevity using network and machine learning approaches. Biochimie, 2012, 94(4), 1017-1025.
[http://dx.doi.org/10.1016/j.biochi.2011.12.024] [PMID: 22239951]
[29]
Zhang, Y.H.; Chu, C.; Wang, S.; Chen, L.; Lu, J.; Kong, X.; Huang, T.; Li, H.; Cai, Y.D. The use of gene ontology term and KEGG pathway enrichment for analysis of drug half-life. PLoS One, 2016, 11(10), e0165496
[http://dx.doi.org/10.1371/journal.pone.0165496] [PMID: 27780226]
[30]
Chen, L.; Zhang, Y.H.; Zou, Q.; Chu, C.; Ji, Z. Analysis of the chemical toxicity effects using the enrichment of Gene Ontology terms and KEGG pathways. Biochim. Biophys. Acta, 2016, 1860(11, Part B), 2619-2626.
[http://dx.doi.org/10.1016/j.bbagen.2016.05.015] [PMID: 27208425]
[31]
Li, Z.; Zhou, X.; Dai, Z.; Zou, X. Classification of G-protein coupled receptors based on support vector machine with maximum relevance minimum redundancy and genetic algorithm. BMC Bioinformatics, 2010, 11, 325.
[http://dx.doi.org/10.1186/1471-2105-11-325] [PMID: 20550715]
[32]
Chen, L.; Zhang, Y.H.; Huang, T.; Cai, Y.D. Gene expression profiling gut microbiota in different races of humans. Sci. Rep., 2016, 6, 23075.
[http://dx.doi.org/10.1038/srep23075] [PMID: 26975620]
[33]
Huang, T.; Shu, Y.; Cai, Y.D. Genetic differences among ethnic groups. BMC Genomics, 2015, 16, 1093.
[http://dx.doi.org/10.1186/s12864-015-2328-0] [PMID: 26690364]
[34]
Schatz, J.; Kramer, J.H.; Ablin, A.R.; Matthay, K.K. Visual attention in long-term survivors of leukemia receiving cranial radiation therapy. J. Int. Neuropsychol. Soc., 2004, 10(2), 211-220.
[http://dx.doi.org/10.1017/S1355617704102075] [PMID: 15012841]
[35]
Ismail, A.; Verity, D.; Brittain, P. Visual loss as the presenting feature of acute myeloid leukaemia. Eye , 2001, 15(5), 681-682.
[http://dx.doi.org/10.1038/eye.2001.220] [PMID: 11702997]
[36]
Uberall, M.A.; Hertzberg, H.; Meier, W.; Langer, T.; Beck, J.D.; Wenzel, D. Visual-evoked potentials in long-term survivors of acute lymphoblastic leukemia in childhood. The German Late Effects Working Group. Neuropediatrics, 1996, 27(4), 194-196.
[http://dx.doi.org/10.1055/s-2007-973786] [PMID: 8892368]
[37]
Woyach, J.A.; Bojnik, E.; Ruppert, A.S.; Stefanovski, M.R.; Goettl, V.M.; Smucker, K.A.; Smith, L.L.; Dubovsky, J.A.; Towns, W.H.; MacMurray, J.; Harrington, B.K.; Davis, M.E.; Gobessi, S.; Laurenti, L.; Chang, B.Y.; Buggy, J.J.; Efremov, D.G.; Byrd, J.C.; Johnson, A.J. Bruton’s tyrosine kinase (BTK) function is important to the development and expansion of chronic lymphocytic leukemia (CLL). Blood, 2014, 123(8), 1207-1213.
[http://dx.doi.org/10.1182/blood-2013-07-515361] [PMID: 24311722]
[38]
Sivina, M.; Kreitman, R.J.; Arons, E.; Ravandi, F.; Burger, J.A. The bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) blocks hairy cell leukaemia survival, proliferation and B cell receptor signalling: a new therapeutic approach. Br. J. Haematol., 2014, 166(2), 177-188.
[http://dx.doi.org/10.1111/bjh.12867] [PMID: 24697238]
[39]
Oellerich, T.; Mohr, S.; Corso, J.; Beck, J.; Döbele, C.; Braun, H.; Cremer, A.; Münch, S.; Wicht, J.; Oellerich, M.F.; Bug, G.; Bohnenberger, H.; Perske, C.; Schütz, E.; Urlaub, H.; Serve, H. FLT3-ITD and TLR9 use Bruton tyrosine kinase to activate distinct transcriptional programs mediating AML cell survival and proliferation. Blood, 2015, 125(12), 1936-1947.
[http://dx.doi.org/10.1182/blood-2014-06-585216] [PMID: 25605370]
[40]
Christiansen, D.H.; Andersen, M.K.; Desta, F.; Pedersen-Bjergaard, J. Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia, 2005, 19(12), 2232-2240.
[http://dx.doi.org/10.1038/sj.leu.2404009] [PMID: 16281072]
[41]
Maddocks, K.; Jones, J.A. Bruton tyrosine kinase inhibition in chronic lymphocytic leukemia. Semin. Oncol., 2016, 43(2), 251-259.
[http://dx.doi.org/10.1053/j.seminoncol.2016.02.008] [PMID: 27040703]
[42]
Sinha, S.; Boysen, J.; Nelson, M.; Secreto, C.; Warner, S.L.; Bearss, D.J.; Lesnick, C.; Shanafelt, T.D.; Kay, N.E.; Ghosh, A.K. Targeted inhibition of Axl primes chronic lymphocytic leukemia B-cells for apoptosis: Synergistic/additive effects in combination with bruton tyrosine kinase inhibitors. Blood, 2014, 124(21), 1946.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1892] [PMID: 25673699]
[43]
Woyach, J.A.; Stefanovski, M.R.; Goettl, V.; Ruppert, A.S.; Smucker, K.A.; Smith, L.L.; Dubovsky, J.A.; Towns, W.H.; MacMurray, J.; Davis, M.E.; Mao, Y.; Chang, B.Y.; Buggy, J.J.; Byrd, J.C.; Johnson, A.J. Global inhibition of bruton’s tyrosine kinase (BTK) delays the development and expansion of chronic lymphocytic leukemia (CLL) in the TCL1 mouse model of disease. Blood, 2012, 120(21), 183-183.
[http://dx.doi.org/10.1182/blood-2013-07-515361] [PMID: 24311722]
[44]
Mullighan, C.G.; Zhang, J.; Harvey, R.C.; Collins-Underwood, J.R.; Schulman, B.A.; Phillips, L.A.; Tasian, S.K.; Loh, M.L.; Su, X.; Liu, W.; Devidas, M.; Atlas, S.R.; Chen, I.M.; Clifford, R.J.; Gerhard, D.S.; Carroll, W.L.; Reaman, G.H.; Smith, M.; Downing, J.R.; Hunger, S.P.; Willman, C.L. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA, 2009, 106(23), 9414-9418.
[http://dx.doi.org/10.1073/pnas.0811761106] [PMID: 19470474]
[45]
Zhang, J.; Mullighan, C.; Harvey, R.; Carroll, W.L.; Chen, I.M.L.; Devidas, M.; Larsen, E.; Edmonson, M.; Buetow, K.; Gerhard, D.S.; Loh, M.L.; Reaman, G.H.; Relling, M.V.; Smith, M.A.; Downing, J.R.; Willman, C.L.; Hunger, S. Lack of somatic sequence mutations in protein tyrosine kinase genes other than the jak kinase family in high risk b-precursor childhood acute lymphoblastic leukemia (ALL): A Report From the Children’s Oncology Group (COG) High-Risk (HR) ALL TARGET Project. Blood, 2010, 116(21), 2752-2752.
[http://dx.doi.org/10.1182/blood.V116.21.2752.2752]
[46]
Dietrich, S.; Krämer, O.H.; Hahn, E.; Schäfer, C.; Giese, T.; Hess, M.; Tretter, T.; Rieger, M.; Hüllein, J.; Zenz, T.; Ho, A.D.; Dreger, P.; Luft, T. Leflunomide induces apoptosis in fludarabine-resistant and clinically refractory CLL cells. Clin. Cancer Res., 2012, 18(2), 417-431.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1049] [PMID: 22072733]
[47]
Maude, S.L.; Dolai, S.; Delgado-Martin, C.; Vincent, T.; Robbins, A.; Selvanathan, A.; Ryan, T.; Hall, J.; Wood, A.C.; Tasian, S.K.; Hunger, S.P.; Loh, M.L.; Mullighan, C.G.; Wood, B.L.; Hermiston, M.L.; Grupp, S.A.; Lock, R.B.; Teachey, D.T. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood, 2015, 125(11), 1759-1767.
[http://dx.doi.org/10.1182/blood-2014-06-580480] [PMID: 25645356]
[48]
Cull, V.S.; Tilbrook, P.A.; Bartlett, E.J.; Brekalo, N.L.; James, C.M. Type I interferon differential therapy for erythroleukemia: specificity of STAT activation. Blood, 2003, 101(7), 2727-2735.
[http://dx.doi.org/10.1182/blood-2002-05-1521] [PMID: 12446459]
[49]
Zhang, J.; Mullighan, C.G.; Harvey, R.C.; Buetow, K.E.; Carroll, W.L.; Chen, I.M.; Devidas, M.; Edmonson, M.; Gerhard, D.; Hu, Y.; Loh, M.L.; Phillips, L.A.; Reaman, G.H.; Relling, M.V.; Smith, M.; Downing, J.R.; Willman, C.L.; Hunger, S.P. Mutations in the RAS Signaling, B-Cell Development, TP53/RB1, and JAK signaling pathways are common in high risk B-precursor childhood acute lymphoblastic leukemia (ALL): A Report From the Children’s Oncology Group (COG) High-Risk (HR) ALL TARGET Project. Blood, 2009, 114(22), 85-85.
[http://dx.doi.org/10.1182/blood.V114.22.85.85]
[50]
Bertacchini, J.; Heidari, N.; Mediani, L.; Capitani, S.; Shahjahani, M.; Ahmadzadeh, A.; Saki, N. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell. Mol. Life Sci., 2015, 72(12), 2337-2347.
[http://dx.doi.org/10.1007/s00018-015-1867-5] [PMID: 25712020]
[51]
Abruzzese, E.; Cantonetti, M.; Morino, L.; Orlandi, G.; Tendas, A.; Del Principe, M.I.; Masi, M.; Amadori, S.; Orlandi, A.; Anemona, L.; Campione, E. CNS and cutaneous involvement in patients with chronic myeloid leukemia treated with imatinib in hematologic complete remission: two case reports. J. Clin. Oncol., 2003, 21(22), 4256-4258.
[http://dx.doi.org/10.1200/JCO.2003.99.170] [PMID: 14615464]
[52]
Huang, F.F.; Zhang, L.; Wu, D.S.; Yuan, X.Y.; Yu, Y.H.; Zhao, X.L.; Chen, F.P.; Zeng, H. PTEN regulates BCRP/ABCG2 and the side population through the PI3K/Akt pathway in chronic myeloid leukemia. PLoS One, 2014, 9(3), e88298
[http://dx.doi.org/10.1371/journal.pone.0088298] [PMID: 24603487]
[53]
Pasmant, E.; Gilbert-Dussardier, B.; Petit, A.; de Laval, B.; Luscan, A.; Gruber, A.; Lapillonne, H.; Deswarte, C.; Goussard, P.; Laurendeau, I.; Uzan, B.; Pflumio, F.; Brizard, F.; Vabres, P.; Naguibvena, I.; Fasola, S.; Millot, F.; Porteu, F.; Vidaud, D.; Landman-Parker, J.; Ballerini, P. SPRED1, a RAS MAPK pathway inhibitor that causes Legius syndrome, is a tumour suppressor downregulated in paediatric acute myeloblastic leukaemia. Oncogene, 2015, 34(5), 631-638.
[http://dx.doi.org/10.1038/onc.2013.587] [PMID: 24469042]
[54]
Fredericks, J.; Ren, R. The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia. Front. Med., 2013, 7(4), 452-461.
[http://dx.doi.org/10.1007/s11684-013-0304-0] [PMID: 24264166]
[55]
Raepple, D.; von Lintig, F.; Zemojtel, T.; Duchniewicz, M.; Jung, A.; Lübbert, M.; Boss, G.R.; Scheele, J.S. Determination of Ras-GTP and Ras-GDP in patients with acute myelogenous leukemia (AML), myeloproliferative syndrome (MPS), juvenile myelomonocytic leukemia (JMML), acute lymphocytic leukemia (ALL), and malignant lymphoma: assessment of mutational and indirect activation. Ann. Hematol., 2009, 88(4), 319-324.
[http://dx.doi.org/10.1007/s00277-008-0593-6] [PMID: 18784923]
[56]
Ramireddy, L.; Lin, C.Y.; Liu, S.C.; Lo, W.Y.; Hu, R.M.; Peng, Y.C.; Peng, C.T. Association study between macrophage migration inhibitory factor-173 polymorphism and acute myeloid leukemia in Taiwan. Cell Biochem. Biophys., 2014, 70(2), 1159-1165.
[http://dx.doi.org/10.1007/s12013-014-0036-z] [PMID: 24879618]
[57]
Herrmann, H.; Kneidinger, M.; Cerny-Reiterer, S.; Rülicke, T.; Willmann, M.; Gleixner, K.V.; Blatt, K.; Hörmann, G.; Peter, B.; Samorapoompichit, P.; Pickl, W.; Bharate, G.Y.; Mayerhofer, M.; Sperr, W.R.; Maeda, H.; Valent, P. The Hsp32 inhibitors SMA-ZnPP and PEG-ZnPP exert major growth-inhibitory effects on D34+/CD38+ and CD34+/CD38- AML progenitor cells. Curr. Cancer Drug Targets, 2012, 12(1), 51-63.
[http://dx.doi.org/10.2174/156800912798888992] [PMID: 22165967]
[58]
Kong, Y.; Zhang, J.; Claxton, D.F.; Ehmann, W.C.; Rybka, W.B.; Zhu, L.; Zeng, H.; Schell, T.D.; Zheng, H. PD-1(hi)TIM-3(+) T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation. Blood Cancer J., 2015, 5, e330
[http://dx.doi.org/10.1038/bcj.2015.58] [PMID: 26230954]
[59]
Morton, S.D.; Cadamuro, M.; Brivio, S.; Vismara, M.; Stecca, T.; Massani, M.; Bassi, N.; Furlanetto, A.; Joplin, R.E.; Floreani, A.; Fabris, L.; Strazzabosco, M. Leukemia inhibitory factor protects cholangiocarcinoma cells from drug-induced apoptosis via a PI3K/AKT-dependent Mcl-1 activation. Oncotarget, 2015, 6(28), 26052-26064.
[http://dx.doi.org/10.18632/oncotarget.4482] [PMID: 26296968]
[60]
Goldshmit, Y.; Galea, M.P.; Wise, G.; Bartlett, P.F.; Turnley, A.M. Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J. Neurosci., 2004, 24(45), 10064-10073.
[http://dx.doi.org/10.1523/JNEUROSCI.2981-04.2004] [PMID: 15537875]
[61]
Broholm, C.; Laye, M.J.; Brandt, C.; Vadalasetty, R.; Pilegaard, H.; Pedersen, B.K.; Scheele, C. LIF is a contraction-induced myokine stimulating human myocyte proliferation. J. Appl. Physiol. (1985), 2011, 111(1), 251-259.
[http://dx.doi.org/10.1152/japplphysiol.01399.2010] [PMID: 21527666]
[62]
Dzhavadov, S.S.; Suleĭmanova, T. [Collonization of intestinal tract of leukaemia patients with Candida and development of systemic candidemia]. Georgian Med. News, 2009, (170), 61-63.
[PMID: 19556643]
[63]
Stocco, G.; Yang, W.; Crews, K.R.; Thierfelder, W.E.; Decorti, G.; Londero, M.; Franca, R.; Rabusin, M.; Valsecchi, M.G.; Pei, D.; Cheng, C.; Paugh, S.W.; Ramsey, L.B.; Diouf, B.; McCorkle, J.R.; Jones, T.S.; Pui, C.H.; Relling, M.V.; Evans, W.E. PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity. Hum. Mol. Genet., 2012, 21(21), 4793-4804.
[http://dx.doi.org/10.1093/hmg/dds302] [PMID: 22846425]
[64]
Lee, J.M.; Kim, J.E.; Bae, S.H.; Hah, J.O. Efficacy of pamidronate in children with low bone mineral density during and after chemotherapy for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Res., 2013, 48(2), 99-106.
[http://dx.doi.org/10.5045/br.2013.48.2.99] [PMID: 23826578]
[65]
Leblicq, C.; Laverdière, C.; Décarie, J.C.; Delisle, J.F.; Isler, M.H.; Moghrabi, A.; Chabot, G.; Alos, N. Effectiveness of pamidronate as treatment of symptomatic osteonecrosis occurring in children treated for acute lymphoblastic leukemia. Pediatr. Blood Cancer, 2013, 60(5), 741-747.
[http://dx.doi.org/10.1002/pbc.24313] [PMID: 23002054]
[66]
Limb, J.K.; Song, D.; Jeon, M.; Han, S.Y.; Han, G.; Jhon, G.J.; Bae, Y.S.; Kim, J. 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate promotes megakaryocytic differentiation of myeloid leukaemia cells and primary human CD34(+) haematopoietic stem cells. J. Tissue Eng. Regen. Med., 2015, 9(4), 435-446.
[http://dx.doi.org/10.1002/term.1628] [PMID: 23166016]
[67]
Sarrouilhe, D.; Dejean, C. [Gap junctions: A new therapeutic target in major depressive disorder?]. Rev. Neurol. (Paris), 2015, 171(11), 762-767.
[http://dx.doi.org/10.1016/j.neurol.2015.07.002] [PMID: 26318901]
[68]
Sinyuk, M.; Alvarado, A.G.; Nesmiyanov, P.; Shaw, J.; Mulkearns-Hubert, E.E.; Eurich, J.T.; Hale, J.S.; Bogdanova, A.; Hitomi, M.; Maciejewski, J.; Huang, A.Y.; Saunthararajah, Y.; Lathia, J.D. Cx25 contributes to leukemia cell communication and chemosensitivity. Oncotarget, 2015, 6(31), 31508-31521.
[http://dx.doi.org/10.18632/oncotarget.5226] [PMID: 26375552]
[69]
Guerra, M.C.; Speroni, E.; Broccoli, M.; Cangini, M.; Pasini, P.; Minghett, A.; Crespi-Perellino, N.; Mirasoli, M.; Cantelli-Forti, G.; Paolini, M. Comparison between chinese medical herb Pueraria lobata crude extract and its main isoflavone puerarin antioxidant properties and effects on rat liver CYP-catalysed drug metabolism. Life Sci., 2000, 67(24), 2997-3006.
[http://dx.doi.org/10.1016/s0024-3205(00)00885-7] [PMID: 11133012]
[70]
Wang, H.; Xi, S.; Liu, Z.; Yang, Y.; Zheng, Q.; Wang, F.; Xu, Y.; Wang, Y.; Zheng, Y.; Sun, G. Arsenic methylation metabolism and liver injury of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment. Environ. Toxicol., 2013, 28(5), 267-275.
[http://dx.doi.org/10.1002/tox.20717] [PMID: 23589229]
[71]
Kostrzewa-Nowak, D.; Tarasiuk, J. Bioreductive activation of mitoxantrone by NADPH cytochrome P450 reductase does not change its apoptotic stimuli properties in regard to sensitive and multidrug resistant leukaemia HL60 cells. Eur. J. Pharmacol., 2013, 721(1-3), 141-150.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.041] [PMID: 24076328]
[72]
Ramalingam, S.; Lagattuta, T.F.; Egorin, M.J.; Hayes, M.J.; Ramanathan, R.K. Biliary excretion of imatinib mesylate and its metabolite CGP 74588 in humans. Pharmacotherapy, 2004, 24(9), 1232-1235.
[http://dx.doi.org/10.1592/phco.24.13.1232.38095] [PMID: 15460185]
[73]
Stagno, F.; Stella, S.; Spitaleri, A.; Pennisi, M.S.; Di Raimondo, F.; Vigneri, P. Imatinib mesylate in chronic myeloid leukemia: frontline treatment and long-term outcomes. Expert Rev. Anticancer Ther., 2016, 16(3), 273-278.
[http://dx.doi.org/10.1586/14737140.2016.1151356] [PMID: 26852913]
[74]
Nousome, D.; Lupo, P.J.; Okcu, M.F.; Scheurer, M.E. Maternal and offspring xenobiotic metabolism haplotypes and the risk of childhood acute lymphoblastic leukemia. Leuk. Res., 2013, 37(5), 531-535.
[http://dx.doi.org/10.1016/j.leukres.2013.01.020] [PMID: 23433810]
[75]
Ouerhani, S.; Nefzi, M.A.; Menif, S.; Safra, I.; Douzi, K.; Fouzai, C.; Ben Ghorbel, G.; Ben Bahria, I.; Ben Ammar Elgaaied, A.; Abbes, S. Influence of genetic polymorphisms of xenobiotic metabolizing enzymes on the risk of developing leukemia in a Tunisian population. Bull. Cancer, 2011, 98(12), 95-106.
[http://dx.doi.org/10.1684/bdc.2011.1502] [PMID: 22146408]
[76]
Kanagal-Shamanna, R.; Zhao, W.; Vadhan-Raj, S.; Nguyen, M.H.; Fernandez, M.H.; Medeiros, L.J.; Bueso-Ramos, C.E. Over-expression of CYP2E1 mRNA and protein: implications of xenobiotic induced damage in patients with de novo acute myeloid leukemia with inv(16)(p13.1q22); CBFbeta-MYH11. Int. J. Environ. Res. Public Health, 2012, 9(8), 2788-2800.
[http://dx.doi.org/10.3390/ijerph9082788] [PMID: 23066397]
[77]
da Silva Silveira, V.; Canalle, R.; Scrideli, C.A.; Queiroz, R.G.; Bettiol, H.; Valera, E.T.; Tone, L.G. Polymorphisms of xenobiotic metabolizing enzymes and DNA repair genes and outcome in childhood acute lymphoblastic leukemia. Leuk. Res., 2009, 33(7), 898-901.
[http://dx.doi.org/10.1016/j.leukres.2008.12.006] [PMID: 19162321]
[78]
Stein, E.M.; Tallman, M.S. Mixed lineage rearranged leukaemia: pathogenesis and targeting DOT1L. Curr. Opin. Hematol., 2015, 22(2), 92-96.
[http://dx.doi.org/10.1097/MOH.0000000000000123] [PMID: 25635757]
[79]
Guo, J.; Cahill, M.R.; McKenna, S.L.; O’Driscoll, C.M. Biomimetic nanoparticles for siRNA delivery in the treatment of leukaemia. Biotechnol. Adv., 2014, 32(8), 1396-1409.
[http://dx.doi.org/10.1016/j.biotechadv.2014.08.007] [PMID: 25218571]
[80]
Etchin, J.; Sanda, T.; Mansour, M.R.; Kentsis, A.; Montero, J.; Le, B.T.; Christie, A.L.; McCauley, D.; Rodig, S.J.; Kauffman, M.; Shacham, S.; Stone, R.; Letai, A.; Kung, A.L.; Thomas Look, A. KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia. Br. J. Haematol., 2013, 161(1), 117-127.
[http://dx.doi.org/10.1111/bjh.12231] [PMID: 23373539]
[81]
Nagamachi, A.; Matsui, H.; Asou, H.; Ozaki, Y.; Aki, D.; Kanai, A.; Takubo, K.; Suda, T.; Nakamura, T.; Wolff, L.; Honda, H.; Inaba, T. Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell, 2013, 24(3), 305-317.
[http://dx.doi.org/10.1016/j.ccr.2013.08.011] [PMID: 24029230]
[82]
Mao, H.; Diehl, A.M.; Li, Y.X. Sonic hedgehog ligand partners with caveolin-1 for intracellular transport. Lab. Invest., 2009, 89(3), 290-300.
[http://dx.doi.org/10.1038/labinvest.2008.163] [PMID: 19139721]
[83]
Hossain, Z.; Kurihara, H.; Hosokawa, M.; Takahashi, K. Docosahexaenoic acid and eicosapentaenoic acid-enriched phosphatidylcholine liposomes enhance the permeability, transportation and uptake of phospholipids in Caco-2 cells. Mol. Cell. Biochem., 2006, 285(1-2), 155-163.
[http://dx.doi.org/10.1007/s11010-005-9074-6] [PMID: 16477371]
[84]
Ogai, K.; Kuwana, A.; Hisano, S.; Nagashima, M.; Koriyama, Y.; Sugitani, K.; Mawatari, K.; Nakashima, H.; Kato, S. Upregulation of leukemia inhibitory factor (LIF) during the early stage of optic nerve regeneration in zebrafish. PLoS One, 2014, 9(8), e106010
[http://dx.doi.org/10.1371/journal.pone.0106010] [PMID: 25162623]
[85]
Ogai, K.; Kuwana, A.; Mawatari, K.; Sugitani, K.; Nakashima, H.; Kato, S. Intrinsic upregulation of leukemia inhibitory factor (LIF) in the retina after optic nerve injury in adult zebrafish. J. Neurochem., 2012, 123, 106-106.
[http://dx.doi.org/10.1371/journal.pone.0106010] [PMID: 25162623]
[86]
Sun, Q.; Gao, G.; Xiong, J.; Wu, Q.; Liu, H. Leukemia inhibitory factor receptor alpha-chain: a potential method for acute promyeloid leukemia therapy. Med. Hypotheses, 2012, 79(6), 864-866.
[http://dx.doi.org/10.1016/j.mehy.2012.09.008] [PMID: 23046857]
[87]
Yu, L.; Hu, T.; Zou, T.; Shi, Q.; Chen, G. Chronic myelocytic leukemia (CML) patient-derived dendritic cells transfected with autologous total RNA induces CML-specific cytotoxicity. Indian J. Hematol. Blood Transfus., 2016, 32(4), 397-404. [1].
[http://dx.doi.org/10.1007/s12288-016-0643-5] [PMID: 27812247]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 4
Year: 2020
Page: [295 - 303]
Pages: 9
DOI: 10.2174/1386207322666181231151900
Price: $65

Article Metrics

PDF: 27
HTML: 6
EPUB: 2
PRC: 2