Developmental Studies of Curcumin NLCs as Safe Alternative in Management of Infectious Childhood Dermatitis

Author(s): Manisha Lalan*, Pranav Shah, Krina Shah, Aparna Prasad

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Objective: The objective of the present studies was to develop and evaluate curcumin loaded NLCs for management of childhood dermatitis by exploiting its antimicrobial and anti-infective properties and increasing its skin deposition.

Methods: The screened lipidic excipients (on solubility basis) were used to formulate NLC dispersion by solvent injection technique and process variables were optimized. Central composite design was employed to study the effect of surfactant, total lipid and ratio of solid lipid to liquid lipid on dependent variables such as particle size, zeta potential, % entrapment efficiency and time for 80% drug release. Curcumin NLCs were incorporated into carbopol 934 P based gel and characterized for morphological and rheological properties, drug release, skin permeation and retention study, skin irritancy, in vitro microbial activity and stability.

Results: The optimized formulations exhibited satisfactory physicochemical properties and followed Higuchi kinetic model. The NLC dispersion when incorporated into gel, was stable and nonirritating. Antimicrobial study against S. aureus showed larger zone of inhibition with developed formulation. Statistical model indicated that higher surfactant concentrations, lower lipid concentrations, reducing the solid lipid content minimized the particle size, maximized the % entrapment efficiency and optimized time for 80% drug release, while it had an inverse effect on zeta potential. The TEM of NLC dispersions elucidated its sphericity.

Conclusion: The developed curcumin NLC gel exhibited potential in management of childhood dermatitis by virtue of sustained drug release, increase skin deposition and efficient antimicrobial action.

Keywords: Childhood dermatitis, curcumin, nanostructured lipid carrier, anti-infective, solvent injection technique, atopic dermatitis.

[1]
Sun, D.; Ong, P.J. Infectious complications in atopic dermatitis. Immunol. Allergy Clin. North Am., 2017, 37(1), 75-93.
[2]
Su, J.; Kemp, A.; Varigos, G.; Nolian, T. Atopic eczema: Its impact on the family and financial cost. Arch. Dis. Child., 1997, 76(2), 159-162.
[3]
Bieber, T.; Prölss, J. In: Clinical and Basic Immunodermatology; Gaspari, A.A.; Tyring, S.K., Eds.; Springer: London, 2008, pp. 193-206.
[4]
Leung, D.Y. Infection in atopic dermatitis. Curr. Opin. Pediatr., 2003, 15(4), 399-404.
[5]
Leyden, J.J.; Marples, R.R.; Kligman, A.M. Staphylococcus aureus in the lesions of atopic dermatitis. Br. J. Dermatol., 1974, 90(5), 525-530.
[6]
Suh, L.; Coffin, S.; Leckerman, K.H.; Gelfand, J.M.; Honig, P.J.; Yan, A.C. Methicillin-resistant Staphylococcus aureus colonization in children with atopic dermaitis. Pediatr. Dermatol., 2008, 25(5), 528-534.
[7]
Wollenberg, A.; Wetzel, S.; Burgdorf, W.H.; Haas, J. Viral infections in atopic dermatitis: Pathogenic aspects and clinical management. J. Allergy Clin. Immunol., 2003, 112(4), 667-674.
[8]
Schmid-Grendelmeier, P.; Scheynius, A.; Crameri, R. In: Allergy and Asthma in Modern Society: A Scientific Approach; Crameri, R., Ed.; Karger Publishers: Basel, 2006, Vol. 91, pp. 98-109.
[9]
Krakowski, A.C.; Eichenfield, L.F.; Dohil, M.A. Management of atopic dermatitis in the pediatric population. Pediatrics, 2008, 122(4), 812-824.
[10]
Arkwright, P.; Motala, C.; Subramanian, H.; Spergel, J.; Schneider, L.; Wollenberg, A. Management of difficult-to-treat atopic dermatitis. J. Allergy Clin. Immunol. Pract., 2013, 1(2), 142-151.
[11]
Aggarwal, B.B.; Young, J.S.; Shishodia, S. The molecular targets and therapeutic uses of curcumin in health and disease; 1st ed.; Springer Science +Business Media: LLC; , 2007.
[12]
Maheshwari, R.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: A short review. Life Sci., 2006, 78(18), 2081-2087.
[13]
Nguyen, T.A.; Friedman, A.J. Curcumin: a novel treatment for skin-related disorders. J. Drugs Dermatol., 2013, 12(10), 1131-1137.
[14]
Gupta, S.; Prasad, S.; Ji, H.K.; Patchva, S.; Webb, L.J.; Priyadarsini, K.I.; Aggarwal, B.B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep., 2011, 28(12), 1937-1955.
[15]
Sun, J.; Zhao, Y.; Hu, J. Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PloS One, 2013, 8(6) e67078
[16]
Moon, P.D.; Jeong, H.J.; Kim, H.M. Down-regulation of thymic stromal lymphopoietin by curcumin. Pharmacol. Rep., 2013, 65(2), 525-531.
[17]
Moghadamtousi, S.Z.; Kadir, H.A.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res. Int., 2014, 2014186864
[18]
Teow, S.Y.; Liew, K.; Ali, S.A.; Khoo, A.S.; Peh, S.C. Antibacterial action of curcumin against Staphylococcus aureus: A brief review. J. Trop. Med., 2016, 20162853045
[19]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[20]
Zhai, Y.; Zhai, G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J. Control. Release, 2014, 193, 90-99.
[21]
Pardeike, J.; Hommoss, A. Muller. R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[22]
Loo, C.H.; Basri, M.; Ismail, R.; Lau, H.L.N.; Tejo, B.A.; Kanthimathi, M.S.; Hassan, H.A.; Choo, Y.M. Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion. Int. J. Nanomedicine, 2013, 8, 13.
[23]
Chen, P.; Zhang, H.; Cheng, S.; Zhai, G.; Shen, C. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids Surf. A, 2016, 506, 356-362.
[24]
Shah, R.; Eldridge, D.; Palombo, E.; Harding, I. Lipid nanoparticles: Production, characterization and stability, 1st Ed; Springer International Publishing: Switezerland, 2015.
[25]
Kumar, A.; Sawant, K.K. Application of multiple regression analysis in optimization of anastrozole-loaded PLGA nanoparticles. J. Microencapsul., 2014, 31(2), 105-114.
[26]
Lalan, M.S.; Laddha, N.C.; Lalani, J.; Imran, M.J.; Begum, R.; Misra, A. Suppression of cytokine gene expression and improved therapeutic efficacy of microemulsion-based tacrolimus cream for atopic dermatitis. Drug Deliv. Transl. Res., 2012, 2(2), 129-141.
[27]
Phatak, A.A.; Chaudhari, P.D. Development and evaluation of Nanostructured Lipid Carrier (NLC) based topical delivery of an anti-inflammatory drug. J. Pharm. Res., 2013, 7(8), 677-685.
[28]
Lalan, M.S.; Khode, S.S.; Shah, K.S.; Patel, P.C. Preliminary development studies of halobetasol propionate organogel for management of atopic dermatitis. Int. J. Pharm. Sci. Res., 2017, 8(2), 775-783.
[29]
Joshi, M.; Patravale, V. Formulation and evaluation of nanostructured lipid carrier (NLC)–based gel of Valdecoxib. Drug Dev. Ind. Pharm., 2006, 32(8), 911-918.
[30]
Chen, Y.; Wu, Q.; Zhang, Z.; Yuan, L.; Liu, X.; Zhou, L. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules, 2012, 17(5), 5972-5987.
[31]
Banerjee, S.; Chattopadhyay, P.; Ghosh, A.; Pathak, M.; Singh, S. Acute dermal irritation, sensitization, and acute toxicity studies of a transdermal patch for prophylaxis against (±) anatoxin-A poisoning. Int. J. Toxicol., 2016, 32(4), 308-313.
[32]
Sekizawa, J.; Yasuhara, K.; Suyama, Y.; Yamanaka, S.; Tobe, M.; Nishimura, M. A simple method for screening assessment of skin and eye irritation. J. Toxicol. Sci., 1994, 19(1), 25-35.
[33]
Negi, P.; Singh, B.; Sharma, G.; Beg, S.; Katare, O.P. Biocompatible lidocaine and prilocaine loaded-nanoemulsion system for enhanced percutaneous absorption: QbD-based optimisation, dermatokinetics and in vivo evaluation. J. Microencapsul., 2015, 32(5), 419-431.
[34]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[35]
Wang, S.; Tan, M.; Zhong, Z.; Chen, M.; Wang, Y. Nanotechnologies for curcumin: an ancient puzzler meets modern solutions. J. Nanomater., 2011, 2011 723178
[36]
Levy, M.; Schutze, W.; Fuhrer, C.; Benita, S. Characterization of diazepam submicron emulsion interface: Role of oleic acid. J. Microencapsul., 1994, 11(1), 79-92.
[37]
Aditya, N.; Shim, K.; Lee, I.; Lee, Y.; Ko, S. Curcumin and genistein loaded nanostructured lipid carriers: In vitro digestion and antiprostate cancer activity. J. Agric. Food Chem., 2013, 61(8), 1878-1883.
[38]
Han, F.; Yin, R.; Che, X.; Yuan, J.; Cui, Y.; Yin, H.; Li, S. Nanostructured lipid carriers (NLC) based topical gel of flurbiprofen: design, characterization and in vivo evaluation. Int. J. Pharm., 2012, 439(1-2), 349-357.
[39]
Fang, C.; Al-Suwayeh, S.S.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol., 2013, 7(1), 41-55.
[40]
Rai, D.; Singh, J.K.; Roy, N.; Panda, D. Curcumin inhibits FtsZ assembly: An attractive mechanism for its antibacterial activity. Biochem. J., 2008, 410(1), 147-155.
[41]
Kim, K.H.; Han, J.H.; Chung, J.H.; Cho, K.H.; Eun, H.C. Role of staphylococcal superantigen in atopic dermatitis: Influence on keratinocytes. J. Korean Med. Sci., 2006, 21(2), 315-323.
[42]
Mun, S.H.; Kim, S.B.; Kong, R.; Choi, J.G.; Kim, Y.C.; Shin, D.W.; Kang, O.H.; Kwon, D.Y. Curcumin reverse methicillin resistance in Staphylococcus aureus. Molecules, 2014, 19(11), 18283-18295.
[43]
Singh, R.; Chandra, R.; Bose, M.; Luthra, P.M. Antibacterial activity of Curcuma longa rhizome extract on pathogenic bacteria. Curr. Sci., 2002, 83(6), 737-740.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 4
Year: 2020
Published on: 25 August, 2020
Page: [390 - 403]
Pages: 14
DOI: 10.2174/2210681209666181226153741
Price: $25

Article Metrics

PDF: 20
HTML: 1