Selective MMP-13 Inhibitors: Promising Agents for the Therapy of Osteoarthritis

Author(s): Yichao Wan*, Wei Li, Zhipeng Liao, Mi Yan, Xuwang Chen, Zilong Tang*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 22 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Osteoarthritis (OA) is an age-related degenerative disease, which is characterized by chronic joint pain, inflammation and the damage of joint cartilage. At present, steroidal drugs and nonsteroidal anti-inflammatory drugs (NSAIDS), selective cyclooxygenase-2 (COX-2) inhibitors, are the first-line drugs for the treatment of OA. However, these drugs could lead to some cardiovascular side effects. Therefore, it is urgent to develop novel agents for the treatment of OA. Matrix metalloproteinase-13 (MMP-13), an important member of matrix metalloproteinases (MMPs) family, plays a vital role by degrading type II collagen in articular cartilage and bone in OA. It is noted that MMP-13 is specially expressed in the OA patients, and not in normal adults. In addition, broadspectrum MMP inhibitors could result in some painful and joint-stiffening side effects, called musculoskeletal syndrome (MSS) in the clinical trials. Thus, developing selective MMP-13 inhibitors is a potential strategy for the therapy of OA. In this review, we summarize the recent progress of selective MMP-13 inhibitors including two subfamilies, namely zinc-binding and non-zinc-binding selective MMP-13 inhibitors.

Keywords: Osteoarthritis, articular cartilage, MMP-13, zinc-binding group, structure-activity relationship, selective inhibitors.

[1]
Lane, N.E.; Shidara, K.; Wise, B.L. Osteoarthritis year in review 2016: clinical. Osteoarthritis Cartilage, 2017, 25(2), 209-215.
[http://dx.doi.org/10.1016/j.joca.2016.09.025] [PMID: 28100423]
[2]
Hunter, D.J. Osteoarthritis. Best Pract. Res. Clin. Rheumatol., 2011, 25(6), 801-814.
[http://dx.doi.org/10.1016/j.berh.2011.11.008] [PMID: 22265262]
[3]
Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum., 2012, 64(6), 1697-1707.
[http://dx.doi.org/10.1002/art.34453] [PMID: 22392533]
[4]
Felson, D.T.; Lawrence, R.C.; Dieppe, P.A.; Hirsch, R.; Helmick, C.G.; Jordan, J.M.; Kington, R.S.; Lane, N.E.; Nevitt, M.C.; Zhang, Y.; Sowers, M.; McAlindon, T.; Spector, T.D.; Poole, A.R.; Yanovski, S.Z.; Ateshian, G.; Sharma, L.; Buckwalter, J.A.; Brandt, K.D.; Fries, J.F. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann. Intern. Med., 2000, 133(8), 635-646.
[http://dx.doi.org/10.7326/0003-4819-133-8-200010170-00016] [PMID: 11033593]
[5]
Li, N.G.; Shi, Z.H.; Tang, Y.P.; Wang, Z.J.; Song, S.L.; Qian, L.H.; Qian, D.W.; Duan, J.A. New hope for the treatment of osteoarthritis through selective inhibition of MMP-13. Curr. Med. Chem., 2011, 18(7), 977-1001.
[http://dx.doi.org/10.2174/092986711794940905] [PMID: 21254976]
[6]
Fitzgerald, G.A. Coxibs and cardiovascular disease. N. Engl. J. Med., 2004, 351(17), 1709-1711.
[http://dx.doi.org/10.1056/NEJMp048288] [PMID: 15470192]
[7]
Steinmeyer, J.; Konttinen, Y.T. Oral treatment options for degenerative joint disease--presence and future. Adv. Drug Deliv. Rev., 2006, 58(2), 168-211.
[http://dx.doi.org/10.1016/j.addr.2006.01.007] [PMID: 16616797]
[8]
Hunter, D.J. Pharmacologic therapy for osteoarthritis--the era of disease modification. Nat. Rev. Rheumatol., 2011, 7(1), 13-22.
[http://dx.doi.org/10.1038/nrrheum.2010.178] [PMID: 21079644]
[9]
Tonge, D.P.; Pearson, M.J.; Jones, S.W. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthritis Cartilage, 2014, 22(5), 609-621.
[http://dx.doi.org/10.1016/j.joca.2014.03.004] [PMID: 24632293]
[10]
Murphy, G.; Nagase, H. Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat. Clin. Pract. Rheumatol., 2008, 4(3), 128-135.
[http://dx.doi.org/10.1038/ncprheum0727] [PMID: 18253109]
[11]
Zhang, E.; Yan, X.; Zhang, M.; Chang, X.; Bai, Z.; He, Y.; Yuan, Z. Aggrecanases in the human synovial fluid at different stages of osteoarthritis. Clin. Rheumatol., 2013, 32(6), 797-803.
[http://dx.doi.org/10.1007/s10067-013-2171-0] [PMID: 23370724]
[12]
Li, J.Y.; Ye, Q.Z. A new target for athritis: advance in the study of aggrecanase. Prog. Biochem. Biophys., 2001, 28(5), 654-657.
[13]
Sabatini, M.; Lesur, C.; Thomas, M.; Chomel, A.; Anract, P.; de Nanteuil, G.; Pastoureau, P. Effect of inhibition of matrix metalloproteinases on cartilage loss in vitro and in a guinea pig model of osteoarthritis. Arthritis Rheum., 2005, 52(1), 171-180.
[http://dx.doi.org/10.1002/art.20900] [PMID: 15641085]
[14]
Wojtowicz-Praga, S.; Torri, J.; Johnson, M.; Steen, V.; Marshall, J.; Ness, E.; Dickson, R.; Sale, M.; Rasmussen, H.S.; Chiodo, T.A.; Hawkins, M.J. Phase I trial of Marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J. Clin. Oncol., 1998, 16(6), 2150-2156.
[http://dx.doi.org/10.1200/JCO.1998.16.6.2150] [PMID: 9626215]
[15]
Skiles, J.W.; Gonnella, N.C.; Jeng, A.Y. The design, structure, and clinical update of small molecular weight matrix metalloproteinase inhibitors. Curr. Med. Chem., 2004, 11(22), 2911-2977.
[http://dx.doi.org/10.2174/0929867043364018] [PMID: 15544483]
[16]
Stickens, D.; Behonick, D.J.; Ortega, N.; Heyer, B.; Hartenstein, B.; Yu, Y.; Fosang, A.J.; Schorpp-Kistner, M.; Angel, P.; Werb, Z. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development, 2004, 131(23), 5883-5895.
[http://dx.doi.org/10.1242/dev.01461] [PMID: 15539485]
[17]
Ji, J.B.; Li, X.F.; Liu, L.; Wang, G.Z.; Yan, X.F. Effect of low intensity pulsed ultrasound on expression of TIMP-2 in serum and expression of mmp-13 in articular cartilage of rabbits with knee osteoarthritis. Asian Pac. J. Trop. Med., 2015, 8(12), 1043-1048.
[http://dx.doi.org/10.1016/j.apjtm.2015.11.003] [PMID: 26706677]
[18]
Little, C.B.; Barai, A.; Burkhardt, D.; Smith, S.M.; Fosang, A.J.; Werb, Z.; Shah, M.; Thompson, E.W. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum., 2009, 60(12), 3723-3733.
[http://dx.doi.org/10.1002/art.25002] [PMID: 19950295]
[19]
Johnson, A.R.; Pavlovsky, A.G.; Ortwine, D.F.; Prior, F.; Man, C.F.; Bornemeier, D.A.; Banotai, C.A.; Mueller, W.T.; McConnell, P.; Yan, C.; Baragi, V.; Lesch, C.; Roark, W.H.; Wilson, M.; Datta, K.; Guzman, R.; Han, H.K.; Dyer, R.D. Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J. Biol. Chem., 2007, 282(38), 27781-27791.
[http://dx.doi.org/10.1074/jbc.M703286200] [PMID: 17623656]
[20]
Baragi, V.M.; Becher, G.; Bendele, A.M.; Biesinger, R.; Bluhm, H.; Boer, J.; Deng, H.; Dodd, R.; Essers, M.; Feuerstein, T.; Gallagher, B.M., Jr; Gege, C.; Hochgürtel, M.; Hofmann, M.; Jaworski, A.; Jin, L.; Kiely, A.; Korniski, B.; Kroth, H.; Nix, D.; Nolte, B.; Piecha, D.; Powers, T.S.; Richter, F.; Schneider, M.; Steeneck, C.; Sucholeiki, I.; Taveras, A.; Timmermann, A.; Van Veldhuizen, J.; Weik, J.; Wu, X.; Xia, B. A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: Evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models. Arthritis Rheum., 2009, 60(7), 2008-2018.
[http://dx.doi.org/10.1002/art.24629] [PMID: 19565489]
[21]
Gomis-Rüth, F.X. Catalytic domain architecture of metzincin metalloproteases. J. Biol. Chem., 2009, 284(23), 15353-15357.
[http://dx.doi.org/10.1074/jbc.R800069200] [PMID: 19201757]
[22]
Fanjul-Fernández, M.; Folgueras, A.R.; Cabrera, S.; López-Otín, C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta, 2010, 1803(1), 3-19.
[http://dx.doi.org/10.1016/j.bbamcr.2009.07.004] [PMID: 19631700]
[23]
Puente, X.S.; Sánchez, L.M.; Overall, C.M.; López-Otín, C. Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet., 2003, 4(7), 544-558.
[http://dx.doi.org/10.1038/nrg1111] [PMID: 12838346]
[24]
Vandenbroucke, R.E.; Libert, C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov., 2014, 13(12), 904-927.
[http://dx.doi.org/10.1038/nrd4390] [PMID: 25376097]
[25]
Tester, A.M.; Cox, J.H.; Connor, A.R.; Starr, A.E.; Dean, R.A.; Puente, X.S.; López-Otín, C.; Overall, C.M. LPS responsiveness and neutrophil chemotaxis in vivo require PMN MMP-8 activity. PLoS One, 2007, 2(3)e312
[http://dx.doi.org/10.1371/journal.pone.0000312] [PMID: 17375198]
[26]
Gearing, A.J.H.; Beckett, P.; Christodoulou, M.; Churchill, M.; Clements, J.; Davidson, A.H.; Drummond, A.H.; Galloway, W.A.; Gilbert, R.; Gordon, J.L. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature, 1994, 370(6490), 555-557.
[http://dx.doi.org/10.1038/370555a0] [PMID: 8052310]
[27]
Boire, A.; Covic, L.; Agarwal, A.; Jacques, S.; Sherifi, S.; Kuliopulos, A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell, 2005, 120(3), 303-313.
[http://dx.doi.org/10.1016/j.cell.2004.12.018] [PMID: 15707890]
[28]
Barksby, H.E.; Milner, J.M.; Patterson, A.M.; Peake, N.J.; Hui, W.; Robson, T.; Lakey, R.; Middleton, J.; Cawston, T.E.; Richards, C.D.; Rowan, A.D. Matrix metalloproteinase 10 promotion of collagenolysis via procollagenase activation: implications for cartilage degradation in arthritis. Arthritis Rheum., 2006, 54(10), 3244-3253.
[http://dx.doi.org/10.1002/art.22167] [PMID: 17009259]
[29]
Geurts, N.; Martens, E.; Van Aelst, I.; Proost, P.; Opdenakker, G.; Van den Steen, P.E. Beta-hematin interaction with the hemopexin domain of gelatinase B/MMP-9 provokes autocatalytic processing of the propeptide, thereby priming activation by MMP-3. Biochemistry, 2008, 47(8), 2689-2699.
[http://dx.doi.org/10.1021/bi702260q] [PMID: 18237197]
[30]
Shapiro, S.D.; Kobayashi, D.K.; Ley, T.J. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J. Biol. Chem., 1993, 268(32), 23824-23829.
[PMID: 8226919]
[31]
Hou, P.; Troen, T.; Ovejero, M.C.; Kirkegaard, T.; Andersen, T.L.; Byrjalsen, I.; Ferreras, M.; Sato, T.; Shapiro, S.D.; Foged, N.T.; Delaissé, J.M. Matrix metalloproteinase-12 (MMP-12) in osteoclasts: new lesson on the involvement of MMPs in bone resorption. Bone, 2004, 34(1), 37-47.
[http://dx.doi.org/10.1016/j.bone.2003.08.011] [PMID: 14751561]
[32]
Overall, C.M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol., 2002, 22(1), 51-86.
[http://dx.doi.org/10.1385/MB:22:1:051] [PMID: 12353914]
[33]
Stracke, J.O.; Hutton, M.; Stewart, M.; Pendás, A.M.; Smith, B.; López-Otin, C.; Murphy, G.; Knäuper, V. Biochemical characterization of the catalytic domain of human matrix metalloproteinase 19. Evidence for a role as a potent basement membrane degrading enzyme. J. Biol. Chem., 2000, 275(20), 14809-14816.
[http://dx.doi.org/10.1074/jbc.275.20.14809] [PMID: 10809722]
[34]
Lu, Y.; Papagerakis, P.; Yamakoshi, Y.; Hu, J.C.; Bartlett, J.D.; Simmer, J.P. Functions of KLK4 and MMP-20 in dental enamel formation. Biol. Chem., 2008, 389(6), 695-700.
[http://dx.doi.org/10.1515/BC.2008.080] [PMID: 18627287]
[35]
Bar-Or, A.; Nuttall, R.K.; Duddy, M.; Alter, A.; Kim, H.J.; Ifergan, I.; Pennington, C.J.; Bourgoin, P.; Edwards, D.R.; Yong, V.W. Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain, 2003, 126(Pt 12), 2738-2749.
[http://dx.doi.org/10.1093/brain/awg285] [PMID: 14506071]
[36]
Uría, J.A.; López-Otín, C. Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res., 2000, 60(17), 4745-4751.
[PMID: 10987280]
[37]
Xie, X.W.; Wan, R.Z.; Liu, Z.P. Recent research advances in selective matrix metalloproteinase-13 inhibitors as anti-osteoarthritis agents. Chem.Med.Chem, 2017, 12(15), 1157-1168.
[http://dx.doi.org/10.1002/cmdc.201700349] [PMID: 28722301]
[38]
Wang, W.S.; Chen, P.M.; Wang, H.S.; Liang, W.Y.; Su, Y. Matrix metalloproteinase-7 increases resistance to Fas-mediated apoptosis and is a poor prognostic factor of patients with colorectal carcinoma. Carcinogenesis, 2006, 27(5), 1113-1120.
[http://dx.doi.org/10.1093/carcin/bgi351] [PMID: 16474169]
[39]
McGuire, J.K.; Li, Q.; Parks, W.C. Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am. J. Pathol., 2003, 162(6), 1831-1843.
[http://dx.doi.org/10.1016/S0002-9440(10)64318-0] [PMID: 12759241]
[40]
Li, Q.; Park, P.W.; Wilson, C.L.; Parks, W.C. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell, 2002, 111(5), 635-646.
[http://dx.doi.org/10.1016/S0092-8674(02)01079-6] [PMID: 12464176]
[41]
Zhao, Y.G.; Xiao, A.Z.; Park, H.I.; Newcomer, R.G.; Yan, M.; Man, Y.G.; Heffelfinger, S.C.; Sang, Q.X. Endometase/matrilysin-2 in human breast ductal carcinoma in situ and its inhibition by tissue inhibitors of metalloproteinases-2 and -4: a putative role in the initiation of breast cancer invasion. Cancer Res., 2004, 64(2), 590-598.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-1932] [PMID: 14744773]
[42]
Yu, Q.; Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev., 2000, 14(2), 163-176.
[PMID: 10652271]
[43]
McQuibban, G.A.; Gong, J.H.; Wong, J.P.; Wallace, J.L.; Clark-Lewis, I.; Overall, C.M. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood, 2002, 100(4), 1160-1167.
[http://dx.doi.org/10.1182/blood.V100.4.1160.h81602001160_1160_1167] [PMID: 12149192]
[44]
Sohail, A.; Sun, Q.; Zhao, H.; Bernardo, M.M.; Cho, J.A.; Fridman, R. MT4-(MMP17) and MT6-MMP (MMP25), A unique set of membrane-anchored matrix metalloproteinases: properties and expression in cancer. Cancer Metastasis Rev., 2008, 27(2), 289-302.
[http://dx.doi.org/10.1007/s10555-008-9129-8] [PMID: 18286233]
[45]
Zucker, S.; Pei, D.; Cao, J.; Lopez-Otin, C. Membrane type-matrix metalloproteinases (MT-MMP). Curr. Top. Dev. Biol., 2003, 54, 1-74.
[http://dx.doi.org/10.1016/S0070-2153(03)54004-2] [PMID: 12696745]
[46]
Li, J.J.; Johnson, A.R. Selective MMP13 inhibitors. Med. Res. Rev., 2011, 31(6), 863-894.
[http://dx.doi.org/10.1002/med.20204] [PMID: 20196103]
[47]
Lovejoy, B.; Welch, A.R.; Carr, S.; Luong, C.; Broka, C.; Hendricks, R.T.; Campbell, J.A.; Walker, K.A.; Martin, R.; Van Wart, H.; Browner, M.F. Crystal structures of MMP-1 and -13 reveal the structural basis for selectivity of collagenase inhibitors. Nat. Struct. Biol., 1999, 6(3), 217-221.
[http://dx.doi.org/10.1038/6657] [PMID: 10074939]
[48]
Dormán, G.; Cseh, S.; Hajdú, I.; Barna, L.; Kónya, D.; Kupai, K.; Kovács, L.; Ferdinandy, P. Matrix metalloproteinase inhibitors: a critical appraisal of design principles and proposed therapeutic utility. Drugs, 2010, 70(8), 949-964.
[http://dx.doi.org/10.2165/11318390-000000000-00000] [PMID: 20481653]
[49]
Ruminski, P.G.; Massa, M.; Strohbach, J.; Hanau, C.E.; Schmidt, M.; Scholten, J.A.; Fletcher, T.R.; Hamper, B.C.; Carroll, J.N.; Shieh, H.S.; Caspers, N.; Collins, B.; Grapperhaus, M.; Palmquist, K.E.; Collins, J.; Baldus, J.E.; Hitchcock, J.; Kleine, H.P.; Rogers, M.D.; McDonald, J.; Munie, G.E.; Messing, D.M.; Portolan, S.; Whiteley, L.O.; Sunyer, T.; Schnute, M.E. Discovery of N-(4-Fluoro-3-methoxybenzyl)-6-(2-(((2S,5R)-5-(hydroxymethyl)-1,4-dioxan-2-yl)methyl)-2H-tetrazol-5-yl)-2-methylpyrimidine-4-carboxamide. A highly selective and orally bioavailable matrix metalloproteinase-13 inhibitor for the potential treatment of osteoarthritis. J. Med. Chem., 2016, 59(1), 313-327.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01434] [PMID: 26653735]
[50]
Devel, L.; Czarny, B.; Beau, F.; Georgiadis, D.; Stura, E.; Dive, V. Third generation of matrix metalloprotease inhibitors: Gain in selectivity by targeting the depth of the S1′ cavity. Biochimie, 2010, 92(11), 1501-1508.
[http://dx.doi.org/10.1016/j.biochi.2010.07.017] [PMID: 20696203]
[51]
Di Pizio, A.; Agamennone, M.; Tortorella, P. Non-zinc-binding inhibitors of MMP-13: GRID-based approaches to rationalize the binding process. Curr. Top. Med. Chem., 2016, 16(4), 449-459.
[http://dx.doi.org/10.2174/1568026615666150813150631] [PMID: 26268339]
[52]
Lanz, J.; Riedl, R. Merging allosteric and active site binding motifs: de novo generation of target selectivity and potency via natural-product-derived fragments. Chem.Med.Chem, 2015, 10(3), 451-454.
[http://dx.doi.org/10.1002/cmdc.201402478] [PMID: 25487909]
[53]
Chen, J.M.; Nelson, F.C.; Levin, J.I.; Mobilio, D.; Moy, F.J.; Nilakantan, R.; Zask, A.; Powers, R. Structure-based design of a novel, potent, and selective inhibitor for MMP-13 utilizing NMR spectroscopy and computer-aided molecular design. J. Am. Chem. Soc., 2000, 122(40), 9648-9654.
[http://dx.doi.org/10.1021/ja001547g]
[54]
Nuti, E.; Casalini, F.; Avramova, S.I.; Santamaria, S.; Cercignani, G.; Marinelli, L.; La Pietra, V.; Novellino, E.; Orlandini, E.; Nencetti, S.; Tuccinardi, T.; Martinelli, A.; Lim, N.H.; Visse, R.; Nagase, H.; Rossello, A. N-O-isopropyl sulfonamido-based hydroxamates: design, synthesis and biological evaluation of selective matrix metalloproteinase-13 inhibitors as potential therapeutic agents for osteoarthritis. J. Med. Chem., 2009, 52(15), 4757-4773.
[http://dx.doi.org/10.1021/jm900261f] [PMID: 19606871]
[55]
Tommasi, R.A.; Weiler, S.; McQuire, L.W.; Rogel, O.; Chambers, M.; Clark, K.; Doughty, J.; Fang, J.; Ganu, V.; Grob, J.; Goldberg, R.; Goldstein, R.; Lavoie, S.; Kulathila, R.; Macchia, W.; Melton, R.; Springer, C.; Walker, M.; Zhang, J.; Zhu, L.; Shultz, M. Potent and selective 2-naphthylsulfonamide substituted hydroxamic acid inhibitors of matrix metalloproteinase-13. Bioorg. Med. Chem. Lett., 2011, 21(21), 6440-6445.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.087] [PMID: 21937229]
[56]
Kolodziej, S.A.; Hockerman, S.L.; DeCrescenzo, G.A.; McDonald, J.J.; Mischke, D.A.; Munie, G.E.; Fletcher, T.R.; Stehle, N.; Swearingen, C.; Becker, D.P. MMP-13 selective isonipecotamide α-sulfone hydroxamates. Bioorg. Med. Chem. Lett., 2010, 20(12), 3561-3564.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.111] [PMID: 20529685]
[57]
Fobian, Y.M.; Freskos, J.N.; Barta, T.E.; Bedell, L.J.; Heintz, R.; Kassab, D.J.; Kiefer, J.R.; Mischke, B.V.; Molyneaux, J.M.; Mullins, P.; Munie, G.E.; Becker, D.P. MMP-13 selective alpha-sulfone hydroxamates: identification of selective P1′ amides. Bioorg. Med. Chem. Lett., 2011, 21(10), 2823-2825.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.095] [PMID: 21493063]
[58]
Whittaker, M.; Floyd, C.D.; Brown, P.; Gearing, A.J. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem. Rev., 1999, 99(9), 2735-2776.
[http://dx.doi.org/10.1021/cr9804543] [PMID: 11749499]
[59]
La Pietra, V.; Marinelli, L.; Cosconati, S.; Di Leva, F.S.; Nuti, E.; Santamaria, S.; Pugliesi, I.; Morelli, M.; Casalini, F.; Rossello, A.; La Motta, C.; Taliani, S.; Visse, R.; Nagase, H.; da Settimo, F.; Novellino, E. Identification of novel molecular scaffolds for the design of MMP-13 inhibitors: a first round of lead optimization. Eur. J. Med. Chem., 2012, 47(1), 143-152.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.035] [PMID: 22088955]
[60]
Li, J.; Rush, T.S., III; Li, W.; DeVincentis, D.; Du, X.; Hu, Y.; Thomason, J.R.; Xiang, J.S.; Skotnicki, J.S.; Tam, S.; Cunningham, K.M.; Chockalingam, P.S.; Morris, E.A.; Levin, J.I. Synthesis and SAR of highly selective MMP-13 inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(22), 4961-4966.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.001] [PMID: 16153831]
[61]
Hu, Y.; Xiang, J.S.; DiGrandi, M.J.; Du, X.; Ipek, M.; Laakso, L.M.; Li, J.; Li, W.; Rush, T.S.; Schmid, J.; Skotnicki, J.S.; Tam, S.; Thomason, J.R.; Wang, Q.; Levin, J.I. Potent, selective, and orally bioavailable matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. Bioorg. Med. Chem., 2005, 13(24), 6629-6644.
[http://dx.doi.org/10.1016/j.bmc.2005.07.076] [PMID: 16216515]
[62]
Li, W.; Hu, Y.; Li, J.; Thomason, J.R.; DeVincentis, D.; Du, X.; Wu, J.; Hotchandani, R.; Rush, T.S., III; Skotnicki, J.S.; Tam, S.; Chockalingam, P.S.; Morris, E.A.; Levin, J.I. 3,4-Disubstituted benzofuran P1′ MMP-13 inhibitors: optimization of selectivity and reduction of protein binding. Bioorg. Med. Chem. Lett., 2009, 19(16), 4546-4550.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.008] [PMID: 19625186]
[63]
Ghuman, J.; Zunszain, P.A.; Petitpas, I.; Bhattacharya, A.A.; Otagiri, M.; Curry, S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol., 2005, 353(1), 38-52.
[http://dx.doi.org/10.1016/j.jmb.2005.07.075] [PMID: 16169013]
[64]
Monovich, L.G.; Tommasi, R.A.; Fujimoto, R.A.; Blancuzzi, V.; Clark, K.; Cornell, W.D.; Doti, R.; Doughty, J.; Fang, J.; Farley, D.; Fitt, J.; Ganu, V.; Goldberg, R.; Goldstein, R.; Lavoie, S.; Kulathila, R.; Macchia, W.; Parker, D.T.; Melton, R.; O’Byrne, E.; Pastor, G.; Pellas, T.; Quadros, E.; Reel, N.; Roland, D.M.; Sakane, Y.; Singh, H.; Skiles, J.; Somers, J.; Toscano, K.; Wigg, A.; Zhou, S.; Zhu, L.; Shieh, W.C.; Xue, S.; McQuire, L.W. Discovery of potent, selective, and orally active carboxylic acid based inhibitors of matrix metalloproteinase-13. J. Med. Chem., 2009, 52(11), 3523-3538.
[http://dx.doi.org/10.1021/jm801394m] [PMID: 19422229]
[65]
Duan, J.J.; Lu, Z.; Wasserman, Z.R.; Liu, R.Q.; Covington, M.B.; Decicco, C.P. Non-hydroxamate 5-phenylpyrimidine-2,4,6-trione derivatives as selective inhibitors of tumor necrosis factor-alpha converting enzyme. Bioorg. Med. Chem. Lett., 2005, 15(12), 2970-2973.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.039] [PMID: 15908214]
[66]
Blagg, J.A.; Noe, M.C.; Wolf-Gouveia, L.A.; Reiter, L.A.; Laird, E.R.; Chang, S.P.; Danley, D.E.; Downs, J.T.; Elliott, N.C.; Eskra, J.D.; Griffiths, R.J.; Hardink, J.R.; Haugeto, A.I.; Jones, C.S.; Liras, J.L.; Lopresti-Morrow, L.L.; Mitchell, P.G.; Pandit, J.; Robinson, R.P.; Subramanyam, C.; Vaughn-Bowser, M.L.; Yocum, S.A. Potent pyrimidinetrione-based inhibitors of MMP-13 with enhanced selectivity over MMP-14. Bioorg. Med. Chem. Lett., 2005, 15(7), 1807-1810.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.038] [PMID: 15780611]
[67]
Reiter, L.A.; Freeman-Cook, K.D.; Jones, C.S.; Martinelli, G.J.; Antipas, A.S.; Berliner, M.A.; Datta, K.; Downs, J.T.; Eskra, J.D.; Forman, M.D.; Greer, E.M.; Guzman, R.; Hardink, J.R.; Janat, F.; Keene, N.F.; Laird, E.R.; Liras, J.L.; Lopresti-Morrow, L.L.; Mitchell, P.G.; Pandit, J.; Robertson, D.; Sperger, D.; Vaughn-Bowser, M.L.; Waller, D.M.; Yocum, S.A. Potent, selective pyrimidinetrione-based inhibitors of MMP-13. Bioorg. Med. Chem. Lett., 2006, 16(22), 5822-5826.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.066] [PMID: 16942871]
[68]
Freeman-Cook, K.D.; Reiter, L.A.; Noe, M.C.; Antipas, A.S.; Danley, D.E.; Datta, K.; Downs, J.T.; Eisenbeis, S.; Eskra, J.D.; Garmene, D.J.; Greer, E.M.; Griffiths, R.J.; Guzman, R.; Hardink, J.R.; Janat, F.; Jones, C.S.; Martinelli, G.J.; Mitchell, P.G.; Laird, E.R.; Liras, J.L.; Lopresti-Morrow, L.L.; Pandit, J.; Reilly, U.D.; Robertson, D.; Vaughn-Bowser, M.L.; Wolf-Gouviea, L.A.; Yocum, S.A. Potent, selective spiropyrrolidine pyrimidinetrione inhibitors of MMP-13. Bioorg. Med. Chem. Lett., 2007, 17(23), 6529-6534.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.085] [PMID: 17935984]
[69]
Nara, H.; Sato, K.; Kaieda, A.; Oki, H.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. Design, synthesis, and biological activity of novel, potent, and highly selective fused pyrimidine-2-carboxamide-4-one-based matrix metalloproteinase (MMP)-13 zinc-binding inhibitors. Bioorg. Med. Chem., 2016, 24(23), 6149-6165.
[http://dx.doi.org/10.1016/j.bmc.2016.09.009] [PMID: 27825552]
[70]
Nara, H.; Kaieda, A.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. Discovery of novel, highly potent, and selective matrix metalloproteinase (MMP)-13 inhibitors with a 1,2,4-triazol-3-yl moiety as a zinc binding group using a structure-based design approach. J. Med. Chem., 2017, 60(2), 608-626.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01007] [PMID: 27966948]
[71]
Skiles, J.W.; Gonnella, N.C.; Jeng, A.Y. The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr. Med. Chem., 2001, 8(4), 425-474.
[http://dx.doi.org/10.2174/0929867013373417] [PMID: 11172697]
[72]
Wu, J.; Rush, T.S., III; Hotchandani, R.; Du, X.; Geck, M.; Collins, E.; Xu, Z.B.; Skotnicki, J.; Levin, J.I.; Lovering, F.E. Identification of potent and selective MMP-13 inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(18), 4105-4109.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.019] [PMID: 16005220]
[73]
Matter, H.; Schudok, M. Recent advances in the design of matrix metalloprotease inhibitors. Curr. Opin. Drug Discov. Devel., 2004, 7(4), 513-535.
[PMID: 15338961]
[74]
Rao, B.G. Recent developments in the design of specific Matrix Metalloproteinase inhibitors aided by structural and computational studies. Curr. Pharm. Des., 2005, 11(3), 295-322.
[http://dx.doi.org/10.2174/1381612053382115] [PMID: 15723627]
[75]
Fabre, B.; Ramos, A.; de Pascual-Teresa, B. Targeting matrix metalloproteinases: exploring the dynamics of the s1′ pocket in the design of selective, small molecule inhibitors. J. Med. Chem., 2014, 57(24), 10205-10219.
[http://dx.doi.org/10.1021/jm500505f] [PMID: 25265401]
[76]
Pirard, B. Insight into the structural determinants for selective inhibition of matrix metalloproteinases. Drug Discov. Today, 2007, 12(15-16), 640-646.
[http://dx.doi.org/10.1016/j.drudis.2007.06.003] [PMID: 17706545]
[77]
Heim-Riether, A.; Taylor, S.J.; Liang, S.; Gao, D.A.; Xiong, Z.; Michael August, E.; Collins, B.K.; Farmer, B.T., II; Haverty, K.; Hill-Drzewi, M.; Junker, H.D.; Mariana Margarit, S.; Moss, N.; Neumann, T.; Proudfoot, J.R.; Keenan, L.S.; Sekul, R.; Zhang, Q.; Li, J.; Farrow, N.A. Improving potency and selectivity of a new class of non-Zn-chelating MMP-13 inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(18), 5321-5324.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.151] [PMID: 19692239]
[78]
Gao, D.A.; Xiong, Z.; Heim-Riether, A.; Amodeo, L.; August, E.M.; Cao, X.; Ciccarelli, L.; Collins, B.K.; Harrington, K.; Haverty, K.; Hill-Drzewi, M.; Li, X.; Liang, S.; Margarit, S.M.; Moss, N.; Nagaraja, N.; Proudfoot, J.; Roman, R.; Schlyer, S.; Keenan, L.S.; Taylor, S.; Wellenzohn, B.; Wiedenmayer, D.; Li, J.; Farrow, N.A. SAR studies of non-zinc-chelating MMP-13 inhibitors: improving selectivity and metabolic stability. Bioorg. Med. Chem. Lett., 2010, 20(17), 5039-5043.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.036] [PMID: 20675133]
[79]
Eitner, K.; Koch, U. From fragment screening to potent binders: strategies for fragment-to-lead evolution. Mini Rev. Med. Chem., 2009, 9(8), 956-961.
[http://dx.doi.org/10.2174/138955709788681645] [PMID: 19601891]
[80]
Schulz, M.N.; Hubbard, R.E. Recent progress in fragment-based lead discovery. Curr. Opin. Pharmacol., 2009, 9(5), 615-621.
[http://dx.doi.org/10.1016/j.coph.2009.04.009] [PMID: 19477685]
[81]
Taylor, S.J.; Abeywardane, A.; Liang, S.; Muegge, I.; Padyana, A.K.; Xiong, Z.; Hill-Drzewi, M.; Farmer, B.; Li, X.; Collins, B.; Li, J.X.; Heim-Riether, A.; Proudfoot, J.; Zhang, Q.; Goldberg, D.; Zuvela-Jelaska, L.; Zaher, H.; Li, J.; Farrow, N.A. Fragment-based discovery of indole inhibitors of matrix metalloproteinase-13. J. Med. Chem., 2011, 54(23), 8174-8187.
[http://dx.doi.org/10.1021/jm201129m] [PMID: 22017539]
[82]
Engel, C.K.; Pirard, B.; Schimanski, S.; Kirsch, R.; Habermann, J.; Klingler, O.; Schlotte, V.; Weithmann, K.U.; Wendt, K.U. Structural basis for the highly selective inhibition of MMP-13. Chem. Biol., 2005, 12(2), 181-189.
[http://dx.doi.org/10.1016/j.chembiol.2004.11.014] [PMID: 15734645]
[83]
Piecha, D.; Weik, J.; Kheil, H.; Becher, G.; Timmermann, A.; Jaworski, A.; Burger, M.; Hofmann, M.W. Novel selective MMP-13 inhibitors reduce collagen degradation in bovine articular and human osteoarthritis cartilage explants. Inflamm. Res., 2010, 59(5), 379-389.
[http://dx.doi.org/10.1007/s00011-009-0112-9] [PMID: 19902332]
[84]
Gege, C.; Bao, B.; Bluhm, H.; Boer, J.; Gallagher, B.M.; Korniski, B.; Powers, T.S.; Steeneck, C.; Taveras, A.G.; Baragi, V.M. Discovery and evaluation of a non-Zn chelating, selective matrix metalloproteinase 13 (MMP-13) inhibitor for potential intra-articular treatment of osteoarthritis. J. Med. Chem., 2012, 55(2), 709-716.
[http://dx.doi.org/10.1021/jm201152u] [PMID: 22175799]
[85]
Nara, H.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. Discovery of novel, highly potent, and selective quinazoline-2-carboxamide-based matrix metalloproteinase (MMP)-13 inhibitors without a zinc binding group using a structure-based design approach. J. Med. Chem., 2014, 57(21), 8886-8902.
[http://dx.doi.org/10.1021/jm500981k] [PMID: 25264600]
[86]
Nara, H.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. Thieno[2,3-d]pyrimidine-2-carboxamides bearing a carboxybenzene group at 5-position: highly potent, selective, and orally available MMP-13 inhibitors interacting with the S1″ binding site. Bioorg. Med. Chem., 2014, 22(19), 5487-5505.
[http://dx.doi.org/10.1016/j.bmc.2014.07.025] [PMID: 25192810]
[87]
Spicer, T.P.; Jiang, J.; Taylor, A.B.; Choi, J.Y.; Hart, P.J.; Roush, W.R.; Fields, G.B.; Hodder, P.S.; Minond, D. Characterization of selective exosite-binding inhibitors of matrix metalloproteinase 13 that prevent articular cartilage degradation in vitro. J. Med. Chem., 2014, 57(22), 9598-9611.
[http://dx.doi.org/10.1021/jm501284e] [PMID: 25330343]
[88]
Choi, J.Y.; Fuerst, R.; Knapinska, A.M.; Taylor, A.B.; Smith, L.; Cao, X.; Hart, P.J.; Fields, G.B.; Roush, W.R. Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors. J. Med. Chem., 2017, 60(13), 5816-5825.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00514] [PMID: 28653849]
[89]
Fuerst, R.; Yong Choi, J.; Knapinska, A.M.; Smith, L.; Cameron, M.D.; Ruiz, C.; Fields, G.B.; Roush, W.R. Development of matrix metalloproteinase-13 inhibitors - A structure-activity/structure-property relationship study. Bioorg. Med. Chem., 2018, 26(18), 4984-4995.
[http://dx.doi.org/10.1016/j.bmc.2018.08.020] [PMID: 30249495]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 22
Year: 2020
Page: [3753 - 3769]
Pages: 17
DOI: 10.2174/0929867326666181217153118
Price: $65

Article Metrics

PDF: 33
HTML: 1