Effect of Anode Temperature and Contact Voltage on the Design of Arc- Less Micro Electrical Contact

Author(s): Femi Robert*, Anita Agrawal, Shibu Clement

Journal Name: Micro and Nanosystems

Volume 11 , Issue 1 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Objective: This paper presents the effect of anode temperature and contact voltage on the breakdown arc of micro electrical contact pair under DC excitation.

Methods: A rectangular micro electrical contact pair is considered. The resistance and capacitance of the contact pair are obtained for the materials Al, Cu, Au and Pt. The anode temperature is calculated based on the 3D heat equation. Pre-breakdown arc due to anode temperature is analyzed.

Result: The breakdown voltage and breakdown electric field characteristics for the gap between 0.5µm and 30µm are reported. The electric field of micro electrical contact pair is analyzed mathematically. The calculated values of resistance, anode temperature and electric field are compared with the simulation results obtained using COMSOL multiphysics FEA software tool. The arc-less operating region of micro contact is identified. Four cases with the ratings 50V/5A, 50V/0.5A, 400 V/ 5A and 400V/0.5A have been considered for the analysis of arcless micro electrical contact.

Conclusion: These results can be considered while designing arc-less micro electrical switches, micro relays and micro circuit breakers which can be applicable for the future DC electric power distribution, protection system and automobiles. Also these results can be considered when designing micro actuators, sensors and electrostatic devices.

Keywords: Breakdown arc, anode temperature, electric field, arc, micro electrical contact pair, contact voltage.

Manninen, A.; Karkkainen, A.; Pensonen, N.; Oja, A.; Seppa, H. Micrelectromechanical components in electrical metrology. IEEE Trans. Instrum. Meas., 2001, 50(2), 440-444.
Wong, J.E.; Lang, J.H.; Schmidt, M.A. An electrostatically actuated MEMs switch for power applications. In:Proceedings of IEEE Conference on MEMS, 2000, 633-638.
Song, Y.H. An electrostatically actuated stacked-electrode MEMS relay with a levering and torsional spring for power applications. J. Microelectromech. Syst., 2012, 21(5), 1209-1217.
Keimel, C.; Claydon, G.; Li, B.; Park, J.; Valdes, M.E. Micro-electromechanical-system based switches for power applications. IEEE Trans. Ind. Appl., 2012, 48(4), 1163-1169.
Kumfer, B.C.; Greenwood, P.J.; Frederick, B.; Papallo, T.F.; Subramanian, K. Electrical distribution system including Micro Electro-Mechanical Switch (MEMS) devices. U.S. Patent 8,570,713 B2, October, 2013.
Douglass, R.S. . Arcless fusible switch disconnect device for DC circuits. U.S. Patent 0043133 A1, Feburary, 2014.
Anand, P.K. MEMS-based switching systems. U.S. Patent,8,537,507 B2, September, 2013.
Anand, P.K.; Changali, S.; Hooker, J.K.; Keeramthode, R.K.; Kumfer, B.C. Power switching System Including a Micro-Electromechanical System (MEMS) Array. U.S. Patent, 8,350,509 B2, January, 2013.
Premerlani, W.J.; Subramanian, K.; Keimel, F.; O’Brien, K.A.; Norton Park, J. Micro-Electromechanical system based switching.U.S. Patent 8,358,488 B2, January 2013.
Rebeiz, G.M.; Patel, C.D.; Han, S.K.; Ko, C.H.; Ho, K.M. The search for a reliable MEMS switch. IEEE Microw. Mag., 2013, 14(1), 56-67.
Keimel, C.; Claydon, G.; Li, B.; Park, J.N.; Valdes, M.E. Micro-electromechanical-system based switches for power applications. IEEE Trans. Ind. Appl., 2012, 48(4), 1163-1169.
Yonezawa, Y.; Wakatsuki, N.; Satoh, Y.; Nakatani, T.; Sawa, K.S. Fabrication process of nonarcing power MEMS switch. IEICE Trans. Electron., 2005, E88-C(8), 1629-1633.
Slade, P.G.; Taylor, E.D. Electrical breakdown in atmospheric air between closely spaced (0.2 µm-40 µm) electrical contacts. IEEE Trans. Compon. Packag. Tech., 2002, 25(3), 390-396.
Atalla, M.M. Mechanism of the initiation of the short arc., Arc. Electr. Contact Telephone Switch. Syst. 1954, 203-220.
Balachandra, T.C.; Nagabhushana, G.R. Anode hotspot temperature estimation in vacuum gaps under 50 Hz alternating excitations. IEEE Trans. Electr. Insul., 1993, 28(3), 392-401.
Holm, R. Electric Contacts Theory and Applications, 4th ed; Springer: Berlin, Heidelberg, 2000.
Slade, P.G. Electrical Contacts. 2nd Edition, CRC Press: New York,Taylor & Francis Group , 2014.
Chen, H.; Yeh, J.A.; Wang, P.J. Electrical breakdown phenomena for devices with micron separations. J. Micromech. Microeng., 2006, 16(7), 1366-1373.
Wang, Z.; Ma, H.; Hong, G.; Liu, Z.; Geng, Y.; Wang, J. Decay modes of anode temperature after current zero in vacuum arcs-part I: Experimental study. IEEE Trans. Plasma Sci., 2014, 42(5), 1464-1473.
Chung, H.H.; Lee, R.T.; Chiou, Y.C. Arc discharge and erosion behavior of silver electric contacts between static gap. In: IEEE Proceedings-Science, Measurement and Technology,, 2001, 148(1)
Li, L.; Li, C.; Feng, Y.; Jing, N.; Yang, Z.Z.; Chang, L.F. Analysis of electrical contact temperature rise in spark gap switches with graphite electrodes. IEEE Trans. Dielectr. Electr. Insul., 2011, 18(4), 1307-1313.
Wakatsuki, N.; Yonezawa, Y.; Yamamoto, A. Equivalent circuit analysis for time-coordinated non-arcing operation of read switches. IEICE Trans. Electron., 2006, E89-C(8), 1182-1186.
Wakatsuki, N.; Honma, H. Breaking contact phenomena of a time-coordinated non-arcing relay. IEICE Trans. Electron., 2008, E91-C(8), 1206-1210.
Leus, V.; Elata, D. Fringing field effect in electrostatic actuators.Tech. Rep. 2004.
Wakatsuki, N.; Maeda, N.T.T.; Kudo, T. Melting and discharge phenomena of breaking Ag contact using a precisely controlled piezoelectric actuator., IEEE. 2009, 73-77.
Shashurin, A.; Beilis, I.I.; Boxman, R.L. Heat flux to an asymmetric Anode in a hot refractory anode vacuum arc. Plasma Sources Sci. Technol., 2010, 19, 1-8.
Carlaw, H.S.; Jaeger, J.C. Conduction of heat in solids; Oxford Science Publications: Reading, MA, 2008.
Schutze, A.; Jeong, J.Y.; Babayan, S.E.; Park, J.; Selwyn, G.S.; Hicks, R.F. The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. IEEE Trans. Plasma Sci., 1998, 26(6), 1685-1694.
Go, B.; Pohlman, D.A. A mathematical model of the modified Paschen’s curve for breakdown in micro scale gaps. J. Appl. Phys., 2010, 107(10), 103303-103330.
Bell, W.J. Proposed model of thermionically assisted breakdown and implementation on electrostatic thrusters., Thesis, December. 1991.
Mariotti1, D.; McLaughlin, J.A.; Maguire, P. Experimental study of breakdown voltage and effective secondary electron emission coefficient for a micro-plasma device. Plasma Sources Sci. Technol., 2004, 13, 207-212.
Femi, R.; Clement, S.; Agrawal, A.; Prince, A.A. Effect of electric field on electrical breakdown arc behavior of micro contact gaps: A 3D approach. In:Proceedings of 6th IEEE PES Asia-Pacific Power and Energy Engineering Conference, Hong Kong2014, pp. 1-6.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [47 - 55]
Pages: 9
DOI: 10.2174/1876402911666181214143451

Article Metrics

PDF: 31
PRC: 1