A Physical Theory of Sleep Involving Nitrogen Nanobubbles and Proton Hopping

Author(s): Subhash C. Basak, Lemont B. Kier

Journal Name: Current Computer-Aided Drug Design

Volume 15 , Issue 1 , 2019

Become EABM
Become Reviewer
Call for Editor

Kier, L.B. Water as a complex system. Its role in ligand diffusion, general anesthesia, and sleep. Chem. Biodiv., 2007, 4(10), 2473-2479.
Kier, L.B. A review of recent studies relating ligand diffusion, general anesthesia, and sleep. Amer. Assoc. Nurse Anesth. J., 2008, 76, 109.
Kier, L.B. Theories of ligand diffusion, general anesthesia, and sleep. Anesthesia Research Developments; Nova Science Publ Chapter 1, 2010.
Kier, L.B. Water chreodes and the mechanism of ligand diffusion, general anesthesia, and sleep. Biochem. Res. Internat., Article ID 396560,
Kier, L.B. A core molecular theory of sleep and aging. Curr. Computeraided Drug Des., 2012, 8, 87.
Kier, L.B.; Slattum, P. A core process in receptor function, general anesthesia, sleep and aging. Chem. Biodi., 2012, 9, 930-934.
Fowler, B.; Ackles, K.N.; Porlier, G. Effects of inert gas narcosis on behavior: A critical review. Undersea Biomed. Res., 1985, 12, 369-402.
Bennett, P.B. Inert gas narcosis.In: The physiology and medicine of diving; P. B. Bennett, and Elliott D. H. Eds. 4th ed. London: WB Saunders, 1993, pp. 170-193.
Behnke, A.R.; Thomson, R.M.; Motley, E.P. The psychologic effects from breathing air at 4 atmospheres pressure. Am. J. Physiol., 1935, 112, 554-558.
Meyer, H. Zur theorie der alkoholnarkose (I): Welche eigenschaft der an¨asthetica bedingt ihre narkotische wirkung. Arch. Exp. Pathol. Pharmakol., 1899, 42, 109-118; Meyer H. Zur theorie der alkoholnarkose (III): der einfluss wechselnder temperature auf wirkungst¨arke und theilungscoefficient der narcotica. Arch. Exp. Pathol. Pharmakol., 1901, 46, 338-346.
Overton, E. Studien ¨uber die narkose, zugleich ein beitrag zur allgemeiner Pharmakologie; Jena Gustav Fischer, 1901.
Franks, N.P.; Lieb, W.R. Do general anaesthetics act by competitive binding to specific receptors? Nature, 1984, 310, 599-601.
Liu, S.; Kawagoe, Y.; Makino, Y.; Oshita, S. Effects of nanobubbles on the physicochemical properties of water: The basis for properties of water containing nanobubbles. Chem. Eng. Sci., 2013, 93, 250-256.
Ahmed, K.A.A.; Cuizhen, S.; Likun, H.; Zhibin, Z.; Yanhao, Z.; Taha, M.; Wen, Z. Colloidal properties of air, oxygen, and nitrogen nanobubbles in water: Effects of Ionic Strength, Natural Organic Matters, and Surfactants. Environmental. Eng. Sci., 2017.
Zhang, M. Concentration of nitrogen molecules need by nitrogen bubbles existing in bulk water. Appl. Math Mech. Engl. Ed., 2013, 34, 1433-1438.
Kier, L.B.; Tombes, R. A proposed mechanism for myelinated axon nerve impulses. Chem. Biodivers., 2013, 10, 1155.
Kier, L.B.; Hall, L.H.; Tombes, R. Enhanced action potential passage through the node of Ranvier in myelinated axons via extracellular proton hopping. Curr. Computeraided Drug Des., 2015, 11, 5-7.
Kier, L.B. Proton hopping as the nerve conduction message. Curr. Computeraided Drug Des., 2016, 12, 255-258.
Basak, S.; Kier, L.B. Delving into the fundamental aspects of the drug-receptor interaction. Curr. Computeraided Drug Des., 2017, 13, 87-88.

free to download

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 13 December, 2018
Page: [3 - 5]
Pages: 3
DOI: 10.2174/157340991501181214103920

Article Metrics

PDF: 31