Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nitric Oxide in Life and Death of Neutrophils

Author(s): Svetlana I. Galkina , Ekaterina A. Golenkina , Galina M. Viryasova , Yulia M. Romanova and Galina F. Sud’ina *

Volume 26, Issue 31, 2019

Page: [5764 - 5780] Pages: 17

DOI: 10.2174/0929867326666181213093152

Price: $65

Abstract

Background: Nitric Oxide (NO) is a key signalling molecule that has an important role in inflammation. It can be secreted by endothelial cells, neutrophils, and other cells, and once in circulation, NO plays important roles in regulating various neutrophil cellular activities and fate.

Objective: To describe neutrophil cellular responses influenced by NO and its concomitant compound peroxynitrite and signalling mechanisms for neutrophil apoptosis.

Methods: Literature was reviewed to assess the effects of NO on neutrophils.

Results: NO plays an important role in various neutrophil cellular activities and interaction with other cells. The characteristic cellular activities of neutrophils are adhesion and phagocytosis. NO plays a protective role in neutrophil-endothelial interaction by preventing neutrophil adhesion and endothelial cell damage by activated neutrophils. NO suppresses neutrophil phagocytic activity but stimulates longdistance contact interactions through tubulovesicular extensions or cytonemes. Neutrophils are the main source of superoxide, but NO flow results in the formation of peroxynitrite, a compound with high biological activity. Peroxynitrite is involved in the regulation of eicosanoid biosynthesis and inhibits endothelial prostacyclin synthase. NO and peroxynitrite modulate cellular 5-lipoxygenase activity and leukotriene synthesis. Long-term exposure of neutrophils to NO results in the activation of cell death mechanisms and neutrophil apoptosis.

Conclusion: Nitric oxide and the NO/superoxide interplay fine-tune mechanisms regulating life and death in neutrophils.

Keywords: Neutrophil, adhesion, cytonemes, phagocytosis, 5-lipoxygenase, leukotrienes, apoptosis.

[1]
Furchgott, R.F.; Cherry, P.D.; Zawadzki, J.V.; Jothianandan, D. Endothelial cells as mediators of vasodilation of arteries. J. Cardiovasc. Pharmacol., 1984, 6(Suppl. 2), S336-S343.
[http://dx.doi.org/10.1097/00005344-198406002-00008] [PMID: 6206342]
[2]
Palmer, R.M.; Ferrige, A.G.; Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 1987, 327(6122), 524-526.
[http://dx.doi.org/10.1038/327524a0] [PMID: 3495737]
[3]
Moncada, S.; Palmer, R.M.; Higgs, E.A. Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem. Pharmacol., 1989, 38(11), 1709-1715.
[http://dx.doi.org/10.1016/0006-2952(89)90403-6] [PMID: 2567594]
[4]
Howlett, R. Nobel award stirs up debate on nitric oxide breakthrough. Nature, 1998, 395(6703), 625-626.
[http://dx.doi.org/10.1038/27019] [PMID: 9790176]
[5]
Smith, O. Nobel Prize for NO research. Nat. Med., 1998, 4(11), 1215.
[http://dx.doi.org/10.1038/3182] [PMID: 9790176]
[6]
Williams, N. NO news is good news--but only for three Americans. Science, 1998, 282(5389), 610-611.
[http://dx.doi.org/10.1126/science.282.5389.610] [PMID: 9841408]
[7]
Wright, C.D.; Mülsch, A.; Busse, R.; Osswald, H. Generation of nitric oxide by human neutrophils. Biochem. Biophys. Res. Commun., 1989, 160(2), 813-819.
[http://dx.doi.org/10.1016/0006-291X(89)92506-0] [PMID: 2541713]
[8]
Miles, A.M.; Owens, M.W.; Milligan, S.; Johnson, G.G.; Fields, J.Z.; Ing, T.S.; Kottapalli, V.; Keshavarzian, A.; Grisham, M.B. Nitric oxide synthase in circulating vs. extravasated polymorphonuclear leukocytes. J. Leukoc. Biol., 1995, 58(5), 616-622.
[http://dx.doi.org/10.1002/jlb.58.5.616] [PMID: 7595064]
[9]
Galkina, S.I.; Sud’ina, G.F.; Ullrich, V. Inhibition of neutrophil spreading during adhesion to fibronectin reveals formation of long tubulovesicular cell extensions (cytonemes). Exp. Cell Res., 2001, 266(2), 222-228.
[http://dx.doi.org/10.1006/excr.2001.5227] [PMID: 11399050]
[10]
Galkina, S.I.; Romanova, J.M.; Stadnichuk, V.I.; Molotkovsky, J.G.; Sud’ina, G.F.; Klein, T. Nitric oxide-induced membrane tubulovesicular extensions (cytonemes) of human neutrophils catch and hold Salmonella enterica serovar Typhimurium at a distance from the cell surface. FEMS Immunol. Med. Microbiol., 2009, 56(2), 162-171.
[http://dx.doi.org/10.1111/j.1574-695X.2009.00560.x] [PMID: 19453754]
[11]
Fang, F.C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol., 2004, 2(10), 820-832.
[http://dx.doi.org/10.1038/nrmicro1004] [PMID: 15378046]
[12]
Workman, A.D.; Carey, R.M.; Kohanski, M.A.; Kennedy, D.W.; Palmer, J.N.; Adappa, N.D.; Cohen, N.A. Relative susceptibility of airway organisms to antimicrobial effects of nitric oxide. Int. Forum Allergy Rhinol., 2017, 7(8), 770-776.
[http://dx.doi.org/10.1002/alr.21966] [PMID: 28544570]
[13]
Knowles, R.G.; Moncada, S. Nitric oxide synthases in mammals. Biochem. J., 1994, 298(Pt 2), 249-258.
[http://dx.doi.org/10.1042/bj2980249] [PMID: 7510950]
[14]
Rousseau, D.L.; Li, D.; Couture, M.; Yeh, S.R. Ligand-protein interactions in nitric oxide synthase. J. Inorg. Biochem., 2005, 99(1), 306-323.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.11.007] [PMID: 15598509]
[15]
White, K.A.; Marletta, M.A. Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry, 1992, 31(29), 6627-6631.
[http://dx.doi.org/10.1021/bi00144a001] [PMID: 1379068]
[16]
Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric oxide synthases: structure, function and inhibition. Biochem. J., 2001, 357(Pt 3), 593-615.
[http://dx.doi.org/10.1042/bj3570593] [PMID: 11463332]
[17]
Kone, B.C. Protein-protein interactions controlling nitric oxide synthases. Acta Physiol. Scand., 2000, 168(1), 27-31.
[http://dx.doi.org/10.1046/j.1365-201x.2000.00629.x] [PMID: 10691776]
[18]
Segal, A.W.; Meshulam, T. Production of superoxide by neutrophils: a reappraisal. FEBS Lett., 1979, 100(1), 27-32.
[http://dx.doi.org/10.1016/0014-5793(79)81124-2] [PMID: 220088]
[19]
Segal, A.W. The function of the NADPH oxidase of phagocytes and its relationship to other NOXs in plants, invertebrates, and mammals. Int. J. Biochem. Cell Biol., 2008, 40(4), 604-618.
[http://dx.doi.org/10.1016/j.biocel.2007.10.003] [PMID: 18036868]
[20]
Daiber, A. Redox signaling (cross-talk) from and to mito-chondria involves mitochondrial pores and reactive oxygen species. Biochim. Biophys. Acta, 2010, 1797(6-7), 897-906.
[http://dx.doi.org/10.1016/j.bbabio.2010.01.032] [PMID: 20122895]
[21]
Stroes, E.; Hijmering, M.; van Zandvoort, M.; Wever, R.
Rabelink, T.J.; van Faassen, E.E. Origin of superoxide pro duction by endothelial nitric oxide synthase. FEBS Lett., 1998, 438(3), 161-164.
[http://dx.doi.org/10.1016/S0014-5793(98)01292-7] [PMID: 9827538]
[22]
Xia, Y.; Roman, L.J.; Masters, B.S.; Zweier, J.L. Inducible nitric-oxide synthase generates superoxide from the reductase domain. J. Biol. Chem., 1998, 273(35), 22635-22639.
[http://dx.doi.org/10.1074/jbc.273.35.22635] [PMID: 9712892]
[23]
Münzel, T.; Daiber, A.; Ullrich, V.; Mülsch, A. Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler. Thromb. Vasc. Biol., 2005, 25(8), 1551-1557.
[http://dx.doi.org/10.1161/01.ATV.0000168896.64927.bb] [PMID: 15879305]
[24]
Levine, A.P.; Segal, A.W. The NADPH oxidase and microbial killing by neutrophils, with a particular emphasis on the proposed antimicrobial role of myeloperoxidase within the phagocytic vacuole. Microbiol. Spectr., 2016, 4(4)
[http://dx.doi.org/10.1128/microbiolspec.MCHD-0018-2015] [PMID: 27726789]
[25]
Schildknecht, S.; Ullrich, V. Peroxynitrite as regulator of vascular prostanoid synthesis. Arch. Biochem. Biophys., 2009, 484(2), 183-189.
[http://dx.doi.org/10.1016/j.abb.2008.10.023] [PMID: 18983814]
[26]
Zweier, J.L.; Kuppusamy, P.; Williams, R.; Rayburn, B.K.; Smith, D.; Weisfeldt, M.L.; Flaherty, J.T. Measurement and characterization of postischemic free radical generation in the isolated perfused heart. J. Biol. Chem., 1989, 264(32), 18890-18895.
[PMID: 2553726]
[27]
Jourd’heuil, D.; Miranda, K.M.; Kim, S.M.; Espey, M.G.; Vodovotz, Y.; Laroux, S.; Mai, C.T.; Miles, A.M.; Grisham, M.B.; Wink, D.A. The oxidative and nitrosative chemistry of the nitric oxide/superoxide reaction in the presence of bicarbonate. Arch. Biochem. Biophys., 1999, 365(1), 92-100.
[http://dx.doi.org/10.1006/abbi.1999.1143] [PMID: 10222043]
[28]
Jourd’heuil, D.; Jourd’heuil, F.L.; Kutchukian, P.S.; Musah, R.A.; Wink, D.A.; Grisham, M.B. Reaction of superoxide and nitric oxide with peroxynitrite. Implications for peroxynitrite-mediated oxidation reactions in vivo. J. Biol. Chem., 2001, 276(31), 28799-28805.
[http://dx.doi.org/10.1074/jbc.M102341200] [PMID: 11373284]
[29]
Jaitovich, A.; Jourd’heuil, D. A Brief Overview of Nitric Oxide and Reactive Oxygen Species Signaling in Hypoxia-Induced Pulmonary Hypertension. Adv. Exp. Med. Biol., 2017, 967, 71-81.
[http://dx.doi.org/10.1007/978-3-319-63245-2_6] [PMID: 29047082]
[30]
Jankovic, A.; Korac, A.; Buzadzic, B.; Stancic, A.; Otasevic, V.; Ferdinandy, P.; Daiber, A.; Korac, B. Targeting the NO/superoxide ratio in adipose tissue: relevance to obesity and diabetes management. Br. J. Pharmacol., 2017, 174(12), 1570-1590.
[http://dx.doi.org/10.1111/bph.13498] [PMID: 27079449]
[31]
Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87(1), 315-424.
[http://dx.doi.org/10.1152/physrev.00029.2006] [PMID: 17237348]
[32]
Thomas, D.D.; Liu, X.; Kantrow, S.P.; Lancaster, J.R., Jr The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc. Natl. Acad. Sci. USA, 2001, 98(1), 355-360.
[http://dx.doi.org/10.1073/pnas.98.1.355] [PMID: 11134509]
[33]
Lancaster, J.R. Jr Nitric oxide: a brief overview of chemical and physical properties relevant to therapeutic applications. Future Sci. OA, 2015, 1(1), FSO59.
[http://dx.doi.org/10.4155/fso.15.59] [PMID: 28031866]
[34]
Liu, X.; Samouilov, A.; Lancaster, J.R., Jr; Zweier, J.L. Nitric oxide uptake by erythrocytes is primarily limited by extracellular diffusion not membrane resistance. J. Biol. Chem., 2002, 277(29), 26194-26199.
[http://dx.doi.org/10.1074/jbc.M201939200] [PMID: 12006567]
[35]
Zen, A.; Trout, B.L.; Guidoni, L. Properties of reactive oxygen species by quantum Monte Carlo. J. Chem. Phys., 2014, 141(1)014305
[http://dx.doi.org/10.1063/1.4885144] [PMID: 25005287]
[36]
Fukuto, J.M.; Cisneros, C.J.; Kinkade, R.L. A comparison of the chemistry associated with the biological signaling and actions of nitroxyl (HNO) and nitric oxide (NO). J. Inorg. Biochem., 2013, 118, 201-208.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.08.027] [PMID: 23102503]
[37]
Garthwaite, J. New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications. Mol. Cell. Biochem., 2010, 334(1-2), 221-232.
[http://dx.doi.org/10.1007/s11010-009-0318-8] [PMID: 20012469]
[38]
Ignarro, L.J. Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci. Rep., 1999, 19(2), 51-71.
[http://dx.doi.org/10.1023/A:1020150124721] [PMID: 10888468]
[39]
Reddy, R.C.; Standiford, T.J. Effects of sepsis on neutrophil chemotaxis. Curr. Opin. Hematol., 2010, 17(1), 18-24.
[http://dx.doi.org/10.1097/MOH.0b013e32833338f3] [PMID: 19864946]
[40]
Sônego, F.; Alves-Filho, J.C.; Cunha, F.Q. Targeting neutrophils in sepsis. Expert Rev. Clin. Immunol., 2014, 10(8), 1019-1028.
[http://dx.doi.org/10.1586/1744666X.2014.922876] [PMID: 24867165]
[41]
Mestriner, F.L.; Spiller, F.; Laure, H.J.; Souto, F.O.; Tavares-Murta, B.M.; Rosa, J.C.; Basile-Filho, A.; Ferreira, S.H.; Greene, L.J.; Cunha, F.Q. Acute-phase protein alpha-1-acid glycoprotein mediates neutrophil migration failure in sepsis by a nitric oxide-dependent mechanism. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19595-19600.
[http://dx.doi.org/10.1073/pnas.0709681104] [PMID: 18048324]
[42]
Smith, C.W. Endothelial adhesion molecules and their role in inflammation. Can. J. Physiol. Pharmacol., 1993, 71(1), 76-87.
[http://dx.doi.org/10.1139/y93-012] [PMID: 8513436]
[43]
Dal Secco, D.; Moreira, A.P.; Freitas, A.; Silva, J.S.; Rossi, M.A.; Ferreira, S.H.; Cunha, F.Q. Nitric oxide inhibits neutrophil migration by a mechanism dependent on ICAM-1: role of soluble guanylate cyclase. Nitric Oxide, 2006, 15(1), 77-86.
[http://dx.doi.org/10.1016/j.niox.2006.02.004] [PMID: 16621629]
[44]
Daiber, A.; Schildknecht, S.; Müller, J.; Kamuf, J.; Bachschmid, M.M.; Ullrich, V. Chemical model systems for cellular nitros(yl)ation reactions. Free Radic. Biol. Med., 2009, 47(4), 458-467.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.019] [PMID: 19477267]
[45]
Daiber, A.; Daub, S.; Bachschmid, M.; Schildknecht, S.; Oelze, M.; Steven, S.; Schmidt, P.; Megner, A.; Wada, M.; Tanabe, T.; Münzel, T.; Bottari, S.; Ullrich, V. Protein tyrosine nitration and thiol oxidation by peroxynitrite-strategies to prevent these oxidative modifications. Int. J. Mol. Sci., 2013, 14(4), 7542-7570.
[http://dx.doi.org/10.3390/ijms14047542] [PMID: 23567270]
[46]
Ferrer-Sueta, G.; Campolo, N.; Trujillo, M.; Bartesaghi, S.; Carballal, S.; Romero, N.; Alvarez, B.; Radi, R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem. Rev., 2018, 118(3), 1338-1408.
[http://dx.doi.org/10.1021/acs.chemrev.7b00568] [PMID: 29400454]
[47]
Stamler, J.S.; Lamas, S.; Fang, F.C. Nitrosylation. the prototypic redox-based signaling mechanism. Cell, 2001, 106(6), 675-683.
[http://dx.doi.org/10.1016/S0092-8674(01)00495-0] [PMID: 11572774]
[48]
Stamler, J.S.; Jia, L.; Eu, J.P.; McMahon, T.J.; Demchenko, I.T.; Bonaventura, J.; Gernert, K.; Piantadosi, C.A. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science, 1997, 276(5321), 2034-2037.
[http://dx.doi.org/10.1126/science.276.5321.2034] [PMID: 9197264]
[49]
Gow, A.J.; Stamler, J.S. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature, 1998, 391(6663), 169-173.
[http://dx.doi.org/10.1038/34402] [PMID: 9428761]
[50]
Jia, L.; Bonaventura, C.; Bonaventura, J.; Stamler, J.S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature, 1996, 380(6571), 221-226.
[http://dx.doi.org/10.1038/380221a0] [PMID: 8637569]
[51]
Chan, N.L.; Rogers, P.H.; Arnone, A. Crystal structure of the S-nitroso form of liganded human hemoglobin. Biochemistry, 1998, 37(47), 16459-16464.
[http://dx.doi.org/10.1021/bi9816711] [PMID: 9843411]
[52]
Zhang, R.; Hess, D.T.; Reynolds, J.D.; Stamler, J.S. Hemoglobin S-nitrosylation plays an essential role in cardioprotection. J. Clin. Invest., 2016, 126(12), 4654-4658.
[http://dx.doi.org/10.1172/JCI90425] [PMID: 27841756]
[53]
McMahon, T.J.; Doctor, A. Extrapulmonary effects of inhaled nitric oxide: role of reversible S-nitrosylation of erythrocytic hemoglobin. Proc. Am. Thorac. Soc., 2006, 3(2), 153-160.
[http://dx.doi.org/10.1513/pats.200507-066BG] [PMID: 16565424]
[54]
Sun, J.; Xin, C.; Eu, J.P.; Stamler, J.S.; Meissner, G. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc. Natl. Acad. Sci. USA, 2001, 98(20), 11158-11162.
[http://dx.doi.org/10.1073/pnas.201289098] [PMID: 11562475]
[55]
Ignarro, L.J.; Buga, G.M.; Wood, K.S.; Byrns, R.E.; Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA, 1987, 84(24), 9265-9269.
[http://dx.doi.org/10.1073/pnas.84.24.9265] [PMID: 2827174]
[56]
Bachschmid, M.; Thurau, S.; Zou, M.H.; Ullrich, V. Endothelial cell activation by endotoxin involves superoxide/NO-mediated nitration of prostacyclin synthase and thromboxane receptor stimulation. FASEB J., 2003, 17(8), 914-916.
[http://dx.doi.org/10.1096/fj.02-0530fje] [PMID: 12670882]
[57]
Mehl, M.; Daiber, A.; Herold, S.; Shoun, H.; Ullrich, V. Peroxynitrite reaction with heme proteins. Nitric Oxide, 1999, 3(2), 142-152.
[http://dx.doi.org/10.1006/niox.1999.0217] [PMID: 10369184]
[58]
Pasquet, J.P.; Zou, M.H.; Ullrich, V. Peroxynitrite inhibition of nitric oxide synthases. Biochimie, 1996, 78(8-9), 785-791.
[http://dx.doi.org/10.1016/S0300-9084(97)82537-0] [PMID: 9010608]
[59]
Huie, R.E.; Padmaja, S. The reaction of no with superoxide. Free Radic. Res. Commun., 1993, 18(4), 195-199.
[http://dx.doi.org/10.3109/10715769309145868] [PMID: 8396550]
[60]
Crow, J.P.; Beckman, J.S. Reactions between nitric oxide, superoxide, and peroxynitrite: footprints of peroxynitrite in vivo. Adv. Pharmacol., 1995, 34, 17-43.
[http://dx.doi.org/10.1016/S1054-3589(08)61079-0] [PMID: 8562432]
[61]
Xia, Y.; Dawson, V.L.; Dawson, T.M.; Snyder, S.H.; Zweier, J.L. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc. Natl. Acad. Sci. USA, 1996, 93(13), 6770-6774.
[http://dx.doi.org/10.1073/pnas.93.13.6770] [PMID: 8692893]
[62]
Helms, C.C.; Gladwin, M.T.; Kim-Shapiro, D.B. Erythrocytes and Vascular Function: Oxygen and Nitric Oxide. Front. Physiol., 2018, 9, 125.
[http://dx.doi.org/10.3389/fphys.2018.00125] [PMID: 29520238]
[63]
Yasui, K.; Baba, A. Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflamm. Res., 2006, 55(9), 359-363.
[http://dx.doi.org/10.1007/s00011-006-5195-y] [PMID: 17122956]
[64]
Beckman, J.S.; Koppenol, W.H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol., 1996, 271(5 Pt 1), C1424-C1437.
[http://dx.doi.org/10.1152/ajpcell.1996.271.5.C1424] [PMID: 8944624]
[65]
Botti, H.; Möller, M.N.; Steinmann, D.; Nauser, T.; Koppenol, W.H.; Denicola, A.; Radi, R. Distance-dependent diffusion-controlled reaction of •NO and O2•- at chemical equilibrium with ONOO-. J. Phys. Chem. B, 2010, 114(49), 16584-16593.
[http://dx.doi.org/10.1021/jp105606b] [PMID: 21067212]
[66]
Hill, B.G.; Dranka, B.P.; Bailey, S.M.; Lancaster, J.R., Jr; Darley-Usmar, V.M. What part of NO don’t you understand? Some answers to the cardinal questions in nitric oxide biology. J. Biol. Chem., 2010, 285(26), 19699-19704.
[http://dx.doi.org/10.1074/jbc.R110.101618] [PMID: 20410298]
[67]
Rossi, M.A.; Celes, M.R.; Prado, C.M.; Saggioro, F.P. Myocardial structural changes in long-term human severe sepsis/septic shock may be responsible for cardiac dysfunction. Shock, 2007, 27(1), 10-18.
[http://dx.doi.org/10.1097/01.shk.0000235141.05528.47] [PMID: 17172974]
[68]
Cooper, C.E. Nitric oxide and iron proteins. Biochim. Biophys. Acta, 1999, 1411(2-3), 290-309.
[http://dx.doi.org/10.1016/S0005-2728(99)00021-3] [PMID: 10320664]
[69]
Han, D.; Canali, R.; Garcia, J.; Aguilera, R.; Gallaher, T.K.; Cadenas, E. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione. Biochemistry, 2005, 44(36), 11986-11996.
[http://dx.doi.org/10.1021/bi0509393] [PMID: 16142896]
[70]
Tórtora, V.; Quijano, C.; Freeman, B.; Radi, R.; Castro, L. Mitochondrial aconitase reaction with nitric oxide, S-nitrosoglutathione, and peroxynitrite: mechanisms and relative contributions to aconitase inactivation. Free Radic. Biol. Med., 2007, 42(7), 1075-1088.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.007] [PMID: 17349934]
[71]
Reiter, C.D.; Teng, R.J.; Beckman, J.S. Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. J. Biol. Chem., 2000, 275(42), 32460-32466.
[http://dx.doi.org/10.1074/jbc.M910433199] [PMID: 10906340]
[72]
Goldstein, S.; Czapski, G.; Lind, J.; Merényi, G. Tyrosine nitration by simultaneous generation of (.)NO and O-(2) under physiological conditions. How the radicals do the job. J. Biol. Chem., 2000, 275(5), 3031-3036.
[http://dx.doi.org/10.1074/jbc.275.5.3031] [PMID: 10652282]
[73]
Sawa, T.; Akaike, T.; Maeda, H. Tyrosine nitration by peroxynitrite formed from nitric oxide and superoxide generated by xanthine oxidase. J. Biol. Chem., 2000, 275(42), 32467-32474.
[http://dx.doi.org/10.1074/jbc.M910169199] [PMID: 10906338]
[74]
Floris, R.; Piersma, S.R.; Yang, G.; Jones, P.; Wever, R. Interaction of myeloperoxidase with peroxynitrite. A comparison with lactoperoxidase, horseradish peroxidase and catalase. Eur. J. Biochem., 1993, 215(3), 767-775.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb18091.x] [PMID: 8394811]
[75]
Khan, M.A.; Alam, K.; Zafaryab, M.; Rizvi, M.M.A. Peroxynitrite-modified histone as a pathophysiological biomarker in autoimmune diseases. Biochimie, 2017, 140, 1-9.
[http://dx.doi.org/10.1016/j.biochi.2017.06.006] [PMID: 28619676]
[76]
Okamoto, T.; Akaike, T.; Sawa, T.; Miyamoto, Y.; van der Vliet, A.; Maeda, H. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J. Biol. Chem., 2001, 276(31), 29596-29602.
[http://dx.doi.org/10.1074/jbc.M102417200] [PMID: 11395496]
[77]
Wang, W.; Sawicki, G.; Schulz, R. Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc. Res., 2002, 53(1), 165-174.
[http://dx.doi.org/10.1016/S0008-6363(01)00445-X] [PMID: 11744025]
[78]
Frears, E.R.; Zhang, Z.; Blake, D.R.; O’Connell, J.P.; Winyard, P.G. Inactivation of tissue inhibitor of metalloproteinase-1 by peroxynitrite. FEBS Lett., 1996, 381(1-2), 21-24.
[http://dx.doi.org/10.1016/0014-5793(96)00065-8] [PMID: 8641430]
[79]
Donnini, S.; Monti, M.; Roncone, R.; Morbidelli, L.; Rocchigiani, M.; Oliviero, S.; Casella, L.; Giachetti, A.; Schulz, R.; Ziche, M. Peroxynitrite inactivates human-tissue inhibitor of metalloproteinase-4. FEBS Lett., 2008, 582(7), 1135-1140.
[http://dx.doi.org/10.1016/j.febslet.2008.02.080] [PMID: 18336787]
[80]
Sung, M.M.; Schulz, C.G.; Wang, W.; Sawicki, G.; Bautista-López, N.L.; Schulz, R. Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J. Mol. Cell. Cardiol., 2007, 43(4), 429-436.
[http://dx.doi.org/10.1016/j.yjmcc.2007.07.055] [PMID: 17854826]
[81]
Babior, B.M.; Lambeth, J.D.; Nauseef, W. The neutrophil NADPH oxidase. Arch. Biochem. Biophys., 2002, 397(2), 342-344.
[http://dx.doi.org/10.1006/abbi.2001.2642] [PMID: 11795892]
[82]
Cross, A.R.; Segal, A.W. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta, 2004, 1657(1), 1-22.
[http://dx.doi.org/10.1016/j.bbabio.2004.03.008] [PMID: 15238208]
[83]
Baldridge, C.W.; Gerard, R.W. The extra respiration of phagocytosis. Am. J. Physiol., 1932, 103(1), 235-236.
[http://dx.doi.org/10.1152/ajplegacy.1932.103.1.235]
[84]
Sbarra, A.J.; Karnovsky, M.L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem., 1959, 234(6), 1355-1362.
[PMID: 13654378]
[85]
Paul, B.B.; Strauss, R.R.; Jacobs, A.A.; Sbarra, A.J. Direct involvement of NADPH oxidase with the stimulated respiratory and hexose monophosphate shunt activities in phagocytizing leukocytes. Exp. Cell Res., 1972, 73(2), 456-462.
[http://dx.doi.org/10.1016/0014-4827(72)90071-7] [PMID: 4403379]
[86]
Baehner, R.L.; Gilman, N.; Karnovsky, M.L. Respiration and glucose oxidation in human and guinea pig leukocytes: comparative studies. J. Clin. Invest., 1970, 49(4), 692-700.
[http://dx.doi.org/10.1172/JCI106281] [PMID: 4392648]
[87]
Segal, A.W. How neutrophils kill microbes. Annu. Rev. Immunol., 2005, 23, 197-223.
[http://dx.doi.org/10.1146/annurev.immunol.23.021704.115653] [PMID: 15771570]
[88]
Kumar, D.; Kumar, A.; Singh, S.; Tilak, R. Candidemia-induced pediatric sepsis and its association with free radicals, nitric oxide, and cytokine level in host. J. Crit. Care, 2015, 30(2), 296-303.
[http://dx.doi.org/10.1016/j.jcrc.2014.11.023] [PMID: 25634073]
[89]
Zarebavani, M.; Dargahi, D.; Einollahi, N.; Dashti, N.; Safari, F.; Rezaeian, M. Significance of nitric oxide level in giardiasis. Clin. Lab., 2017, 63(1), 47-52.
[http://dx.doi.org/10.7754/Clin.Lab.2016.160504] [PMID: 28164484]
[90]
Levin, J.; Poore, T.E.; Zauber, N.P.; Oser, R.S. Detection of endotoxin in the blood of patients with sepsis due to gram-negative bacteria. N. Engl. J. Med., 1970, 283(24), 1313-1316.
[http://dx.doi.org/10.1056/NEJM197012102832404] [PMID: 5478453]
[91]
Salomão, R.; Martins, P.S.; Brunialti, M.K. Fernandes, Mda.L.; Martos, L.S.; Mendes, M.E.; Gomes, N.E.; Rigato, O. TLR signaling pathway in patients with sepsis. Shock, 2008, 30(Suppl. 1), 73-77.
[http://dx.doi.org/10.1097/SHK.0b013e318181af2a] [PMID: 18704004]
[92]
Olekhnovitch, R.; Bousso, P. Induction, propagation, and activity of host nitric oxide: Lessons from Leishmania Infection. Trends Parasitol., 2015, 31(12), 653-664.
[http://dx.doi.org/10.1016/j.pt.2015.08.001] [PMID: 26440786]
[93]
Ghosh, J. Role of nitric oxide in salmonella infection. Indian J. Clin. Biochem., 2012, 27(3), 306-308.
[http://dx.doi.org/10.1007/s12291-012-0187-x] [PMID: 26405393]
[94]
Henard, C.A.; Vázquez-Torres, A. Nitric oxide and salmonella pathogenesis. Front. Microbiol., 2011, 2, 84.
[http://dx.doi.org/10.3389/fmicb.2011.00084] [PMID: 21833325]
[95]
Burton, N.A.; Schürmann, N.; Casse, O.; Steeb, A.K.; Claudi, B.; Zankl, J.; Schmidt, A.; Bumann, D. Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice. Cell Host Microbe, 2014, 15(1), 72-83.
[http://dx.doi.org/10.1016/j.chom.2013.12.006] [PMID: 24439899]
[96]
Alam, M.S.; Zaki, M.H.; Yoshitake, J.; Akuta, T.; Ezaki, T.; Akaike, T. Involvement of Salmonella enterica serovar Typhi RpoS in resistance to NO-mediated host defense against serovar Typhi infection. Microb. Pathog., 2006, 40(3), 116-125.
[http://dx.doi.org/10.1016/j.micpath.2005.11.007] [PMID: 16448800]
[97]
Iovine, N.M.; Pursnani, S.; Voldman, A.; Wasserman, G.; Blaser, M.J.; Weinrauch, Y. Reactive nitrogen species contribute to innate host defense against Campylobacter jejuni. Infect. Immun., 2008, 76(3), 986-993.
[http://dx.doi.org/10.1128/IAI.01063-07] [PMID: 18174337]
[98]
Urbano, R.; Karlinsey, J.E.; Libby, S.J.; Doulias, P.T.; Ischiropoulos, H.; Warheit-Niemi, H.I.; Liggitt, D.H.; Horswill, A.R.; Fang, F.C. Host nitric oxide disrupts microbial cell-to-cell communication to inhibit staphylococcal virulence. Cell Host Microbe, 2018. 23(5), 594-606, e7.
[http://dx.doi.org/10.1016/j.chom.2018.04.001] [PMID: 29706505]
[99]
Kinkel, T.L.; Ramos-Montañez, S.; Pando, J.M.; Tadeo, D.V.; Strom, E.N.; Libby, S.J.; Fang, F.C. An essential role for bacterial nitric oxide synthase in Staphylococcus aureus electron transfer and colonization. Nat. Microbiol., 2016, 2, 16224.
[http://dx.doi.org/10.1038/nmicrobiol.2016.224] [PMID: 27892921]
[100]
De Groote, M.A.; Fang, F.C. NO inhibitions: antimicrobial properties of nitric oxide. Clin. Infect. Dis., 1995, 21(Suppl. 2), S162-S165.
[http://dx.doi.org/10.1093/clinids/21.Supplement_2.S162] [PMID: 8845445]
[101]
Kutner, A.J.; Friedman, A.J. Use of nitric oxide nanoparticulate platform for the treatment of skin and soft tissue infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2013, 5(5), 502-514.
[http://dx.doi.org/10.1002/wnan.1230] [PMID: 23661566]
[102]
Yadav, S.; Pathak, S.; Sarikhani, M.; Majumdar, S.; Ray, S.; Chandrasekar, B.S.; Adiga, V.; Sundaresan, N.R.; Nandi, D. Nitric oxide synthase 2 enhances the survival of mice during Salmonella Typhimurium infection-induced sepsis by increasing reactive oxygen species, inflammatory cytokines and recruitment of neutrophils to the peritoneal cavity. Free Radic. Biol. Med., 2018, 116, 73-87.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.032] [PMID: 29309892]
[103]
Viryasova, G.M.; Galkina, S.I.; Gaponova, T.V.; Romanova, J.M.; Sud’ina, G.F. Regulation of 5-oxo-ETE synthesis by nitric oxide in human polymorphonuclear leucocytes upon their interaction with zymosan and Salmonella typhimurium. Biosci. Rep., 2014, 34(3)e00108
[http://dx.doi.org/10.1042/BSR20130136] [PMID: 24712762]
[104]
Galkina, S.I.; Molotkovsky, J.G.; Ullrich, V.; Sud’ina, G.F. Scanning electron microscopy study of neutrophil membrane tubulovesicular extensions (cytonemes) and their role in anchoring, aggregation and phagocytosis. The effect of nitric oxide. Exp. Cell Res., 2005, 304(2), 620-629.
[http://dx.doi.org/10.1016/j.yexcr.2004.12.005] [PMID: 15748905]
[105]
Galkina, S.I.; Stadnichuk, V.I.; Molotkovsky, J.G.; Romanova, J.M.; Sud’ina, G.F.; Klein, T. Microbial alkaloid staurosporine induces formation of nanometer-wide membrane tubular extensions (cytonemes, membrane tethers) in human neutrophils. Cell Adhes. Migr., 2010, 4(1), 32-38.
[http://dx.doi.org/10.4161/cam.4.1.10314] [PMID: 20009568]
[106]
Galkina, S.I.; Fedorova, N.V.; Serebryakova, M.V.; Romanova, J.M.; Golyshev, S.A.; Stadnichuk, V.I.; Baratova, L.A.; Sud’ina, G.F.; Klein, T. Proteome analysis identified human neutrophil membrane tubulovesicular extensions (cytonemes, membrane tethers) as bactericide trafficking. Biochim. Biophys. Acta, 2012, 1820(11), 1705-1714.
[http://dx.doi.org/10.1016/j.bbagen.2012.06.016] [PMID: 22766193]
[107]
Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science, 2004, 303(5663), 1532-1535.
[http://dx.doi.org/10.1126/science.1092385] [PMID: 15001782]
[108]
von Köckritz-Blickwede, M.; Nizet, V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J. Mol. Med. (Berl.), 2009, 87(8), 775-783.
[http://dx.doi.org/10.1007/s00109-009-0481-0] [PMID: 19444424]
[109]
Apel, F.; Zychlinsky, A.; Kenny, E.F. The role of neutrophil extracellular traps in rheumatic diseases. Nat. Rev. Rheumatol., 2018, 14(8), 467-475.
[http://dx.doi.org/10.1038/s41584-018-0039-z] [PMID: 29930301]
[110]
Pinegin, B.; Vorobjeva, N.; Pinegin, V. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun. Rev., 2015, 14(7), 633-640.
[http://dx.doi.org/10.1016/j.autrev.2015.03.002] [PMID: 25797532]
[111]
Amulic, B.; Cazalet, C.; Hayes, G.L.; Metzler, K.D.; Zychlinsky, A. Neutrophil function: from mechanisms to disease. Annu. Rev. Immunol., 2012, 30, 459-489.
[http://dx.doi.org/10.1146/annurev-immunol-020711-074942] [PMID: 22224774]
[112]
Brinkmann, V.; Laube, B.; Abu Abed, U.; Goosmann, C.; Zychlinsky, A. Neutrophil extracellular traps: how to generate and visualize them. J. Vis. Exp., 2010, 36(36), 1724.
[http://dx.doi.org/10.3791/1724] [PMID: 20182410]
[113]
Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol., 2007, 176(2), 231-241.
[http://dx.doi.org/10.1083/jcb.200606027] [PMID: 17210947]
[114]
Brinkmann, V.; Zychlinsky, A. Beneficial suicide: why neutrophils die to make NETs. Nat. Rev. Microbiol., 2007, 5(8), 577-582.
[http://dx.doi.org/10.1038/nrmicro1710] [PMID: 17632569]
[115]
Steinberg, B.E.; Grinstein, S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci. STKE, 2007, 2007(379), pe11.
[http://dx.doi.org/10.1126/stke.3792007pe11] [PMID: 17392241]
[116]
Sørensen, O.E.; Borregaard, N. Neutrophil extracellular traps - the dark side of neutrophils. J. Clin. Invest., 2016, 126(5), 1612-1620.
[http://dx.doi.org/10.1172/JCI84538] [PMID: 27135878]
[117]
Kenny, EF; Herzig, A; Krüger, R; Muth, A; Mondal, S; Thompson, PR Diverse stimuli engage different neutrophil extracellular trap pathways., 2017. 1(6)
[http://dx.doi.org/10.7554/eLife.24437] [PMID: 28574339]
[118]
Sethi, S.; Singh, M.P.; Dikshit, M. Nitric oxide-mediated augmentation of polymorphonuclear free radical generation after hypoxia-reoxygenation. Blood, 1999, 93(1), 333-340.
[PMID: 9864178]
[119]
Dikshit, M.; Sharma, P. Nitric oxide mediated modulation of free radical generation response in the rat polymorphonuclear leukocytes: a flowcytometric study. Methods Cell Sci., 2002, 24(1-3), 69-76.
[http://dx.doi.org/10.1023/A:1024197915723] [PMID: 12815294]
[120]
Patel, S.; Kumar, S.; Jyoti, A.; Srinag, B.S.; Keshari, R.S.; Saluja, R.; Verma, A.; Mitra, K.; Barthwal, M.K.; Krishnamurthy, H.; Bajpai, V.K.; Dikshit, M. Nitric oxide donors release extracellular traps from human neutrophils by augmenting free radical generation. Nitric Oxide, 2010, 22(3), 226-234.
[http://dx.doi.org/10.1016/j.niox.2010.01.001] [PMID: 20060922]
[121]
Lim, M.B.; Kuiper, J.W.; Katchky, A.; Goldberg, H.; Glogauer, M. Rac2 is required for the formation of neutrophil extracellular traps. J. Leukoc. Biol., 2011, 90(4), 771-776.
[http://dx.doi.org/10.1189/jlb.1010549] [PMID: 21712395]
[122]
Keshari, R.S.; Jyoti, A.; Kumar, S.; Dubey, M.; Verma, A.; Srinag, B.S.; Krishnamurthy, H.; Barthwal, M.K.; Dikshit, M. Neutrophil extracellular traps contain mitochondrial as well as nuclear DNA and exhibit inflammatory potential. Cytometry A, 2012, 81(3), 238-247.
[http://dx.doi.org/10.1002/cyto.a.21178] [PMID: 22170804]
[123]
Smith, C.K.; Vivekanandan-Giri, A.; Tang, C.; Knight, J.S.; Mathew, A.; Padilla, R.L.; Gillespie, B.W.; Carmona-Rivera, C.; Liu, X.; Subramanian, V.; Hasni, S.; Thompson, P.R.; Heinecke, J.W.; Saran, R.; Pennathur, S.; Kaplan, M.J. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol., 2014, 66(9), 2532-2544.
[http://dx.doi.org/10.1002/art.38703] [PMID: 24838349]
[124]
Samuelsson, B.; Hammarström, S.; Murphy, R.C.; Borgeat, P. Leukotrienes and slow reacting substance of anaphylaxis (SRS-A). Allergy, 1980, 35(5), 375-381.
[http://dx.doi.org/10.1111/j.1398-9995.1980.tb01782.x] [PMID: 6778241]
[125]
Peters-Golden, M. The chemical elucidation of slow-reacting substance: Bronchospasm and beyond. J. Immunol., 2018, 200(5), 1535-1537.
[http://dx.doi.org/10.4049/jimmunol.1800037] [PMID: 29463689]
[126]
Borgeat, P.; Hamberg, M.; Samuelsson, B. Transformation of arachidonic acid and homo-gamma-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases. J. Biol. Chem., 1976, 251(24), 7816-7820.
[PMID: 826538]
[127]
Borgeat, P.; Samuelsson, B. Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. Proc. Natl. Acad. Sci. USA, 1979, 76(5), 2148-2152.
[http://dx.doi.org/10.1073/pnas.76.5.2148] [PMID: 377292]
[128]
Ford-Hutchinson, A.W.; Bray, M.A.; Doig, M.V.; Shipley, M.E.; Smith, M.J. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature, 1980, 286(5770), 264-265.
[http://dx.doi.org/10.1038/286264a0] [PMID: 6250050]
[129]
Jedlitschky, G.; Huber, M.; Völkl, A.; Müller, M.; Leier, I.; Müller, J.; Lehmann, W.D.; Fahimi, H.D.; Keppler, D. Peroxisomal degradation of leukotrienes by beta-oxidation from the omega-end. J. Biol. Chem., 1991, 266(36), 24763-24772.
[PMID: 1761571]
[130]
Weitzel, F.; Wendel, A. Selenoenzymes regulate the activity of leukocyte 5-lipoxygenase via the peroxide tone. J. Biol. Chem., 1993, 268(9), 6288-6292.
[PMID: 8454601]
[131]
Rådmark, O.; Werz, O.; Steinhilber, D.; Samuelsson, B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim. Biophys. Acta, 2015, 1851(4), 331-339.
[http://dx.doi.org/10.1016/j.bbalip.2014.08.012] [PMID: 25152163]
[132]
Zschaler, J.; Arnhold, J. Impact of simultaneous stimulation of 5-lipoxygenase and myeloperoxidase in human neutrophils. Prostaglandins Leukot. Essent. Fatty Acids, 2016, 107, 12-21.
[http://dx.doi.org/10.1016/j.plefa.2016.02.001] [PMID: 27033421]
[133]
Hatzelmann, A.; Ullrich, V. Regulation of 5-lipoxygenase activity by the glutathione status in human polymorphonuclear leukocytes. Eur. J. Biochem., 1987, 169(1), 175-184.
[http://dx.doi.org/10.1111/j.1432-1033.1987.tb13595.x] [PMID: 2824200]
[134]
Hatzelmann, A.; Schatz, M.; Ullrich, V. Involvement of glutathione peroxidase activity in the stimulation of 5-lipoxygenase activity by glutathione-depleting agents in human polymorphonuclear leukocytes. Eur. J. Biochem., 1989, 180(3), 527-533.
[http://dx.doi.org/10.1111/j.1432-1033.1989.tb14678.x] [PMID: 2824200]
[135]
Arnhold, J.; Flemmig, J. Human myeloperoxidase in innate and acquired immunity. Arch. Biochem. Biophys., 2010, 500(1), 92-106.
[http://dx.doi.org/10.1016/j.abb.2010.04.008] [PMID: 2824200]
[136]
Zschaler, J.; Dorow, J.; Schöpe, L.; Ceglarek, U.; Arnhold, J. Impact of myeloperoxidase-derived oxidants on the product profile of human 5-lipoxygenase. Free Radic. Biol. Med., 2015, 85, 148-156.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.015] [PMID: 25912480]
[137]
Brunelli, L.; Yermilov, V.; Beckman, J.S. Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radic. Biol. Med., 2001, 30(7), 709-714.
[http://dx.doi.org/10.1016/S0891-5849(00)00512-8] [PMID: 11275470]
[138]
Shiva, S.; Brookes, P.S.; Patel, R.P.; Anderson, P.G.; Darley-Usmar, V.M. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase. Proc. Natl. Acad. Sci. USA, 2001, 98(13), 7212-7217.
[http://dx.doi.org/10.1073/pnas.131128898] [PMID: 11416204]
[139]
Rådmark, O. Arachidonate 5-lipoxygenase. Prostaglandins Other Lipid Mediat., 2002, 68-69, 211-234.
[http://dx.doi.org/10.1016/S0090-6980(02)00032-1] [PMID: 12432920]
[140]
Roos, J.; Peters, M.; Maucher, I.V.; Kühn, B.; Fettel, J.; Hellmuth, N.; Brat, C.; Sommer, B.; Urbschat, A.; Piesche, M.; Vogel, A.; Proschak, E.; Blöcher, R.; Buscató, E.; Häfner, A.K.; Matrone, C.; Werz, O.; Heidler, J.; Wittig, I.; Angioni, C.; Geisslinger, G.; Parnham, M.J.; Zacharowski, K.; Steinhilber, D.; Maier, T.J. Drug-mediated intracellular donation of nitric oxide potently inhibits 5-lipoxygenase: A possible key to future antileukotriene therapy. Antioxid. Redox Signal., 2018, 28(14), 1265-1285.
[http://dx.doi.org/10.1089/ars.2017.7155] [PMID: 28699354]
[141]
Zagryazhskaya, A.N.; Lindner, S.C.; Grishina, Z.V.; Galkina, S.I.; Steinhilber, D.; Sud’ina, G.F. Nitric oxide mediates distinct effects of various LPS chemotypes on phagocytosis and leukotriene synthesis in human neutrophils. Int. J. Biochem. Cell Biol., 2010, 42(6), 921-931.
[http://dx.doi.org/10.1016/j.biocel.2010.01.025] [PMID: 20117233]
[142]
Piotrowska-Tomala, K.K.; Siemieniuch, M.J.; Szóstek, A.Z.; Korzekwa, A.J.; Woclawek-Potocka, I.; Galváo, A.M.; Okuda, K.; Skarzynski, D.J. Lipopolysaccharides, cytokines, and nitric oxide affect secretion of prostaglandins and leukotrienes by bovine mammary gland epithelial cells. Domest. Anim. Endocrinol., 2012, 43(4), 278-288.
[http://dx.doi.org/10.1016/j.domaniend.2012.04.005] [PMID: 22608768]
[143]
Kowal, K.; Gielicz, A.; Sanak, M. The effect of allergen-induced bronchoconstriction on concentration of 5-oxo-ETE in exhaled breath condensate of house dust mite-allergic patients. Clin. Exp. Allergy, 2017, 47(10), 1253-1262.
[http://dx.doi.org/10.1111/cea.12990] [PMID: 28763131]
[144]
Kowal, K.; Bodzenta-Lukaszyk, A.; Zukowski, S. Exhaled nitric oxide in evaluation of young adults with chronic cough. J. Asthma, 2009, 46(7), 692-698.
[http://dx.doi.org/10.1080/02770900903056187] [PMID: 19728207]
[145]
Powell, W.S.; Gravelle, F.; Gravel, S. Metabolism of 5(S)-hydroxy-6,8,11,14-eicosatetraenoic acid and other 5(S)-hydroxyeicosanoids by a specific dehydrogenase in human polymorphonuclear leukocytes. J. Biol. Chem., 1992, 267(27), 19233-19241.
[PMID: 1326548]
[146]
Powell, W.S.; Gravelle, F.; Gravel, S. Phorbol myristate acetate stimulates the formation of 5-oxo-6,8,11,14-eicosatetraenoic acid by human neutrophils by activating NADPH oxidase. J. Biol. Chem., 1994, 269(41), 25373-25380.

[PMID: 7929234]
[147]
García-Nogales, P.; Almeida, A.; Bolaños, J.P. Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. J. Biol. Chem., 2003, 278(2), 864-874.
[http://dx.doi.org/10.1074/jbc.M206835200] [PMID: 12414804]
[148]
Bian, K.; Murad, F. Nitric oxide signaling in vascular biology. J. Am. Soc. Hypertens., 2007, 1(1), 17-29.
[http://dx.doi.org/10.1016/j.jash.2006.11.007] [PMID: 20409830]
[149]
Tiefenbacher, C.P.; Kreuzer, J. Nitric oxide-mediated endothelial dysfunction--is there need to treat? Curr. Vasc. Pharmacol., 2003, 1(2), 123-133.
[http://dx.doi.org/10.2174/1570161033476718] [PMID: 15320839]
[150]
Jugdutt, B.I. Nitric oxide and cardioprotection during ischemia-reperfusion. Heart Fail. Rev., 2002, 7(4), 391-405.
[http://dx.doi.org/10.1023/A:1020718619155] [PMID: 12379824]
[151]
Shelton, J.L.; Wang, L.; Cepinskas, G.; Inculet, R.; Mehta, S. Human neutrophil-pulmonary microvascular endothelial cell interactions in vitro: differential effects of nitric oxide vs. peroxynitrite. Microvasc. Res., 2008, 76(2), 80-88.
[http://dx.doi.org/10.1016/j.mvr.2008.06.001] [PMID: 18616952]
[152]
Sohn, H.Y.; Krotz, F.; Zahler, S.; Gloe, T.; Keller, M.; Theisen, K.; Schiele, T.M.; Klauss, V.; Pohl, U. Crucial role of local peroxynitrite formation in neutrophil-induced endothelial cell activation. Cardiovasc. Res., 2003, 57(3), 804-815.
[http://dx.doi.org/10.1016/S0008-6363(02)00786-1] [PMID: 12618242]
[153]
Zouki, C.; Zhang, S.L.; Chan, J.S.; Filep, J.G. Peroxynitrite induces integrin-dependent adhesion of human neutrophils to endothelial cells via activation of the Raf-1/MEK/Erk pathway. FASEB J., 2001, 15(1), 25-27.
[http://dx.doi.org/10.1096/fj.00-0521fje] [PMID: 11099490]
[154]
Vaschetto, R.; Kuiper, J.W.; Musters, R.J.; Eringa, E.C.; Della Corte, F.; Murthy, K.; Groeneveld, A.B.; Plötz, F.B. Renal hypoperfusion and impaired endothelium-dependent vasodilation in an animal model of VILI: the role of the peroxynitrite-PARP pathway. Crit. Care, 2010, 14(2), R45.
[http://dx.doi.org/10.1186/cc8932] [PMID: 20346119]
[155]
Wang, P.; Zweier, J.L. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J. Biol. Chem., 1996, 271(46), 29223-29230.
[http://dx.doi.org/10.1074/jbc.271.46.29223] [PMID: 8910581]
[156]
Lee, C.I.; Liu, X.; Zweier, J.L. Regulation of xanthine oxidase by nitric oxide and peroxynitrite. J. Biol. Chem., 2000, 275(13), 9369-9376.
[http://dx.doi.org/10.1074/jbc.275.13.9369] [PMID: 10734080]
[157]
Ma, X.L.; Gao, F.; Lopez, B.L.; Christopher, T.A.; Vinten-Johansen, J. Peroxynitrite, a two-edged sword in post-ischemic myocardial injury-dichotomy of action in crystalloid- versus blood-perfused hearts. J. Pharmacol. Exp. Ther., 2000, 292(3), 912-920.
[PMID: 10688604]
[158]
Kleikers, P.W.; Wingler, K.; Hermans, J.J.; Diebold, I.; Altenhöfer, S.; Radermacher, K.A.; Janssen, B.; Görlach, A.; Schmidt, H.H. NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J. Mol. Med. (Berl.), 2012, 90(12), 1391-1406.
[http://dx.doi.org/10.1007/s00109-012-0963-3] [PMID: 23090009]
[159]
Granger, D.N.; Kvietys, P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol., 2015, 6, 524-551.
[http://dx.doi.org/10.1016/j.redox.2015.08.020] [PMID: 26484802]
[160]
Jankauskas, S.S.; Andrianova, N.V.; Alieva, I.B.; Prusov, A.N.; Matsievsky, D.D.; Zorova, L.D.; Pevzner, I.B.; Savchenko, E.S.; Pirogov, Y.A.; Silachev, D.N.; Plotnikov, E.Y.; Zorov, D.B. Dysfunction of kidney endothelium after ischemia/reperfusion and its prevention by mitochondria-targeted antioxidant. Biochemistry (Mosc.), 2016, 81(12), 1538-1548.
[http://dx.doi.org/10.1134/S0006297916120154] [PMID: 28259131]
[161]
Bredemeier, M.; Lopes, L.M.; Eisenreich, M.A.; Hickmann, S.; Bongiorno, G.K.; d’Avila, R.; Morsch, A.L.B.; da Silva Stein, F.; Campos, G.G.D. Xanthine oxidase inhibitors for prevention of cardiovascular events: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord., 2018, 18(1), 24.
[http://dx.doi.org/10.1186/s12872-018-0757-9] [PMID: 29415653]
[162]
Gao, X.; Zhang, H.; Belmadani, S.; Wu, J.; Xu, X.; Elford, H.; Potter, B.J.; Zhang, C. Role of TNF-alpha-induced reactive oxygen species in endothelial dysfunction during reperfusion injury. Am. J. Physiol. Heart Circ. Physiol., 2008, 295(6), H2242-H2249.
[http://dx.doi.org/10.1152/ajpheart.00587.2008] [PMID: 18849334]
[163]
Galkina, S.I.; Dormeneva, E.V.; Bachschmid, M.; Pushkareva, M.A.; Sud’ina, G.F.; Ullrich, V. Endothelium-leukocyte interactions under the influence of the superoxide-nitrogen monoxide system. Med. Sci. Monit., 2004, 10(9), BR307-BR316.
[PMID: 15328475]
[164]
Torres-Dueñas, D.; Celes, M.R.; Freitas, A.; Alves-Filho, J.C.; Spiller, F.; Dal-Secco, D.; Dalto, V.F.; Rossi, M.A.; Ferreira, S.H.; Cunha, F.Q. Peroxynitrite mediates the failure of neutrophil migration in severe polymicrobial sepsis in mice. Br. J. Pharmacol., 2007, 152(3), 341-352.
[http://dx.doi.org/10.1038/sj.bjp.0707393] [PMID: 17641671]
[165]
Li, J.; Loukili, N.; Rosenblatt-Velin, N.; Pacher, P.; Feihl, F.; Waeber, B.; Liaudet, L. Peroxynitrite is a key mediator of the cardioprotection afforded by ischemic postconditioning in vivo. PLoS One, 2013, 8(7)e70331
[http://dx.doi.org/10.1371/journal.pone.0070331] [PMID: 23875026]
[166]
Blaylock, M.G.; Cuthbertson, B.H.; Galley, H.F.; Ferguson, N.R.; Webster, N.R. The effect of nitric oxide and peroxynitrite on apoptosis in human polymorphonuclear leukocytes. Free Radic. Biol. Med., 1998, 25(6), 748-752.
[http://dx.doi.org/10.1016/S0891-5849(98)00108-7] [PMID: 9801076]
[167]
Shaw, C.A.; Taylor, E.L.; Fox, S.; Megson, I.L.; Rossi, A.G. Differential susceptibility to nitric oxide-evoked apoptosis in human inflammatory cells. Free Radic. Biol. Med., 2011, 50(1), 93-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.08.030] [PMID: 20837134]
[168]
Dubey, M.; Nagarkoti, S.; Awasthi, D.; Singh, A.K.; Chandra, T.; Kumaravelu, J.; Barthwal, M.K.; Dikshit, M. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism. Cell Death Dis., 2016, 7(9)e2348
[http://dx.doi.org/10.1038/cddis.2016.248] [PMID: 27584786]
[169]
Fortenberry, J.D.; Owens, M.L.; Brown, M.R.; Atkinson, D.; Brown, L.A. Exogenous nitric oxide enhances neutrophil cell death and DNA fragmentation. Am. J. Respir. Cell Mol. Biol., 1998, 18(3), 421-428.
[http://dx.doi.org/10.1165/ajrcmb.18.3.2875] [PMID: 9490660]
[170]
Niles, J.C.; Wishnok, J.S.; Tannenbaum, S.R. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide, 2006, 14(2), 109-121.
[http://dx.doi.org/10.1016/j.niox.2005.11.001] [PMID: 16352449]
[171]
Yu, H.; Venkatarangan, L.; Wishnok, J.S.; Tannenbaum, S.R. Quantitation of four guanine oxidation products from reaction of DNA with varying doses of peroxynitrite. Chem. Res. Toxicol., 2005, 18(12), 1849-1857.
[http://dx.doi.org/10.1021/tx050146h] [PMID: 16359175]
[172]
Szabó, C.; Zingarelli, B.; O’Connor, M.; Salzman, A.L. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl. Acad. Sci. USA, 1996, 93(5), 1753-1758.
[http://dx.doi.org/10.1073/pnas.93.5.1753] [PMID: 8700830]
[173]
Zhuang, S.; Simon, G. Peroxynitrite-induced apoptosis involves activation of multiple caspases in HL-60 cells. Am. J. Physiol. Cell Physiol., 2000, 279(2), C341-C351.
[http://dx.doi.org/10.1152/ajpcell.2000.279.2.C341] [PMID: 10913000]
[174]
Baldwin, A.S., Jr The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol., 1996, 14, 649-683.
[http://dx.doi.org/10.1146/annurev.immunol.14.1.649] [PMID: 8717528]
[175]
Ghosh, S.; May, M.J.; Kopp, E.B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol., 1998, 16, 225-260.
[http://dx.doi.org/10.1146/annurev.immunol.16.1.225] [PMID: 9597130]
[176]
Fortenberry, J.D.; Owens, M.L.; Chen, N.X.; Brown, L.A. S-nitrosoglutathione inhibits TNF-alpha-induced NFkappaB activation in neutrophils. Inflamm. Res., 2001, 50(2), 89-95.
[http://dx.doi.org/10.1007/s000110050729] [PMID: 11289659]
[177]
Kroemer, G.; Petit, P.; Zamzami, N.; Vayssière, J.L.; Mignotte, B. The biochemistry of programmed cell death. FASEB J., 1995, 9(13), 1277-1287.
[http://dx.doi.org/10.1096/fasebj.9.13.7557017] [PMID: 7557017]
[178]
Hortelano, S.; Dallaporta, B.; Zamzami, N.; Hirsch, T.; Susin, S.A.; Marzo, I.; Boscá, L.; Kroemer, G. Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Lett., 1997, 410(2-3), 373-377.
[http://dx.doi.org/10.1016/S0014-5793(97)00623-6] [PMID: 9237665]
[179]
Yabuki, M.; Tsutsui, K.; Horton, A.A.; Yoshioka, T.; Utsumi, K. Caspase activation and cytochrome c release during HL-60 cell apoptosis induced by a nitric oxide donor. Free Radic. Res., 2000, 32(6), 507-514.
[http://dx.doi.org/10.1080/10715760000300511] [PMID: 10798716]
[180]
Brown, G.C.; Bal-Price, A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol. Neurobiol., 2003, 27(3), 325-355.
[http://dx.doi.org/10.1385/MN:27:3:325] [PMID: 12845153]
[181]
Dawson, T.M.; Dawson, V.L. Mitochondrial mechanisms of neuronal cell death: Potential therapeutics. Annu. Rev. Pharmacol. Toxicol., 2017, 57, 437-454.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-105001] [PMID: 28061689]
[182]
Kuninaka, S.; Ichinose, Y.; Koja, K.; Toh, Y. Suppression of manganese superoxide dismutase augments sensitivity to radiation, hyperthermia and doxorubicin in colon cancer cell lines by inducing apoptosis. Br. J. Cancer, 2000, 83(7), 928-934.
[http://dx.doi.org/10.1054/bjoc.2000.1367] [PMID: 10970696]
[183]
Cook, T.; Wang, Z.; Alber, S.; Liu, K.; Watkins, S.C.; Vodovotz, Y.; Billiar, T.R.; Blumberg, D. Nitric oxide and ionizing radiation synergistically promote apoptosis and growth inhibition of cancer by activating p53. Cancer Res., 2004, 64(21), 8015-8021.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2212] [PMID: 15520210]
[184]
Poon, I.K.; Lucas, C.D.; Rossi, A.G.; Ravichandran, K.S. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol., 2014, 14(3), 166-180.
[http://dx.doi.org/10.1038/nri3607] [PMID: 24481336]
[185]
Elliott, M.R.; Ravichandran, K.S. Clearance of apoptotic cells: implications in health and disease. J. Cell Biol., 2010, 189(7), 1059-1070.
[http://dx.doi.org/10.1083/jcb.201004096] [PMID: 20584912]
[186]
Bratton, D.L.; Henson, P.M. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol., 2011, 32(8), 350-357.
[http://dx.doi.org/10.1016/j.it.2011.04.009] [PMID: 21782511]
[187]
Lim, J.J.; Grinstein, S.; Roth, Z. Diversity and versatility of phagocytosis: Roles in innate immunity, tissue remodeling, and homeostasis. Front. Cell. Infect. Microbiol., 2017, 7, 191.
[http://dx.doi.org/10.3389/fcimb.2017.00191] [PMID: 28589095]
[188]
Witko-Sarsat, V.; Lesavre, P.; Lopez, S.; Bessou, G.; Hieblot, C.; Prum, B.; Noël, L.H.; Guillevin, L.; Ravaud, P.; Sermet-Gaudelus, I.; Timsit, J.; Grünfeld, J.P.; Halbwachs-Mecarelli, L. A large subset of neutrophils expressing membrane proteinase 3 is a risk factor for vasculitis and rheumatoid arthritis. J. Am. Soc. Nephrol., 1999, 10(6), 1224-1233.
[PMID: 10361860]
[189]
Gabillet, J.; Millet, A.; Pederzoli-Ribeil, M.; Tacnet-Delorme, P.; Guillevin, L.; Mouthon, L.; Frachet, P.; Witko-Sarsat, V. Proteinase 3, the autoantigen in granulomatosis with polyangiitis, associates with calreticulin on apoptotic neutrophils, impairs macrophage phagocytosis, and promotes inflammation. J. Immunol., 2012, 189(5), 2574-2583.
[http://dx.doi.org/10.4049/jimmunol.1200600] [PMID: 22844112]
[190]
Millet, A.; Martin, K.R.; Bonnefoy, F.; Saas, P.; Mocek, J.; Alkan, M.; Terrier, B.; Kerstein, A.; Tamassia, N.; Satyanarayanan, S.K.; Ariel, A.; Ribeil, J.A.; Guillevin, L.; Cassatella, M.A.; Mueller, A.; Thieblemont, N.; Lamprecht, P.; Mouthon, L.; Perruche, S.; Witko-Sarsat, V. Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis. J. Clin. Invest., 2015, 125(11), 4107-4121.
[http://dx.doi.org/10.1172/JCI78182] [PMID: 26436651]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy