Effect of Size and Shape on Refractive Index, Dielectric Constant and Band Gap of Semiconducting Nanowire

Author(s): Ghanshyam Patel*, Madan Singh, Tushar Pandya

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: On decreasing size down to nanoscale, the optical and electronics properties of semiconductors become tunable instead of being constant.

Methods: Based on classical and quantum approach, a simple integrated theoretical model is presented without any adjustable parameter to study the size and shape effect on the refractive index, dielectric constant and bang gap of the semiconducting nanowire. The model predicts that with the decrease in the size of the semiconducting nanowire, dielectric constant and refractive index reduces, whereas as band gap enhances.

Results: The theory reveals that the behavior exhibited by cylindrical and noncylindrical nanowires differs due to their different shape factors.

Conclusion: Agreement of our predicted results with the available experimental and simulated results and with the other theoretical models validates the present work.

Keywords: Refractive index, dielectric constant, band gap, size effect, shape factor, nanowire.

Laszewski, A.E.; Osipov, V.Y.; Vul, A.Y.; Ber, B.Y.; Smirnov, A.B.; Melekhin, V.G.; Adriaenssens, G.J.; Iakoubovskii, K. Optical properties of nanodimond layer. Phys. Solid State, 2001, 43, 145-150.
Lifshitz, Y. Dimond like carbon-Present Status. Diamond Related Materials, 1999, 8, 1659-1676.
Finkenrath, H. The moss rule and influence of doping on optical dielectric constant of semiconductor-I. Infrared Phys., 1988, 28, 327-332.
García-Suárez, V.M.; García-Fuente, A.; Carrascal, D.J.; Burzurí, E.; Koole, M.; Van der Zant, H.S.J.; El Abbassi, M.; Calame, M.; Ferrer, J. Spin signatures in the electrical response of graphene nanogaps. Nanoscale, 2018, 10, 18169-18177.
Wang, Z.; Li, Q.; Chen, Y.; Cui, B.; Li, Y.; Besenbacher, F.; Dong, M. The ambipolar transport behavior of WSe2 transistors and its analogue circuits. NPG Asia Mater., 2018, 10, 703-712.
Wang, Z.; Li, Q.; Xu, H.; Petersen, C.; Yang, Q.; Cheng, D.; Cao, D.; Besenbacher, F.; Lauritsen, J.V.; Helveg, S.; Dong, M. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy, 2018, 49, 634-643.
Ravindra, N.M.; Auluck, S.; Shrivastav, V.K. On the Penn gap in semiconductors. Phys. Status Solidi (b)., 1979, 93, Kl55.
Kumar, A.; Ravindra, N.M.; Rath, R. Opto electronic properties of alkali halides. J. Phys. Chem. Solids, 1979, 40, 1141-1142.
Gupta, V.P.; Ravindra, N.M. Comments on moss formula. Phys. Status Solidi (b)., 1980, 100, 715.
Kumar, V.; Singh, J.K. Model for calculating the refractive index of different materials. Indian J. Pure Appl. Phy., 2010, 48, 571-574.
Lu, H.; Meng, X. Correlation between bandgap, dielectric constant, young modulus and melting temperature of GaN nanocrystals and their size and shape dependence. Sci. Rep., 2015, 5, 16939.
Batsanov, S.S. On the size-effect in the dielectric permittivity of solids. J. Phys. Chem. Solids, 2016, 91, 90-92.
Singh, M.; Goyal, M.; Devlal, K. Size and shape effects on the band gap of semiconductor compound Nanomaterials. Jtusci, 2018, 12, 470-475.
Arora, N.; Joshi, D.P. Band gap dependence of semiconducting nano-wires on cross-sectional shape and size. Indian J. Phys., 2017, 91, 1493-1501.
Sun, Q.; Chang, T.B.K.; Li, S.; Sun, X.W.; Lau, S.P.; Chen, T.P. Band gap expansion of nanometric semiconductor. Mater. Phys. Mech., 2001, 4, 129-133.
Nanda, K.K. simple classical approach for the melting temperature of inert-gas nanoparticles. Chem. Phys. Lett., 2006, 419, 195-200.
Jiang, Q.; Li, J.C.; Chi, B.Q. Size-dependent cohesive energy of nanocrystals. Chem. Phys. Lett., 2002, 366, 551-554.
Qi, W.H.; Wang, M.P.; Xu, G.Y. The particle size dependence of cohesive energy of metallic nanoparticles. Chem. Phys. Lett., 2003, 372, 632-634.
Qi, W.H. Size effect on melting temperature of nanosolids. Physica B, 2005, 368, 46-50.
Kittle, C. Quantum theory of solids, 2nd revised edition; Wiley India Pvt. Ltd., 2015.
Ravindra, N.M.; Ganapathy, P.; Choi, J. Energy gap–refractive index relations in semiconductors – An overview. Infrared Phys. Technol., 2007, 50, 21-29.
Qi, W.H.; Wang, M.P. Size and shape dependent melting temperature of metallic nanoparticles. Mater. Chem. Phys., 2004, 88, 280-284.
Qi, W.H.; Huang, B.Y.; Wang, M.P.; Yin, Z.M.; Li, J. Shape factor for non-cylindrical nanowires. Phys. B, 2008, 403, 2386-2389.
Li, H.L.; Cheng, M.S.; Xi, P.C.; Wu, M.L.; Hong, J.G. Size dependent phonon frequency of semiconductor nanocrystals. J. Phys. Condens. Matter, 2004, 16, 267-272.
Akiyama, T.; Freeman, A.J.; Nakamura, K.; Ito, T. Electronic structures and optical properties of GaN and ZnO nanowires first principles. J. Phys. Confer. Ser., 2008, 100 052056
Carter, D.J.; Gale, J.D.; Delley, B.; Stampfl, C. Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles. Phys. Rev. B., 2008, 77 115349
Xiang, H.J.; Wei, S.H.; Juarez, L.F.; Silva, D.; Jingbo, L. Strain relaxation and band-gap tenability in ternary InGaN nanowires. Phys. Rev. B., 2008, 78, 193301-193304.
Carter, D.J.; Puckeridge, M.; Delley, B.; Stampfl, C. Quantum confinement effects in gallium nitride nanostructures: ab initio investigations. Nanotechnology, 2009, 20 425401
Molina-Sánchez, A.; García-Cristóbal, A. Anisotropic optical response of GaN and AlN nanowires. J. Phys. Condens. Matter, 2012, 24 295301
Zhang, J. Small-scale effect on the piezoelectric potential of gallium nitride nanowires. Appl. Phys. Lett., 2014, 104 253110
Li, J.; Wang, L.W. Band-structure-corrected local density approximation study of semiconductor quantum dots and wires. Phys. Rev. B., 2005, 72, 125325-1253215.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [279 - 285]
Pages: 7
DOI: 10.2174/2210681209666181212154219
Price: $25

Article Metrics

PDF: 10