Quantum Dots as Promising Theranostic Tools Against Amyloidosis: A Review

Author(s): M.P. Taraka Prabhu, Nandini Sarkar*

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 8 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Amyloids are highly ordered beta sheet rich stable protein aggregates, which have been found to play a significant role in the onset of several degenerative diseases such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, Type II diabetes mellitus and so on. Aggregation of proteins leading to amyloid fibril formation via intermediate(s), is thought to be a nucleated condensation polymerization process associated with many pathological conditions. There has been extensive research to identify inhibitors of these disease oriented aggregation processes. In recent times, quantum dots, with their unique physico-chemical properties have grabbed the attention of scientific community due to its applications in medical sciences. Quantum dots are nano-particles usually made of semiconductor materials which emit fluorescence upon radiation. The wavelength of fluorescence emission varies with changes in size of quantum dots. Several studies have reported significant inhibitory effects of these quantum dots towards amyloidogenesis, thereby presenting themselves as promising candidates against amyloidosis. Further, studies have also revealed amyloid detection capacity of quantum dots with sensitivity and specificity better than conventional probes. In the current review, we will discuss the various effects of quantum dots on protein aggregation pathways, their mechanism of actions and their potentials as effective therapeutics against amyloidosis.

Keywords: Protein quality control, amyloid, degenerative disorders, small molecule inhibitors, quantum dots, aggregates.

Silow, M.; Oliveberg, M. Transient aggregates in protein folding are easily mistaken for folding intermediates. Proc. Natl. Acad. Sci. USA, 1997, 94(12), 6084-6086.
[http://dx.doi.org/10.1073/pnas.94.12.6084] [PMID: 9177173]
Silow, M.; Tan, Y.J.; Fersht, A.R.; Oliveberg, M. Formation of short-lived protein aggregates directly from the coil in two-state folding. Biochemistry, 1999, 38(40), 13006-13012.
[http://dx.doi.org/10.1021/bi9909997] [PMID: 10529170]
Ganesh, C.; Zaidi, F.N.; Udgaonkar, J.B.; Varadarajan, R. Reversible formation of on-pathway macroscopic aggregates during the folding of maltose binding protein. Protein Sci., 2001, 10(8), 1635-1644.
[http://dx.doi.org/10.1110/ps.8101] [PMID: 11468360]
Hamid Wani, A.; Udgaonkar, J.B. HX-ESI-MS and optical studies of the unfolding of thioredoxin indicate stabilization of a partially unfolded, aggregation-competent intermediate at low pH. Biochemistry, 2006, 45(37), 11226-11238.
[http://dx.doi.org/10.1021/bi060647h] [PMID: 16964984]
Sipe, J.D. The β-pleated sheet conformation and protein folding: a brief history. In: Amyloid Proteins: The Beta sheet conformation and disease. Wiley-VCH verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; pp. 49-61.
Finkelstein, A.V.; Ptitsyn, O.B. Protein Physics, A course of lectures, 1st ed; Academic Press: Cambridge, Massachusetts, 2002.
Selkoe, D.J. Folding proteins in fatal ways. Nature, 2003, 426(6968), 900-904.
[http://dx.doi.org/10.1038/nature02264] [PMID: 14685251]
Kheterpal, I.; Williams, A.; Murphy, C.; Bledsoe, B.; Wetzel, R. Structural features of the Abeta amyloid fibril elucidated by limited proteolysis. Biochemistry, 2001, 40(39), 11757-11767.
[http://dx.doi.org/10.1021/bi010805z] [PMID: 11570876]
Frare, E.; Mossuto, M.F.; Polverino de Laureto, P.; Dumoulin, M.; Dobson, C.M.; Fontana, A. Identification of the core structure of lysozyme amyloid fibrils by proteolysis. J. Mol. Biol., 2006, 361(3), 551-561.
[http://dx.doi.org/10.1016/j.jmb.2006.06.055] [PMID: 16859705]
Uriarte-Pueyo, I.; Calvo, M.I. Flavonoids as acetylcholinesterase inhibitors. Curr. Med. Chem., 2011, 18(34), 5289-5302.
[http://dx.doi.org/10.2174/092986711798184325] [PMID: 22087826]
Lou, H.; Fan, P.; Perez, R.G.; Lou, H. Neuroprotective effects of linarin through activation of the PI3K/Akt pathway in amyloid-β-induced neuronal cell death. Bioorg. Med. Chem., 2011, 19(13), 4021-4027.
[http://dx.doi.org/10.1016/j.bmc.2011.05.021] [PMID: 21652214]
Kim, H.; Park, B.S.; Lee, K.G.; Choi, C.Y.; Jang, S.S.; Kim, Y.H.; Lee, S.E. Effects of naturally occurring compounds on fibril formation and oxidative stress of β-amyloid. J. Agric. Food Chem., 2005, 53(22), 8537-8541.
[http://dx.doi.org/10.1021/jf051985c] [PMID: 16248550]
Sugihara, N.; Arakawa, T.; Ohnishi, M.; Furuno, K. Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radic. Biol. Med., 1999, 27(11-12), 1313-1323.
[http://dx.doi.org/10.1016/S0891-5849(99)00167-7] [PMID: 10641726]
Prasad, A.; Raju, G.; Sivalingam, V.; Girdhar, A.; Verma, M.; Vats, A.; Taneja, V.; Prabusankar, G.; Patel, B.K. An acridine derivative, [4,5-bis(N-carboxy methyl imidazolium)methylacridine] dibromide, shows anti-TDP-43 aggregation effect in ALS disease models. Sci. Rep., 2016, 6, 39490.
[http://dx.doi.org/10.1038/srep39490] [PMID: 28000730]
Raju, G.; Vishwanath, S.; Prasad, A.; Patel, B.K.; Prabhusankar, G. Imidazolium tagged acridines: synthesis, DNA binding and anti-microbial activities. J. Mol. Struct., 2016, 1107, 291-299.
Doig, A.J.; Derreumaux, P. Inhibition of protein aggregation and amyloid formation by small molecules. Curr. Opin. Struct. Biol., 2015, 30, 50-56.
[http://dx.doi.org/10.1016/j.sbi.2014.12.004] [PMID: 25559306]
Yatin, S.M.; Varadarajan, S.; Butterfield, D.A. Vitamin E prevents Alzheimer’s Amyloid β-peptide (1-42) - induced neuronal protein oxidation and reactive oxygen species production. J. Alzheimers Dis., 2000, 2(2), 123-131.
[http://dx.doi.org/10.3233/JAD-2000-2212] [PMID: 12214102]
Ono, K.; Yamada, M. Vitamin A and Alzheimer’s disease. Geriatr. Gerontol. Int., 2012, 12(2), 180-188.
[http://dx.doi.org/10.1111/j.1447-0594.2011.00786.x] [PMID: 22221326]
Alam, P.; Chaturvedi, S.K.; Siddiqi, M.K.; Rajpoot, R.K.; Ajmal, M.R.; Zaman, M.; Khan, R.H. Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases. Sci. Rep., 2016, 6, 26759.
[http://dx.doi.org/10.1038/srep26759] [PMID: 27230476]
Papandreou, M.A.; Kanakis, C.D.; Polissiou, M.G.; Efthimiopoulos, S.; Cordopatis, P.; Margarity, M.; Lamari, F.N. Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J. Agric. Food Chem., 2006, 54(23), 8762-8768.
[http://dx.doi.org/10.1021/jf061932a] [PMID: 17090119]
Palmal, S.; Maity, A.R.; Singh, B.K.; Basu, S.; Jana, N.R.; Jana, N.R. Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles. Chemistry, 2014, 20(20), 6184-6191.
[http://dx.doi.org/10.1002/chem.201400079] [PMID: 24691975]
Dubey, K.; Anand, B.G.; Shekhawat, D.S.; Kar, K. Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis. Sci. Rep., 2017, 7, 40744.
[http://dx.doi.org/10.1038/srep40744] [PMID: 28145454]
Serio, T.R.; Cashikar, A.G.; Kowal, A.S.; Sawicki, G.J.; Moslehi, J.J.; Serpell, L.; Arnsdorf, M.F.; Lindquist, S.L. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science, 2000, 289(5483), 1317-1321.
[http://dx.doi.org/10.1126/science.289.5483.1317] [PMID: 10958771]
Cerdà-Costa, N.; De la Arada, I.; Avilés, F.X.; Arrondo, J.L.; Villegas, S. Influence of aggregation propensity and stability on amyloid fibril formation as studied by Fourier transform infrared spectroscopy and two-dimensional COS analysis. Biochemistry, 2009, 48(44), 10582-10590.
[http://dx.doi.org/10.1021/bi900960s] [PMID: 19817500]
Almstedt, K.; Nyström, S.; Nilsson, K.P.; Hammarström, P. Amyloid fibrils of human prion protein are spun and woven from morphologically disordered aggregates. Prion, 2009, 3(4), 224-235.
[http://dx.doi.org/10.4161/pri.3.4.10112] [PMID: 19923901]
Thakur, A.K.; Jayaraman, M.; Mishra, R.; Thakur, M.; Chellgren, V.M.; Byeon, I.J.; Anjum, D.H.; Kodali, R.; Creamer, T.P.; Conway, J.F.; Gronenborn, A.M.; Wetzel, R. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat. Struct. Mol. Biol., 2009, 16(4), 380-389.
[http://dx.doi.org/10.1038/nsmb.1570] [PMID: 19270701]
Wei, L.; Jiang, P.; Xu, W.; Li, H.; Zhang, H.; Yan, L.; Chan-Park, M.B.; Liu, X.W.; Tang, K.; Mu, Y.; Pervushin, K. The molecular basis of distinct aggregation pathways of islet amyloid polypeptide. J. Biol. Chem., 2011, 286(8), 6291-6300.
[http://dx.doi.org/10.1074/jbc.M110.166678] [PMID: 21148563]
Zou, Y.; Hao, W.; Li, H.; Gao, Y.; Sun, Y.; Ma, G. New insight into amyloid fibril formation of hen egg white lysozyme using a two-step temperature-dependent FTIR approach. J. Phys. Chem. B, 2014, 118(33), 9834-9843.
[http://dx.doi.org/10.1021/jp504201k] [PMID: 25080318]
Banci, L.; Bertini, I.; D’Amelio, N.; Gaggelli, E.; Libralesso, E.; Matecko, I.; Turano, P.; Valentine, J.S. Fully metallated S134N Cu,Zn-superoxide dismutase displays abnormal mobility and intermolecular contacts in solution. J. Biol. Chem., 2005, 280(43), 35815-35821.
[http://dx.doi.org/10.1074/jbc.M506637200] [PMID: 16105836]
Eakin, C.M.; Berman, A.J.; Miranker, A.D. A native to amyloidogenic transition regulated by a backbone trigger. Nat. Struct. Mol. Biol., 2006, 13(3), 202-208.
[http://dx.doi.org/10.1038/nsmb1068] [PMID: 16491088]
Olofsson, A.; Ippel, J.H.; Wijmenga, S.S.; Lundgren, E.; Ohman, A. Probing solvent accessibility of transthyretin amyloid by solution NMR spectroscopy. J. Biol. Chem., 2004, 279(7), 5699-5707.
[http://dx.doi.org/10.1074/jbc.M310605200] [PMID: 14604984]
Canet, D.; Last, A.M.; Tito, P.; Sunde, M.; Spencer, A.; Archer, D.B.; Redfield, C.; Robinson, C.V.; Dobson, C.M. Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme. Nat. Struct. Biol., 2002, 9(4), 308-315.
[http://dx.doi.org/10.1038/nsb768] [PMID: 11887182]
Neudecker, P.; Robustelli, P.; Cavalli, A.; Walsh, P.; Lundström, P.; Zarrine-Afsar, A.; Sharpe, S.; Vendruscolo, M.; Kay, L.E. Structure of an intermediate state in protein folding and aggregation. Science, 2012, 336(6079), 362-366.
[http://dx.doi.org/10.1126/science.1214203] [PMID: 22517863]
Ferrolino, M.C.; Zhuravleva, A.; Budyak, I.L.; Krishnan, B.; Gierasch, L.M. Delicate balance between functionally required flexibility and aggregation risk in a β-rich protein. Biochemistry, 2013, 52(49), 8843-8854.
[http://dx.doi.org/10.1021/bi4013462] [PMID: 24236614]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4(6), 435-446.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
Resch, U. Genger; Grabolle, M.; Caraliere, S.J.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods, 2008, 5, 763-775.
Bruchez, M., Jr; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385), 2013-2016.
[http://dx.doi.org/10.1126/science.281.5385.2013] [PMID: 9748157]
Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385), 2016-2018.
[http://dx.doi.org/10.1126/science.281.5385.2016] [PMID: 9748158]
Foda, M.F.; Huang, L.; Shao, F.; Han, H.Y. Biocompatible and highly luminescent near-infrared CuInS2/ZnS quantum dots embedded silica beads for cancer cell imaging. ACS Appl. Mater. Interfaces, 2014, 6(3), 2011-2017.
[http://dx.doi.org/10.1021/am4050772] [PMID: 24433116]
Wang, Y.; Chen, L. Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine (Lond.), 2011, 7(4), 385-402.
[http://dx.doi.org/10.1016/j.nano.2010.12.006] [PMID: 21215327]
Gupta, S.; Babu, P.; Surolia, A. Biphenyl ethers conjugated CdSe/ZnS core/shell quantum dots and interpretation of the mechanism of amyloid fibril disruption. Biomaterials, 2010, 31(26), 6809-6822.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.031] [PMID: 20573396]
Zhang, M.; Mao, X.; Yu, Y.; Wang, C.X.; Yang, Y.L.; Wang, C. Nanomaterials for reducing amyloid cytotoxicity. Adv. Mater., 2013, 25(28), 3780-3801.
[http://dx.doi.org/10.1002/adma.201301210] [PMID: 23722464]
Vannoy, C.H.; Leblanc, R.M. Effects of DHLA-capped CdSe/ZnS quantum dots on the fibrillation of human serum albumin. J. Phys. Chem. B, 2010, 114(33), 10881-10888.
[http://dx.doi.org/10.1021/jp1045904] [PMID: 20681557]
Thakur, G.; Micic, M.; Yang, Y.; Li, W.; Movia, D.; Giordani, S.; Zhang, H.; Leblanc, R.M. Conjugated quantum dots inhibit the amyloid β (1-42) fibrillation process. Int. J. Alzheimers Dis., 2011, 2011502386
[http://dx.doi.org/10.4061/2011/502386] [PMID: 21423556]
Xiao, L.; Zhao, D.; Chan, W.H.; Choi, M.M.; Li, H.W. Inhibition of beta 1-40 amyloid fibrillation with N-acetyl-L-cysteine capped quantum dots. Biomaterials, 2010, 31(1), 91-98.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.014] [PMID: 19783039]
Yoo, S.I.; Yang, M.; Brender, J.R.; Subramanian, V.; Sun, K.; Joo, N.E.; Jeong, S.H.; Ramamoorthy, A.; Kotov, N.A. Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins. Angew. Chem. Int. Ed. Engl., 2011, 50(22), 5110-5115.
[http://dx.doi.org/10.1002/anie.201007824] [PMID: 21495130]
Riveros, A.L.; Astudillo, J.; Vasquez, C.C.; Danilo, H.J.; Areil, R.G.; Guzman, F.; Osorio-Roman, I.O.; Kongan, M.J. Capping biological quantum dots with the peptide CLPFFD to increase stability and to reduce effects on cell viability. J. Nanopart. Res., 2016, 18, 230-240.
Haitao, L.; Zhenhui, K.; Yang, L.; Shuit-Tong, L. Carbon nanodots: synthesis, properties and applications. J. Mater. Chem., 2012, 22, 24230-24253.
Shanghao, L.; Lingyu, W.; Charles, C.C.; Valentina, M.S.; Patrica, L.B.; Miodrag, M.; Jhony, O.; Roger, M.L. Non-toxic carbondots potently inhibit human insulin fibrillation. Chem. Mater., 2015, 27, 1764-1771.
Kuruvilla, S.J.; Li, S.; Sansalone, L.; Fortes, B.; Zhang, I.; Patrica, L. Blackwelder, Pumilia, C.; Mićić, M.; Orbulescu, J.; Leblanc, R.M. Dihydrolipoic acid conjugated carbon dots accelerate human insulin fibrillation. J. Parkinsons Dis. Alzheimers Dis., 2015, 2, 7.
Wang, L.; Shoujun, Z.; Jia, X.; Bai, Y.; Fei, L. The effects of a series of carbon dots on fibrillation and cytotoxicity of human islet amyloid polypeptide. J. Mater. Chem. B Mater. Biol. Med., 2016, 4, 4913-4921.
Debora, R.D.; Larissa, D.C. Joao Paulo de, M.; Vargas, P.F. Luminescent carbon dots obatained from cellulose. Mater. Chem. Phys., 2018, 203, 148-155.
Fengyi, D.; Miaomiao, Z.; Xiaofeng, L.; Jianan, L.; Xinyi, J.; Zhang, L.; Ye, H.; Genbao, S. Jiejin; Qixang, S.; Ming, Z.; Aihua, G. Economical and green synthesis of baggase-derived fluorescent carbon dots for biomedical applications. Nanotechnology, 2014, 25315702
[http://dx.doi.org/10.1088/0957-4484/25/31/315702] [PMID: 25036467]
Ruili, L.; Jing, Z.; Mengping, G.; Zhilian, L.; Jinyang, C.; Dongqing, W.; Ping, L. A Facile microwave-hydrothermal approach towards highly photoluminescent carbondots from goose feathers. RSC Advances, 2015, 5, 4428-4433.
Yan, Z.; Yue, Z.; Xiaoman, L.; Hui, K.; Yongzhi, W.; Gaofeng, Q.; Peng, C. XingXing, S.; Xin, Y.; Qingguo, W.; Huihua, Q. Novel carbon quantumdots from egg yolk oil and their haemostatic effects. Sci. Rep., 2017, 7, 44-52.
[http://dx.doi.org/10.1038/s41598-017-04073-1] [PMID: 28667269]
Deng, J.; Lu, Q.; Mi, N.; Li, H.; Liu, M.; Xu, M.; Tan, L.; Xie, Q.; Zhang, Y.; Yao, S. Electrochemical synthesis of carbon nanodots directly from alcohols. Chemistry, 2014, 20(17), 4993-4999.
[http://dx.doi.org/10.1002/chem.201304869] [PMID: 24623706]
Chengzhou, Z.; Junfeng, Z.; Shajun, D. Bifunctional fluorescent carbonnanodots: green synthesis via soymilk and application as metal-free electrocatalysis for oxygen reduction. Chem. Commun., 2012, 48, 9367-9369.
Natalia, R.P.; Clara, M.W.S.; Rayane, R.S.; de Paula, R.C.M.; Cunha, P.C.R.; Feitosa, J.P.A. Novel and fast microwave-assisted synthesis of carbon quantum dots from Raw Cashew Gum. J. Braz. Chem. Soc., 2015, 26, 1274-1282.
Lihong, S.; Xiaofeng, L. YanYan, L.; Xiangping, W.; Junfen, L.; Choi, M.F.; Chuan, D.; Shaomin, S. Naked oats-derived dual-emission Carbon nanodots for ratiometric sensing and cellular imaging. Sens. Actuators B Chem., 2015, 210, 533-541.
Liu, X.; Pang, J.; Xu, F.; Zhang, X. Simple approach to synthesis amino-functionalized carbon dots by carbonization of Chitosan. Sci. Rep., 2016, 6, 31100.
[http://dx.doi.org/10.1038/srep31100] [PMID: 27492748]
Phadke, C.; Mewada, A.; Dharmatti, R.; Thakur, M.; Pandey, S.; Sharon, M. Biogenic synthesis of fluorescent carbon dots at ambient temperature using Azaodirachta indica (neem gum). J. Fluoresc., 2015, 25(4), 1103-1107.
[http://dx.doi.org/10.1007/s10895-015-1598-x] [PMID: 26123675]
Ying, S.L.; Yanan, Z.; Yuanyuan, Z. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper (II) ion detection. Sens. Actuators B Chem., 2014, 196, 647-652.
Abhay, S.; Gopinath, P. Green synthesis of multifunctional carbondots from coriander leaves and their potential application as antioxidants, Sensors and bioimaging agents. Analyst (Lond.), 2015, 140, 4260-4269.
Zhao, S.; Lan, M.; Zhu, X.; Xue, H.; Ng, T.W.; Meng, X.; Lee, C.S.; Wang, P.; Zhang, W. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl. Mater. Interfaces, 2015, 7(31), 17054-17060.
[http://dx.doi.org/10.1021/acsami.5b03228] [PMID: 26193082]
Amit, K.; Angshuman, R.C.; Dipranjan, L.; Triveni, K.M.; Parimal, K.; Sumanta, K.S. Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb+2 ions and live imaging. Sens. Actuators B Chem., 2017, 242, 679-686.
Chun, S.; Muthu, M.; Gansukh, E.; Thalappil, P.; Gopal, J. The ethanopharmacological aspect of carbon nanodots in turmeric smoke. Sci. Rep., 2016, 6, 35586.
[http://dx.doi.org/10.1038/srep35586] [PMID: 27805007]
Parveen, M.; Vijhayalakshmi, R.; Divya, P.; Tamil, E.V.; Ravishankar, K. Synthesis of fluorescent carbondots from the leaves of Millettia pinnata for detection of allura red in food samples. IJRPP, 2016, 1, 90-93.
Wen, L.; Haipeng, D.; Honghong, C.; Haojiang, W.; Tingting, L.; Wenlong, W. Green synthesis of carbon dots from rose-heart radish and application for Fe+3 detection and cell imaging. Sensor. Actuat Biol Chem., 2017, 241, 190-198.
Mitchell, B.; Siobhan, J.B.; Thomas, N. Graphene quantum dots. Part. Syst. Charct., 2013, 31, 415-428.
Liu, Y.; Xu, L.P.; Dai, W.; Dong, H.; Wen, Y.; Zhang, X. Graphene quantum dots for the inhibition of β amyloid aggregation. Nanoscale, 2015, 7(45), 19060-19065.
[http://dx.doi.org/10.1039/C5NR06282A] [PMID: 26515666]
Kim, D.; Yoo, J.M.; Hwang, H.; Lee, J.; Lee, S.H.; Yun, S.P.; Park, M.J.; Lee, M.; Choi, S.; Kwon, S.H.; Lee, S.; Kwon, S.H.; Kim, S.; Park, Y.J.; Kinoshita, M.; Lee, Y.H.; Shin, S.; Paik, S.R.; Lee, S.J.; Lee, S.; Hong, B.H.; Ko, H.S. Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat. Nanotechnol., 2018, 13(9), 812-818.
[http://dx.doi.org/10.1038/s41565-018-0179-y] [PMID: 29988049]
Yousaf, M.; Huang, H.; Li, P.; Wang, C.; Yang, Y. Fluorine functionalized graphene quantum dots as inhibitor against hIAPP amyloid aggregation. ACS Chem. Neurosci., 2017, 8(6), 1368-1377.
[http://dx.doi.org/10.1021/acschemneuro.7b00015] [PMID: 28230965]
Zeng, H.J.; Miao, M.; Liu, Z.; Yang, R.; Qu, L.B. Effect of nitrogen-doped graphene quantum dots on the fibrillation of hen egg-white lysozyme. Int. J. Biol. Macromol., 2017, 95, 856-861.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.022] [PMID: 27746357]
Liu, Y.; Xu, L.P.; Wang, Q.; Yang, B.; Zhang, X. Synergistic inhibitory effect of GQDs–tramiprosate covalent binding on amyloid aggregation. ACS Chem. Neurosci., 2018, 9(4), 817-823.
[http://dx.doi.org/10.1021/acschemneuro.7b00439] [PMID: 29244487]
Quan, L.; Wu, J.; Lane, L.A.; Wang, J.; Lu, Q.; Gu, Z.; Wang, Y. Enhanced detection specificity and sensitivity of Alzheimer’s disease using amyloid-β-targeted quantum dots. Bioconjug. Chem., 2016, 27(3), 809-814.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00019] [PMID: 26918848]
Tokuraku, K.; Marquardt, M.; Ikezu, T. Real-time imaging and quantification of amyloid-β peptide aggregates by novel quantum-dot nanoprobes. PLoS One, 2009, 4(12)e8492
[http://dx.doi.org/10.1371/journal.pone.0008492] [PMID: 20041162]
Feng, L.; Long, H.Y.; Liu, R.K.; Sun, D.N.; Liu, C.; Long, L.L.; Li, Y.; Chen, S.; Xiao, B. A quantum dot probe conjugated with aβ antibody for molecular imaging of Alzheimer’s disease in a mouse model. Cell. Mol. Neurobiol., 2013, 33(6), 759-765.
[http://dx.doi.org/10.1007/s10571-013-9943-6] [PMID: 23695800]
Huang, H.; Li, P.; Zhang, M.; Yu, Y.; Huang, Y.; Gu, H.; Wang, C.; Yang, Y. Graphene quantum dots for detecting monomeric amyloid peptides. Nanoscale, 2017, 9(16), 5044-5048.
[http://dx.doi.org/10.1039/C6NR10017A] [PMID: 28397888]

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [555 - 563]
Pages: 9
DOI: 10.2174/0929866526666181212113855

Article Metrics

PDF: 38
HTML: 16
PRC: 1