DPP-IV Inhibitory Phenanthridines: Ligand, Structure-Based Design and Synthesis

Author(s): Reema A. Khalaf*, Dalal Masalha, Dima Sabbah

Journal Name: Current Computer-Aided Drug Design

Volume 16 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Lately, diabetes has become the main health concern for millions of people around the world. Dipeptidyl peptidase-IV (DPP-IV) inhibitors have emerged as a new class of oral antidiabetic agents. Formerly, acridines, N4-sulfonamido-succinamic, phthalamic, acrylic and benzoyl acetic acid derivatives, and sulfamoyl-phenyl acid esters were designed and developed as new DPP-IV inhibitors.

Objective: This study aims to develop a pharmacophore model of DPP-IV inhibitors and to evaluate phenanthridines as a novel scaffold for inhibiting DPP-IV enzyme. In addition, to assess their binding interactions with the enzyme through docking in the binding site of 4A5S (PDB).

Methods: Herein, Quantum–Polarized Ligand Docking (QPLD) and ligand-based pharmacophore modeling investigations were performed. Three novel 3,8-disubstituted-6-phenyl phenanthridine derivatives 3-5 have been designed, synthesized and characterized. In vitro biological testing against DPP-IV was carried out using fluorometric assay kit.

Results: QPLD study demonstrates that compounds 3-5 forms H-bond with Lys554, Trp629, and Tyr631, besides charge transfer interaction between their aromatic rings and the aromatic rings of Tyr547 and Tyr666. Moreover, they fit the three pharmacophoric point features of DPP-IV inhibitors and were proven to have in vitro DPP-IV inhibitory activity where compound 5 displayed a % inhibition of 45.4 at 100 μM concentration.

Conclusion: Phenanthridines may serve as a potential lead compound for developing new DPP-IV inhibitors as a promising antidiabetic agent. Computational results suggest future structural simplification.

Keywords: Dipeptidyl peptidase-IV (DPP-IV), inhibitors, ligand-based modeling, phenanthridines, QPLD docking, Type II diabetes.

Tuomi, T.; Santoro, N.; Caprio, S.; Cai, M.; Weng, J.; Groop, L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet, 2014, 383, 1084-1094.
Sarafino, E.P.; Smith, T.W. Health psychology: Biopsychosocial interactions, 8th ed; John Wiley & Sons: New York, 2014.
Heyward, V.H.; Gibson, A. Advanced fitness assessment and exercise prescription, 7th ed; Human kinetics, 2014.
Sami, W.; Ansari, T.; Butt, N.S.; Hamid, M.R.A. Effect of diet on type 2 diabetes mellitus: A review. Int. J. Health Sci. (Qassim), 2017, 11(2), 65-71.
[PMID: 28539866]
Triplitt, C.L. Examining the mechanisms of glucose regulation. Am. J. Manag. Care, 2012, 18(1)(Suppl.), S4-S10.
[PMID: 22559855]
Campbell, R.K. Clarifying the role of incretin-based therapies in the treatment of type 2 diabetes mellitus. Clin. Ther., 2011, 33(5), 511-527.
[http://dx.doi.org/10.1016/j.clinthera.2011.04.015] [PMID: 21665040]
Aertgeerts, K.; Ye, S.; Tennant, M.G.; Kraus, M.L.; Rogers, J.; Sang, B.C.; Skene, R.J.; Webb, D.R.; Prasad, G.S. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci., 2004, 13(2), 412-421.
[http://dx.doi.org/10.1110/ps.03460604] [PMID: 14718659]
Chinen, A.B.; Guan, C.M.; Ferrer, J.R.; Barnaby, S.N.; Merkel, T.J.; Mirkin, C.A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev., 2015, 115(19), 10530-10574.
[http://dx.doi.org/10.1021/acs.chemrev.5b00321] [PMID: 26313138]
Kirby, M.; Yu, D.M.; O’Connor, S.; Gorrell, M.D. Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition. Clin. Sci. (Lond.), 2009, 118(1), 31-41.
[http://dx.doi.org/10.1042/CS20090047] [PMID: 19780719]
Kawalec, P.; Mikrut, A.; Łopuch, S. The safety of dipeptidyl peptidase-4 (DPP-4) inhibitors or sodium-glucose cotransporter 2 (SGLT-2) inhibitors added to metformin background therapy in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Metab. Res. Rev., 2014, 30(4), 269-283.
[http://dx.doi.org/10.1002/dmrr.2494] [PMID: 24829965]
Plosker, G.L. Sitagliptin: a review of its use in patients with type 2 diabetes mellitus. Drugs, 2014, 74(2), 223-242.
[http://dx.doi.org/10.1007/s40265-013-0169-1] [PMID: 24407560]
Keating, G.M. Vildagliptin: a review of its use in type 2 diabetes mellitus. Drugs, 2014, 74(5), 587-610.
[http://dx.doi.org/10.1007/s40265-014-0199-3] [PMID: 24638989]
Ali, S.; Fonseca, V. Saxagliptin overview: special focus on safety and adverse effects. Expert Opin. Drug Saf., 2013, 12(1), 103-109.
[http://dx.doi.org/10.1517/14740338.2013.741584] [PMID: 23137182]
Deacon, C.F.; Lebovitz, H.E. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. Diabetes Obes. Metab., 2016, 18(4), 333-347.
[http://dx.doi.org/10.1111/dom.12610] [PMID: 26597596]
Vliegen, G.; De Meester, I. DPPIV/CD26 as a Target in Antiinflammatory Therapy. In: Immunity and Inflammation in Health and Disease;; , 2017; pp. 133-147.
Roppongi, S.; Suzuki, Y.; Tateoka, C.; Fujimoto, M.; Morisawa, S.; Iizuka, I.; Nakamura, A.; Honma, N.; Shida, Y.; Ogasawara, W.; Tanaka, N.; Sakamoto, Y.; Nonaka, T. Crystal structures of a bacterial dipeptidyl peptidase IV reveal a novel substrate recognition mechanism distinct from that of mammalian orthologues. Sci. Rep., 2018, 8(1), 2714-2731.
[http://dx.doi.org/10.1038/s41598-018-21056-y] [PMID: 29426867]
Pantaleão, S.Q.; Philot, E.A.; de Resende-Lara, P.T.; Lima, A.N.; Perahia, D.; Miteva, M.A.; Scott, A.L.; Honorio, K.M. Structural Dynamics of DPP-4 and Its Influence on the Projection of Bioactive Ligands. Molecules, 2018, 23(2), 490-499.
[http://dx.doi.org/10.3390/molecules23020490] [PMID: 29473857]
Yuriev, E.; Agostino, M.; Ramsland, P.A. Challenges and advances in computational docking: 2009 in review. J. Mol. Recognit., 2011, 24(2), 149-164.
[http://dx.doi.org/10.1002/jmr.1077] [PMID: 21360606]
Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein-ligand docking: current status and future challenges. Proteins, 2006, 65(1), 15-26.
[http://dx.doi.org/10.1002/prot.21082] [PMID: 16862531]
Khalaf, R.A. Exploring Natural Products as a Source for Antidiabetic Lead Compounds and Possible Lead Optimization. Curr. Top. Med. Chem., 2016, 16(23), 2549-2561.
[http://dx.doi.org/10.2174/1568026616666160414123602] [PMID: 27086794]
Abu Khalaf, R.; Jarekji, Z.; Al-Qirim, T.; Sabbah, D.; Shattat, G. Pharmacophore modeling and molecular docking studies of acridines as potential DPP-IV inhibitors. Can. J. Chem., 2015, 93(7), 721-729.
Khalaf, R.A.; Sheikha, G.A.; Al-Sha’er, M.; Taha, M. Design, Synthesis and Biological Evaluation of N4-Sulfonamido-Succinamic, Phthalamic, Acrylic and Benzoyl Acetic Acid Derivatives as Potential DPP IV Inhibitors. Open Med. Chem. J., 2013, 7, 39-48.
[http://dx.doi.org/10.2174/1874104501307010039] [PMID: 24358058]
Khalaf, R.A.; Sabbah, D.; Al-Shalabi, E.; Al-Sheikh, I.; Albadawi, G.; Abu Sheikha, G. Synthesis, Structural Characterization and Docking Studies of Sulfamoyl- Phenyl Acid Esters as Dipeptidyl Peptidase-IV Inhibitors. Curr Comput Aided Drug Des, 2018, 14(2), 142-151.
[http://dx.doi.org/10.2174/1573409914666180308164013] [PMID: 29521244]
Abu Khalaf, R.; Abu Sheikha, G.; Bustanji, Y.; Taha, M.O. Discovery of new cholesteryl ester transfer protein inhibitors via ligand-based pharmacophore modeling and QSAR analysis followed by synthetic exploration. Eur. J. Med. Chem., 2010, 45(4), 1598-1617.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.070] [PMID: 20116902]
Abu Sheikha, G.; Abu Khalaf, R.; Melhem, A.; Albadawi, G. Design, synthesis, and biological evaluation of benzylamino-methanone based cholesteryl ester transfer protein inhibitors. Molecules, 2010, 15(8), 5721-5733.
[http://dx.doi.org/10.3390/molecules15085721] [PMID: 20724961]
Abu Khalaf, R.; Abu Sheikha, G.; Al-Sha’er, M.; Albadawi, G.; Taha, M.O. Design, synthesis and biological evaluation of sulfonic acid ester and benzenesulfonamide derivatives as potential CETP inhibitors. Med. Chem. Res., 2012, 21(11), 3669-3680.
Khalaf, R.A.; Al-Rawashdeh, S.; Sabbah, D.; Abu Sheikha, G. Molecular Docking and Pharmacophore Modeling Studies of Fluorinated Benzamides as Potential CETP Inhibitors. Med. Chem., 2017, 13(3), 239-253.
[http://dx.doi.org/10.2174/1573406412666161104121042] [PMID: 27823564]
Abu Khalaf, R.; Sabbah, D.; Al-Shalabi, E.; Bishtawi, S.; Albadawi, G.; Abu Sheikha, G. Synthesis, biological evaluation and molecular modeling study of substituted benzyl benzamides as CETP inhibitors. Arch. Pharm. (Weinheim), 2017, 350(12), 1-14.
[http://dx.doi.org/10.1002/ardp.201700204] [PMID: 29112287]
Abu Khalaf, R.; Abd El-Aziz, H.; Sabbah, D.; Albadawi, G.; Abu Sheikha, G. CETP Inhibitory Activity of Chlorobenzyl Benzamides: QPLD Docking, Pharmacophore Mapping, and Synthesis. Lett. Drug Des. Discov., 2017, 14(12), 1391-1400.
Abu Khalaf, R.; Abdula, A.M.; Mubarak, M.S.; Taha, M.O. Discovery of new β-D-glucosidase inhibitors via pharmacophore modeling and QSAR analysis followed by in silico screening. J. Mol. Model., 2011, 17(3), 443-464.
[http://dx.doi.org/10.1007/s00894-010-0737-1] [PMID: 20490878]
Abdula, A.M.; Khalaf, R.A.; Mubarak, M.S.; Taha, M.O. Discovery of new β-D-galactosidase inhibitors via pharmacophore modeling and QSAR analysis followed by in silico screening. J. Comput. Chem., 2011, 32(3), 463-482.
[http://dx.doi.org/10.1002/jcc.21635] [PMID: 20730780]
Abu Khalaf, R.; Abdula, A.M.; Mubarak, M.S.; Taha, M.O. Tryptophan and thiosemicarbazide derivatives: design, synthesis, and biological evaluation as potential β-D-galactosidase and β-D-glucosidase inhibitors. Med. Chem. Res., 2015, 24(6), 2529-2550.
Taha, M.O.; Qandil, A.M.; Al-Haraznah, T.; Khalaf, R.A.; Zalloum, H.; Al-Bakri, A.G. Discovery of new antifungal leads via pharmacophore modeling and QSAR analysis of fungal N-myristoyl transferase inhibitors followed by in silico screening. Chem. Biol. Drug Des., 2011, 78(3), 391-407.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01160.x] [PMID: 21679375]
Sabbah, D.A.; Saada, M.; Khalaf, R.A.; Bardaweel, S.; Sweidan, K.; Al-Qirim, T.; Al-Zughier, A.; Halim, H.A.; Sheikha, G.A. Molecular modeling based approach, synthesis, and cytotoxic activity of novel benzoin derivatives targeting phosphoinostide 3-kinase (PI3Kα). Bioorg. Med. Chem. Lett., 2015, 25(16), 3120-3124.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.011] [PMID: 26099539]
Sabbah, D.A.; Al-Tarawneh, F.; Talib, W.H.; Sweidan, K.; Bardaweel, S.K.; Al-Shalabi, E.; Zhong, H.A.; Abu Sheikha, G.; Abu Khalaf, R.; Mubarak, M.S. Benzoin Schiff Bases: Design, Synthesis, and Biological Evaluation as Potential Antitumor Agents. Med. Chem., 2018, 14(7), 695-708.
[http://dx.doi.org/10.2174/1573406414666180412160142] [PMID: 29651943]
Sabbah, D.; Hishmah, B.; Sweidan, K.; Bardaweel, S.; AlDamen, M.; Zhong, H.; Abu Khalaf, R.; Ibrahim, A.; Al-Qirim, T.; Abu Sheikha, G.; Mubarak, M. Structure-Based Design: Synthesis, X-Ray Crystallography, and Biological Evaluation of N-Substituted-4-Hydroxy-2-Quinolone-3-Carboxamides as Potential PI3Kα Inhibitors. Anticancer. Agents Med. Chem., 2018, 18(2), 263-276.
[http://dx.doi.org/10.2174/1871520617666170911171152] [PMID: 28901259]
Su, T.L.; Chou, T.C.; Lee, T.C. Phenyl N-mustard linked to DNAaffinic molecules or water-soluble aryl rings, method and their use as cancer therapeutic agents U.S. Patent. Application 13/539,221 2012.
Protein Preparation Wizard. Maestro. MacroModel, Phase, Induced Fit, Jaguar, and Glide; Schrödinger, LLC; Portland OR, in, 2012.
Sutton, J.M.; Clark, D.E.; Dunsdon, S.J.; Fenton, G.; Fillmore, A.; Harris, N.V.; Higgs, C.; Hurley, C.A.; Krintel, S.L.; MacKenzie, R.E.; Duttaroy, A.; Gangl, E.; Maniara, W.; Sedrani, R.; Namoto, K.; Ostermann, N.; Gerhartz, B.; Sirockin, F.; Trappe, J.; Hassiepen, U.; Baeschlin, D.K. Novel heterocyclic DPP-4 inhibitors for the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett., 2012, 22(3), 1464-1468.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.054] [PMID: 22177783]
The Molecular Operating Environment Chemical Computing Group. Inc Montreal,: Quebec, Canada. in; , 2012.
Cho, A.E.; Guallar, V.; Berne, B.J.; Friesner, R. Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J. Comput. Chem., 2005, 26(9), 915-931.
[http://dx.doi.org/10.1002/jcc.20222] [PMID: 15841474]
Selvaraj, G.; Kaliamurthi, S.; Cakmak, Z.E.; Cakmak, T. Computational screening of dipeptidyl peptidase IV inhibitors from micoroalgal metabolites by pharmacophore modeling and molecular docking. Phycological Res., 2016, 64(4), 291-299.
Liang, G.B.; Qian, X.; Biftu, T.; Singh, S.; Gao, Y.D.; Scapin, G.; Patel, S.; Leiting, B.; Patel, R.; Wu, J.; Zhang, X.; Thornberry, N.A.; Weber, A.E. Discovery of new binding elements in DPP-4 inhibition and their applications in novel DPP-4 inhibitor design. Bioorg. Med. Chem. Lett., 2008, 18(13), 3706-3710.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.061] [PMID: 18524582]
Ammirati, M.J.; Andrews, K.M.; Boyer, D.D.; Brodeur, A.M.; Danley, D.E.; Doran, S.D.; Hulin, B.; Liu, S.; McPherson, R.K.; Orena, S.J.; Parker, J.C.; Polivkova, J.; Qiu, X.; Soglia, C.B.; Treadway, J.L.; VanVolkenburg, M.A.; Wilder, D.C.; Piotrowski, D.W. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone: a potent, selective, orally active dipeptidyl peptidase IV inhibitor. Bioorg. Med. Chem. Lett., 2009, 19(7), 1991-1995.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.041] [PMID: 19275964]
Nordhoff, S.; Bulat, S.; Cerezo-Gálvez, S.; Hill, O.; Hoffmann-Enger, B.; López-Canet, M.; Rosenbaum, C.; Rummey, C.; Thiemann, M.; Matassa, V.G.; Edwards, P.J.; Feurer, A. The design of potent and selective inhibitors of DPP-4: optimization of ADME properties by amide replacements. Bioorg. Med. Chem. Lett., 2009, 19(22), 6340-6345.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.078] [PMID: 19833514]
Tsai, T.Y.; Hsu, T.; Chen, C.T.; Cheng, J.H.; Chiou, M.C.; Huang, C.H.; Tseng, Y.J.; Yeh, T.K.; Huang, C.Y.; Yeh, K.C.; Huang, Y.W.; Wu, S.H.; Wang, M.H.; Chen, X.; Chao, Y.S.; Jiaang, W.T. Rational design and synthesis of potent and long-lasting glutamic acid-based dipeptidyl peptidase IV inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(7), 1908-1912.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.061] [PMID: 19269819]
Brigance, R.P.; Meng, W.; Fura, A.; Harrity, T.; Wang, A.; Zahler, R.; Kirby, M.S.; Hamann, L.G. Synthesis and SAR of azolopyrimidines as potent and selective dipeptidyl peptidase-4 (DPP4) inhibitors for type 2 diabetes. Bioorg. Med. Chem. Lett., 2010, 20(15), 4395-4398.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.063] [PMID: 20598534]
Nishio, Y.; Kimura, H.; Tosaki, S.; Sugaru, E.; Sakai, M.; Horiguchi, M.; Masui, Y.; Ono, M.; Nakagawa, T.; Nakahira, H. Discovery of new chemotype dipeptidyl peptidase IV inhibitors having (R)-3-amino-3-methyl piperidine as a pharmacophore. Bioorg. Med. Chem. Lett., 2010, 20(24), 7246-7249.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.101] [PMID: 21074430]
Kim, H.J.; Kwak, W.Y.; Min, J.P.; Lee, J.Y.; Yoon, T.H.; Kim, H.D.; Shin, C.Y.; Kim, M.K.; Choi, S.H.; Kim, H.S.; Yang, E.K.; Cheong, Y.H.; Chae, Y.N.; Park, K.J.; Jang, J.M.; Choi, S.J.; Son, M.H.; Kim, S.H.; Yoo, M.; Lee, B.J. Discovery of DA-1229: a potent, long acting dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett., 2011, 21(12), 3809-3812.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.029] [PMID: 21570283]
Motoshima, K.; Sugita, K.; Hashimoto, Y.; Ishikawa, M. Non-competitive and selective dipeptidyl peptidase IV inhibitors with phenethylphenylphthalimide skeleton derived from thalidomide-related α-glucosidase inhibitors and liver X receptor antagonists. Bioorg. Med. Chem. Lett., 2011, 21(10), 3041-3045.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.026] [PMID: 21478015]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [295 - 307]
Pages: 13
DOI: 10.2174/1573409915666181211114743
Price: $65

Article Metrics

PDF: 15