Exploiting Kinetic Solubility Differences for Low Level Detection of Crystallinity in Amorphous Drug Formulations

Author(s): Gregory K. Webster*, Cynthia A. Pommerening, Whitney W. Harman, Mathew A. Gragg, Jian-Hwa Han, Daniel J. Taylor

Journal Name: Current Pharmaceutical Analysis

Volume 16 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Enabling formulations have been implemented by the pharmaceutical industry as an effective tool for keeping Active Pharmaceutical Ingredient (API) in an amorphous state. Upon dosing in the amorphous state, many drugs which fail to demonstrate bioactivity due to the limited solubility and bioavailability of their crystalline form become bioavailable.

Purpose: The analytical techniques use today for crystallinity detection are challenged by the sensitivity and robustness needed to achieve a 5% quantitation limit in low dose drug products. Our laboratory has developed a novel procedure capable of meeting this sensitivity and selectivity requirement. This is achieved by exploiting the differences in kinetic solubility of the formulated amorphous and free crystalline forms of API currently being used in dosage form platforms.

Methods: Representative amorphous drug formulations were prepared and spiked with varying levels of crystalline drug substances to evaluate the selectivity and recovery of the crystalline drug substance from the product formulation. Kinetic solubility testing using a (i) Particle wetting phase, (ii) Particle suspending/erosion phase, (iii) Sampling time point and (iv) A total recovery determination for the drug substance.

Results: The method selectively and quantitatively distinguishes crystalline drug substance from amorphous drug substance for samples spiked from 2.5% to 10% of the nominal label concentration of the API in the dosage form matrix.

Conclusion: The kinetic solubility approach reported here achieves sensitive crystallinity quantitation for low drug level amorphous drug formulations at levels not yet achieved by complimentary analytical techniques.

Keywords: Crystallinity determination, amorphous drug, enabling formulation, Meltrex®, hot-melt extrusion (HME), spraydried dispersions (SDD), amorphous solid dispersion, recrystallization.

[1]
Jacob, S.; Nair, A.B.; Partil, P.N.; Panda, B.P. Solid state crystallinity, amorphous state, and its implications in the pharmaceutical process. IJPSR, 2001, 2(3), 472-483.
[2]
Thakral, N.K.; Mohapatra, S.; Stephenson, G.A.; Suryanarayanan, R. Compression-induced crystallization of amorphous indomethacin in tablets: characterization of spatial heterogeneity by two-dimensional X-ray diffractometry. Mol. Pharm., 2015, 12(1), 253-263.
[http://dx.doi.org/10.1021/mp5005788] [PMID: 25438193]
[3]
Newman, J.A.; Schmitt, P.D.; Toth, S.J.; Deng, F.; Zhang, S.; Simpson, G.J. Parts per million powder X-ray diffraction. Anal. Chem., 2015, 87(21), 10950-10955.
[http://dx.doi.org/10.1021/acs.analchem.5b02758] [PMID: 26465382]
[4]
Correa-Soto, C.; Trasi, N.S.; Schmitt, P.D.; Su, Y.; Liu, Z.; Miller, E.; Variankaval, N.; Marsac, P.J.; Simpson, G.J.; Taylor, L.S. Second harmonic generation microscopy as a tool for the early detection of crystallization in spray dried dispersions. J. Pharm. Biomed. Anal., 2017, 146, 86-95.
[http://dx.doi.org/10.1016/j.jpba.2017.07.066] [PMID: 28866472]
[5]
da Rocha-Filho, P.A.; Maruno, M.; Ferrari, M.; Topan, J.F. Liquid crystal formation from sunflower oil: long term stability studies. Molecules, 2016, 21(6) 680/1-680/16
[http://dx.doi.org/10.3390/molecules21060680]
[6]
Ricarte, R.G.; Lodge, T.P.; Hillmyer, M.A. Detection of pharmaceutical drug crystallites in solid dispersions by transmission electron microscopy. Mol. Pharm., 2015, 12(3), 983-990.
[http://dx.doi.org/10.1021/mp500682x] [PMID: 25699402]
[7]
Coutant, C.A.; Skibic, M.J.; Doddridge, G.D.; Kemp, C.A.; Sperry, D.C. In vitro monitoring of dissolution of an immediate release tablet by focused beam reflectance measurement. Mol. Pharm., 2010, 7(5), 1508-1515.
[http://dx.doi.org/10.1021/mp1001476] [PMID: 20715796]
[8]
Rahman, Z.; Bykadi, S.; Siddiqui, A.; Khan, M.A. Comparison of X-ray powder diffraction and solid-state nuclear magnetic resonance in estimating crystalline fraction of tacrolimus in sustained-release amorphous solid dispersion and development of discriminating dissolution method. J. Pharm. Sci., 2015, 104(5), 1777-1786.
[http://dx.doi.org/10.1002/jps.24400] [PMID: 25753829]
[9]
Payab, S.; Davaran, S.; Tanhaei, A.; Fayyazi, B.; Jahangiri, A.; Farzaneh, A.; Adibkia, K. Triamcinolone acetonide-Eudragit(®) RS100 nanofibers and nanobeads: Morphological and physicochemical characterization. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 362-369.
[http://dx.doi.org/10.3109/21691401.2014.953250] [PMID: 25180944]
[10]
Sakamoto, T.; Nakayama, K.; Fujimaki, Y.; Sasakura, D.; Kawanishi, T.; Hiyama, Y. Application of NIR spectroscopy/macroscopic mapping as a quality evaluation tool of crystal reservoir-type TDDS tapes, and an approach to high-precision qualitative prediction of API by NIR spectroscopy. Iyakuhin Iryo Kiki Regyuratori Saiensu, 2010, 41(12), 971-982.
[11]
Fonteyne, M.; Gildemyn, D.; Peeters, E.; Mortier, S.T.; Vercruysse, J.; Gernaey, K.V.; Vervaet, C.; Remon, J.P.; Nopens, I.; De Beer, T.; De Beer, T. Moisture and drug solid-state monitoring during a continuous drying process using empirical and mass balance models. Eur. J. Pharm. Biopharm., 2014, 87(3), 616-628.
[http://dx.doi.org/10.1016/j.ejpb.2014.02.015] [PMID: 24613541]
[12]
Widjaja, E.; Kanaujia, P.; Lau, G.; Ng, W.K.; Garland, M.; Saal, C.; Hanefeld, A.; Fischbach, M.; Maio, M.; Tan, R.B.H. Detection of trace crystallinity in an amorphous system using Raman microscopy and chemometric analysis. Eur. J. Pharm. Sci., 2011, 42(1-2), 45-54.
[http://dx.doi.org/10.1016/j.ejps.2010.10.004] [PMID: 20969956]
[13]
Pataki, H.; Markovits, I.; Vajna, B.; Nagy, Z.K.; Marosi, G. In-line monitoring of carvedilol crystallization using raman spectroscopy. Cryst. Growth Des., 2012, 12(11), 5621-5628.
[http://dx.doi.org/10.1021/cg301135z]
[14]
Kushida, I. Quantitative crystallinity determination for E1010, a novel carbapenem antibiotic, using differential scanning calorimetry. J. Pharm. Pharmacol., 2012, 64(3), 366-371.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01419.x] [PMID: 22309268]
[15]
Lin, S.Y. Simultaneous screening and detection of pharmaceutical co-crystals by the one-step DSC-FTIR microspectroscopic technique. Drug Discov. Today, 2017, 22(4), 718-728.
[http://dx.doi.org/10.1016/j.drudis.2016.12.001] [PMID: 27979712]
[16]
Brittain, H.G. Thermodynamic vs. Kinetic Solubility: Knowing which is which. Am. Pharm. Rev. Posted: April 29, 2014 http://www.americanpharmaceuticalreview.com/Featured-Articles/160452
[17]
Chapter 711: Dissolution. United States Pharmacopeia and National Formulary (USP 40-NF 35); United States Pharmacopeial Convention: Rockville, MD, 2016.
[18]
Chapter 1251: Weighing on an analytical balance. United States Pharmacopeia and National Formulary (USP 40-NF 35); United States Pharmacopeial Convention: Rockville, MD, 2016.
[19]
Taylor, L.S. Mechanisms of Drug Release From Amorphous Solid Dispersions – Lessons Learned and Future Directions. AbbVie Global DPD Exchange Meeting, 2018. May
[20]
Ilevbare, G.A.; Taylor, L.S. Liquid − liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: implications for solubility enhancing formulations. Cryst. Growth Des., 2013, 13, 1497-1509.
[http://dx.doi.org/10.1021/cg301679h]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2020
Published on: 15 June, 2020
Page: [529 - 538]
Pages: 10
DOI: 10.2174/1573412915666181210144338
Price: $65

Article Metrics

PDF: 14
HTML: 1