Hyperbolic Spider Monkey Optimization Algorithm

Author(s): Sandeep Kumar, Anand Nayyar, Nhu Gia Nguyen, Rajani Kumari*

Journal Name: Recent Advances in Computer Science and Communications
Formerly Recent Patents on Computer Science

Volume 13 , Issue 1 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Spider monkey optimization algorithm is recently developed natureinspired algorithm. It is based on fission-fusion social structure of spider monkeys. Perturbation rate is one of the important parameter of spider monkey optimization algorithm, which affects the convergence behavior of spider monkey optimization algorithm. Generally, perturbation rate is a linearly increasing function. However, due to the availability of non-linearity in different applications, a non-linear function may affect the performance of spider monkey optimization algorithm.

Objective: This paper provides a detailed study on various perturbation techniques used in spider monkey optimization algorithm and recommends a novel alternative of hyperbolic spider monkey optimization algorithm. The new approach is named as hyperbolic Spider Monkey Optimization algorithm as the perturbation strategy inspired by hyperbolic growth function.

Methods: The proposed algorithm is tested over a set of 23 CEC 2005 benchmark problems.

Results: The experimental outcomes illustrate that the hyperbolic spider monkey optimization algorithm effectively increase the reliability of spider monkey optimization algorithm in comparison to the considered approaches.

Conclusion: The hyperbolic spider monkey optimization algorithm provides improved perturbation rate, desirable convergence precision, rapid convergence rate, and improved global search capability.

Keywords: Fission-fusion social structure, swarm intelligence, nature inspired algorithm, optimization, hyperbolic growth, unconstrained optimization.

[1]
D. Karaboga, An idea based on honey bee swarm for numerical optimization.Technical report-tr06 Erciyes University, Engineering Faculty, Computer Engineering Department , 2005
[2]
R. Storn, and K. Price, "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces", J. Glob. Optim., vol. 11, pp. 341-359, 1997.
[http://dx.doi.org/10.1023/A:1008202821328]
[3]
D.E. Goldberg, and J.H. Holland, "Genetic algorithms and machine learning", Mach. Learn., vol. 3, pp. 95-99, 1988.
[http://dx.doi.org/10.1023/A:1022602019183]
[4]
J.C. Bansal, H. Sharma, S.S. Jadon, and M. Clerc, "Spider monkey optimization algorithm for numerical optimization", Memetic Comput., vol. 6, pp. 31-47, 2014.
[5]
S. Kumar, V.K. Sharma, and R. Kumari, "Modified position update in spider monkey optimization algorithm", Int. J. Emerg. Technol. Comput. Appl. Sci., vol. 2, pp. 198-204, 2014.
[6]
S. Kumar, V.K. Sharma, and R. Kumari, "“Self-adaptive spider monkey optimization algorithm for engineering optimization problems”, JIMS8I-Int", J. Inf. Comm. Comp. Technol., vol. 2, pp. 96-107, 2014.
[7]
S. Kumar, R. Kumari, and V.K. Sharma, "Fitness based position update in spider monkey optimization algorithm", Procedia Comput. Sci., vol. 62, pp. 442-449, 2015.
[http://dx.doi.org/10.1016/j.procs.2015.08.504]
[8]
S.S. Pal, S. Kumar, M. Kashyap, Y. Choudhary, and M. Bhattacharya, "Multi-level thresholding segmentation approach based on spider monkey optimization algorithm", In: Proceedings of the Second International Conference on Computer and Communication Technologies. Vol. 2, pp. 273-287, 2016.
[http://dx.doi.org/10.1007/978-81-322-2523-2_26]
[9]
A.A. Al-Azza, A.A. Al-Jodah, and F.J. Harackiewicz, "Spider monkey optimization: A novel technique for antenna optimization", IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 1016-1019, 2016.
[http://dx.doi.org/10.1109/LAWP.2015.2490103]
[10]
U. Singh, R. Salgotra, and M. Rattan, "A novel binary spider monkey optimization algorithm for thinning of concentric circular antenna arrays", J. Inst. Electron. Telecommun. Eng., vol. 62, pp. 736-744, 2016.
[http://dx.doi.org/10.1080/03772063.2015.1135086]
[11]
K. Gupta, and K. Deep, “Tournament selection based probability scheme in spider monkey optimization algorithm.” Harmony Search Algorithm., Springer, 2016, pp. 239-250.
[http://dx.doi.org/10.1007/978-3-662-47926-1_23]
[12]
A. Sharma, H. Sharma, A. Bhargava, N. Sharma, and J.C. Bansal, "Optimal power flow analysis using l’evy flight spider monkey optimisation algorithm", Int. J. Artif. Intell. Soft Comput., vol. 5, pp. 320-352, 2016.
[http://dx.doi.org/10.1504/IJAISC.2016.081359]
[13]
K. Gupta, and K. Deep, "Investigation of suitable perturbation rate scheme for spider monkey optimization algorithm", In: Proceedings of fifth International Conference on Soft Computing for Problem Solving. Vol. 2, pp. 839-850, 2016.
[http://dx.doi.org/10.1007/978-981-10-0451-3_75]
[14]
A. Sharma, A. Sharma, B.K. Panigrahi, D. Kiran, and R. Kumar, "Ageist spider monkey optimization algorithm", Swarm Evol. Comput., vol. 28, pp. 58-77, 2016.
[http://dx.doi.org/10.1016/j.swevo.2016.01.002]
[15]
H. Sharma, A. Bhargava, and N. Sharma, "Power law-based local search in spider monkey optimisation for lower order system modelling", Int. J. Syst. Sci., vol. 48, pp. 150-160, 2017.
[http://dx.doi.org/10.1080/00207721.2016.1165895]
[16]
H. Sharma, A. Bhargava, N. Sharma, and J.C. Bansal, "Optimal placement and sizing of capacitor using lima¸con inspired spider monkey optimization algorithm", Memetic Comput., vol. 9, pp. 311-331, 2017.
[http://dx.doi.org/10.1007/s12293-016-0208-z]
[17]
K. Gupta, K. Deep, and J.C. Bansal, "Improving the local search ability of spider monkey optimization algorithm using quadratic approximation for unconstrained optimization", Comput. Intell., vol. 33, pp. 210-240, 2017.
[http://dx.doi.org/10.1111/coin.12081]
[18]
G. Hazrati, H. Sharma, N. Sharma, and J.C. Bansal, "Modified spider monkey optimization", Computational Intelligence (IWCI),., pp. 209-214, . 2016
[http://dx.doi.org/10.1109/IWCI.2016.7860367]
[19]
K. Gupta, K. Deep, and J.C. Bansal, "Spider monkey optimization algorithm for constrained optimization problems", Soft Comput., vol. 21, pp. 6933-6962, 2017.
[http://dx.doi.org/10.1007/s00500-016-2419-0]
[20]
A. Agrawal, P. Farswan, V. Agrawal, D. Tiwari, and J.C. Bansal, "On the hybridization of spider monkey optimization and genetic algorithms", In: the Proceedings of Sixth International Conference on Soft Computing for Problem Solving. Vol. 1, pp. 185-196, 2017
[http://dx.doi.org/10.1007/978-981-10-3322-3_17]
[21]
V. Swami, S. Kumar, and S. Jain, “An improved spider monkey optimization algorithm.” Soft Computing: Theories and Applications., Springer, 2018, pp. 73-81.
[http://dx.doi.org/10.1007/978-981-10-5687-1_7]
[22]
H. Sharma, G. Hazrati, and J.C. Bansal, “Spider monkey optimization algorithm”, Evolutionary and Swarm Intelligence Algorithms., Springer, 2019, pp. 43-59.
[http://dx.doi.org/10.1007/978-3-319-91341-4_4]
[23]
X.S. Yang, Nature-inspired optimization algorithms., Elsevier, 2014.
[24]
D. Simon, Evolutionary optimization algorithms., John Wiley & Sons, 2013.
[25]
M. Jamil, and X-S. Yang, "A literature survey of benchmark functions for global optimization problems", Int. J. Math. Modell. Num. Optim., vol. 4, pp. 150-194, 2013.
[http://dx.doi.org/10.1504/IJMMNO.2013.055204]
[26]
D.F. Williamson, R.A. Parker, and J.S. Kendrick, "The box plot: A simple visual method to interpret data", Ann. Intern. Med., vol. 110, pp. 916-921, 1989.
[http://dx.doi.org/10.7326/0003-4819-110-11-916] [PMID: 2719423]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 1
Year: 2020
Published on: 13 March, 2020
Page: [35 - 42]
Pages: 8
DOI: 10.2174/2213275912666181207155334
Price: $25

Article Metrics

PDF: 11
HTML: 3