Synthesis, Characterization, Antibacterial and Antioxidant Potency of NSubstituted- 2-Sulfanylidene-1,3-Thiazolidin-4-one Derivatives and QSAR Study

Author(s): Harshad Brahmbhatt, Maja Molnar*, Valentina Pavić, Vesna Rastija.

Journal Name: Medicinal Chemistry

Volume 15 , Issue 8 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Rhodanine is known for its potential and important role in the medicinal chemistry since its derivatives exhibit a wide range of pharmacological activities such as antibacterial, antifungal, antidiabetic, antitubercular, anti-HIV, antiparasitic, antioxidant, anticancer, antiproliferative and anthelmintic agents.

Objectives: Since N-substituted rhodanine synthons are rarely commercially available, it is desirable to develop a straightforward synthetic approach for the synthesis of these key building blocks. The objective was to synthesize a series of rhodanine derivatives and to investigate their antimicrobial and antioxidant activity. Also, in order to obtain an insight into their structure-activity relationship, QSAR studies on the antioxidant activity were performed.

Methods: 1H and 13C FTNMR spectra were recorded on Bruker Avance 600 MHz NMR Spectrometer, mass analysis was carried out on ESI+ mode by LC-MS/MS API 2000. 2,2-Diphenyl-1- picrylhydrazyl radical scavenging activity (% DPPH) was determined in dimethylsulfoxide (DMSO) as a solvent. The antibacterial activity was assessed against Bacillus subtilis, Staphylococcus aureus (Gram positive) and Escherichia coli, Pseudomonas aeruginosa (Gram negative) bacteria in terms of the minimum inhibitory concentrations (MICs) by a modified broth microdilution method.

Results: A series of N-substituted-2-sulfanylidene-1,3-thiazolidin-4-ones were synthesized and characterized by 1H NMR, 13C NMR, FTIR, GC MS, LCMS/MS and C,H,N,S elemental analysis. Most of the synthesized compounds showed moderate to excellent antibacterial activity (MIC values from 125 μg/ml to 15.62 μg/mL) and DPPH scavenging activity (from 3.60% to 94.40%). Compound 2-thioxo-3- (4-(trifluoromethyl)-phenyl)thiazolidin-4-one showed the most potent activity against Escherichia coli (3.125 μg/mL), equivalent to antibiotic Amikacin sulphate and against Staphylococcus aureus (0.097 μg/ml), 100 times superior then antibiotic Amikacin sulphate. It has also shown a potent antioxidant activity (95% DPPH scavenging). Two best QSAR models, obtained by GETAWAY descriptor R7p+, Balabans molecular connectivity topological index and Narumi harmonic topological index (HNar), suggest that the enhanced antioxidant activity is related to the presence of pairs of atoms higher polarizability at the topological distance 7, substituted benzene ring and longer saturated aliphatic chain in N-substituents.

Conclusion: A series of novel N-substituted-2-thioxothiazolidin-4-one derivatives were designed, synthesized, characterized and evaluated for their antibacterial and antioxidant activity in vitro. Majority of the compounds showed excellent antibacterial activity compared to ampicillin and few of them have an excellent activity as compared to Chloramphenicol standard antibacterial drug. The QSAR study has clarified the importance of presenting a pairs of atoms higher polarizability, such as Cl and S at the specific distance, as well as the substituted benzene ring and a long saturated aliphatic chain in N-substituents for the enhanced antioxidant activity of 2-sulfanylidene-1,3- thiazolidin-4-one derivatives.

Keywords: N-substituted-2-sulfanylidene-1, 3-thiazolidin-4-one, antibacterial activity, antioxidant activity, QSAR, Rhodanine.

[1]
Li, W.; Zheng, C.J.; Sun, L.P.; Song, M.X.; Wu, Y.; Li, Y.J.; Liu, Y.; Piao, H.R. Novel arylhydrazone derivatives bearing a rhodanine moie-ty: synthesis and evaluation of their antibacterial activities. Arch. Pharm. Res., 2014, 37(7), 852-861.
[http://dx.doi.org/10.1007/s12272-013-0214-3] [PMID: 23881701]
[2]
Zvarec, O.; Polyak, S.W.; Tieu, W.; Kuan, K.; Dai, H.; Pedersen, D.S.; Morona, R.; Zhang, L.; Booker, G.W.; Abell, A.D. 5-benzylidenerhodanine and 5-benzylidene-2-4-thiazolidinedione based antibacterials. Bioorg. Med. Chem. Lett., 2012, 22(8), 2720-2722.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.100] [PMID: 22444680]
[3]
Villain-Guillot, P.; Gualtieri, M.; Bastide, L.; Roquet, F.; Martinez, J.; Amblard, M.; Pugniere, M.; Leonetti, J.P. Structure-activity relation-ships of phenyl-furanyl-rhodanines as inhibitors of RNA polymerase with antibacterial activity on biofilms. J. Med. Chem., 2007, 50(17), 4195-4204.
[http://dx.doi.org/10.1021/jm0703183] [PMID: 17665895]
[4]
Dolezel, J.; Hirsova, P.; Opletalova, V.; Dohnal, J.; Marcela, V.; Kunes, J.; Jampilek, J. Rhodanineacetic acid derivatives as potential drugs: preparation, hydrophobic properties and antifungal activity of (5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)acetic acids. Molecules, 2009, 14(10), 4197-4212.
[http://dx.doi.org/10.3390/molecules14104197] [PMID: 19924058]
[5]
Sortino, M.; Delgado, P.; Juárez, S.; Quiroga, J.; Abonía, R.; Insuasty, B.; Nogueras, M.; Rodero, L.; Garibotto, F.M.; Enriz, R.D.; Zacchi-no, S.A. Synthesis and antifungal activity of (Z)-5-arylidenerhodanines. Bioorg. Med. Chem., 2007, 15(1), 484-494.
[http://dx.doi.org/10.1016/j.bmc.2006.09.038] [PMID: 17049255]
[6]
Murugan, R.; Anbazhagan, S.; Lingeshwaran, S.; Sriman Narayanan, S. Synthesis and in vivo antidiabetic activity of novel dispiropyrroli-dines through [3+2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives. Eur. J. Med. Chem., 2009, 44(8), 3272-3279.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.035] [PMID: 19395129]
[7]
Kikkawa, R.; Hatanaka, I.; Yasuda, H.; Kobayashi, N.; Shig-eta, Y.; Terashima, H.; Morimura, T.; Tsuboshima, M. Syn-thesis and in vivo antidiabetic activity of novel dispiropyrroli-dines through [3+2] cycloaddition reactions with thiazoli-dinedione and rhodanine derivatives. Diabetologia, 1983, 24, 290-292.
[PMID: 6407887]
[8]
Alegaon, S.G.; Alagawadi, K.R.; Sonkusare, P.V.; Chaudhary, S.M.; Dadwe, D.H.; Shah, A.S. Novel imidazo[2,1-b][1,3,4]thiadiazole car-rying rhodanine-3-acetic acid as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2012, 22(5), 1917-1921.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.052] [PMID: 22325950]
[9]
He, X.Y.; Lu, L.; Qiu, J.; Zou, P.; Yu, F.; Jiang, X.K.; Li, L.; Jiang, S.; Liu, S.; Xie, L. Small molecule fusion inhibitors: design, synthesis and biological evaluation of (Z)-3-(5-(3-benzyl-4-oxo-2-thioxothiazolidinylidene)methyl)-N-(3-carboxy-4-hydroxy)phenyl-2,5-dimethylpyrroles and related derivatives targeting HIV-1 gp41. Bioorg. Med. Chem., 2013, 21(23), 7539-7548.
[http://dx.doi.org/10.1016/j.bmc.2013.04.046] [PMID: 23673219]
[10]
Ramkumar, K.; Yarovenko, V.N.; Nikitina, A.S.; Zavarzin, I.V.; Krayushkin, M.M.; Kovalenko, L.V.; Esqueda, A.; Odde, S.; Neamati, N. Design, synthesis and structure-activity studies of rhodanine derivatives as HIV-1 integrase inhibitors. Molecules, 2010, 15(6), 3958-3992.
[http://dx.doi.org/10.3390/molecules15063958] [PMID: 20657419]
[11]
Madadi, N.E.; Vanelle, P.; Maldonado, J.; Tedlaouti, F.; Majester, B.; Gasquet, M.; Delmas, F.; Timon-David, P. 3-Aminorhodanine and 2-hydrazino-2-imidazo-line hydrazones. Synthesis and antiparasitic pharmacology. Boll. Chim. Farm., 1991, 130(4), 124-127.
[PMID: 1764238]
[12]
Berczyński, P.; Kładna, A.; Piechowska, T.; Kruk, I.; Bozdağ-Dündar, O.; Aboul-Enein, H.Y.; Ceylan-Unlusoy, M.; Ertan, R. Studies on the antioxidant activity of some thiazolidinedione, imidazolidinedione and rhodanine derivatives having a flavone core. Luminescence, 2014, 29(8), 1107-1112.
[http://dx.doi.org/10.1002/bio.2667] [PMID: 24733694]
[13]
Min, G.; Lee, S.K.; Kim, H.N.; Han, Y.M.; Lee, R.H.; Jeong, D.G.; Han, D.C.; Kwon, B.M. Rhodanine-based PRL-3 inhibitors blocked the migration and invasion of metastatic cancer cells. Bioorg. Med. Chem. Lett., 2013, 23(13), 3769-3774.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.092] [PMID: 23726031]
[14]
Gao, L.Z.; Xie, Y.S.; Yan, Q.; Wu, S.M.; Ni, L.L.; Zhao, H.; Huang, W.L.; Hu, G.Q. [Synthesis and anti-proliferative activity of fluoro-quinolone (rhodanine unsaturated ketone) amide derivatives]. Yao Xue Xue Bao, 2015, 50(8), 1008-1012.
[PMID: 26669001]
[15]
Douch, P.G.; Buchanan, L.L. The metabolism of nitrophenolic and 5-arylazorhodanine anthelmintics by Ascaris suum, Moniezia expansa and by mouse- and sheep-liver enzymes. Xenobiotica, 1979, 9(8), 467-473.
[http://dx.doi.org/10.3109/00498257909087260] [PMID: 516789]
[16]
Alizadeh, A.; Rostamnia, S.; Zohreh, N.; Hosseinpour, R. A simple and effective approach to the synthesis of rhodanine derivatives via three component reactions in water. Tetrahedron Lett., 2009, 50, 1533-1535.
[http://dx.doi.org/10.1016/j.tetlet.2008.12.107]
[17]
Molnar, M.; Pavić, V.; Šarkanj, B.; Čačić, M.; Vuković, D.; Klenkar, J. Mono- and bis-dipicolinic acid heterocyclic deriv-atives – thio-semicarbazides, triazoles, oxadiazoles and thia-zolidinones as antifungal and antioxidant agents. Heterocycl. Commun., 2017, 23, 35-42.
[http://dx.doi.org/10.1515/hc-2016-0078]
[18]
Šarkanj, B.; Molnar, M.; Čačić, M.; Gille, L. 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem., 2013, 139(1-4), 488-495.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.027] [PMID: 23561135]
[19]
Hocquet, A.; Langgård, M. An evaluation of the MM+ force field. J. Comput. Chem., 1989, 10, 209-220.
[20]
Stewart, J.J.P. Optimization of parameters for semiempirical methods I. Method. J. Comp. Chem., 1989, 10, 209-220.
[22]
ADMEWORKS ModelBuilder.. Version 7.9.1.0. Enterprise Edition Copyright (C); Fujitsu Kyushu Systems Limited, 2011.
[23]
Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem., 2013, 34, 2121-2132.
[http://dx.doi.org/10.1002/jcc.23361]
[24]
Todeschini, R.; Consonni, V.; Maiocchi, A. The K correlation index: theory development and its application in chemometrics. Chemom. Intell. Lab. Syst., 1999, 46, 13-29.
[25]
Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform., 2010, 29(6-7), 476-488.
[http://dx.doi.org/10.1002/minf.201000061] [PMID: 27463326]
[26]
Eriksson, L.; Jaworska, J.; Worth, A.P.; Cronin, M.T.D.; McDowell, R.M.; Gramatica, P. Methods for reliability and uncertainty assess-ment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect., 2003, 111(10), 1361-1375.
[http://dx.doi.org/10.1289/ehp.5758] [PMID: 12896860]
[27]
Limban, C.; Chifiriuc, M.C. Antibacterial activity of new dibenzoxepinone oximes with fluorine and trifluoromethyl group substituents. Int. J. Mol. Sci., 2011, 12(10), 6432-6444.
[http://dx.doi.org/10.3390/ijms12106432] [PMID: 22072897]
[28]
Tejchman, W.; Korona-Glowniak, I. Malm, Anna.; Zylewski, M.; Suder, P. Antibacterial properties of 5-substituted deriva-tives of rhodanine-3-carboxyalkyl acids. Med. Chem. Res., 2017, 26, 1316-1324.
[http://dx.doi.org/10.1007/s00044-017-1852-7] [PMID: 28515623]
[29]
Tomašić, T. zidar, N.; Rupnik, V.; Kovač, A.; Blanot, D.; Gobec, S.; Kikelj, D.; Peterlin Mašič, L. Synthesis and biolog-ical evaluation of new glutamic acid-based inhibitors of MurD ligase. Bioorg. Med. Chem. Lett., 2009, 19, 153-157.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.129] [PMID: 19014883]
[30]
Gramatica, P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci., 2007, 26, 694-701.
[http://dx.doi.org/10.1002/qsar.200610151]
[31]
Masand, V.H.; Mahajan, D.T.; Nazeruddin, G.M.; Hadda, T.B.; Rastija, V.; Alfeedy, A.M. Effect of information leakage and method of splitting (rational and random) on external predictive ability and behavior of different statistical parame-ters of QSAR model. Med. Chem. Res., 2015, 24, 1241-1264.
[http://dx.doi.org/10.1007/s00044-014-1193-8]
[32]
Consonni, V.; Todeschini, R.; Pavan, M. Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J. Chem. Inf. Comput. Sci., 2002, 42(3), 682-692.
[http://dx.doi.org/10.1021/ci015504a] [PMID: 12086530]
[33]
Trinajstić, N. Chemical Graph Theory; CRC Press, Inc.: Boca Raton, 1992.
[34]
Narumi, H. New topological indices for finite and infinite systems. MATCH Commun. Math. Co., 1987, 22, 195-207.
[35]
Jagiello, K.; Grzonkowska, M.; Swirog, M.; Ahmed, L.; Rasulev, B.; Avramopoulos, A.; Papadopoulos, M.G.; Leszczynski, J.; Puzyn, T. Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene deriva-tives. J. Nanopart. Res., 2016, 18(9), 256.
[http://dx.doi.org/10.1007/s11051-016-3564-1] [PMID: 27642255]
[36]
Joseph, A.; Shah, C.S.; Kumar, S.S.; Alex, A.T.; Maliyakkal, N.; Moorkoth, S.; Mathew, J.E. Synthesis, in vitro anticancer and antioxidant activity of thiadiazole substituted thiazolidin-4-ones. Acta Pharm., 2013, 63(3), 397-408.
[http://dx.doi.org/10.2478/acph-2013-0028] [PMID: 24152899]
[37]
Desai, N.C.; Shihory, N.R.; Kotadiya, G.M.; Desai, P. Synthesis, antibacterial and antitubercular activities of benzimidazole bearing substi-tuted 2-pyridone motifs. Eur. J. Med. Chem., 2014, 82, 480-489.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.004] [PMID: 24934572]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 8
Year: 2019
Page: [840 - 849]
Pages: 10
DOI: 10.2174/1573406415666181205163052
Price: $65

Article Metrics

PDF: 41
HTML: 4
EPUB: 1