Molecular Docking Studies of Methamphetamine and Amphetamine- Related Derivatives as an Inhibitor against Dopamine Receptor

Author(s): Kobra Foroughi*, Mehdi Khaksari, Asghar Shayannia

Journal Name: Current Computer-Aided Drug Design

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: The catecholamines such as dopamine, norepinephrine, and epinephrine are neurotransmitters that regulate different physiological functions of the central nervous system. Some evidence suggests that the degeneration of dopamine neurons in the substantia nigra contributes to Parkinson’s Disease (PD), which is a neurodegenerative disorder and it is responsible for the major symptoms of PD. It is suggested that replenishment of striatal dopamine through the oral administration of the dopamine precursor, levodopa, can compensate for the lack of endogenously produced dopamine. Some studies have shown competitive inhibition of dopamine receptor such as methamphetamine, and other amphetamine-related derivatives, which block dopamine receptor activity to uptake dopamine.

Methods: In this study, 3D structures of amphetamine, methamphetamine, cocaine, methylphenidate, cathinone, MDMA, and mephedrone were obtained from the PubChem database, which has reported some evidence about their inhibitory effect with dopamine receptor. Then, these structures were provided for molecular docking analysis by Autodock Vina software. Eventually, the binding energies between docked dopamine receptor and them were calculated and their interactions were prognosticated.

Results: Our results indicated that all chemicals can interact with dopamine receptor molecule in the active site of dopamine and the minimum binding energies belong to Cocaine and Methylphenidate with -7.9 Kcal/mol and -7.2 Kcal/mol, respectively.

Conclusion: It might be concluded that amphetamine, methamphetamine, cocaine, methylphenidate, cathinone, MDMA, and mephedrone could act as potential inhibitors of DA receptor for dopamine uptake, which could cause degenerative disorders.

Keywords: DA receptor, Autodock Vina, inhibitor, amphetamine, methamphetamine, cocaine.

Kobayashi, K. Role of catecholamine signaling in brain and nervous system functions: new insights from mouse molecular genetic study. J. Investig. Dermatol. Symp. Proc., 2001, 6(1), 115-121.
[] [PMID: 11764279 ]
Eisenhofer, G.; Kopin, I.J.; Goldstein, D.S. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol. Rev., 2004, 56(3), 331-349.
[] [PMID: 15317907 ]
Nagatsu, T.; Stjärnet, L. Catecholamine Synthesis and Release. Advances in Pharmacology, Goldstein, D.S.; Eisenhofer, G.; McCarty, R., Eds.; Academic Press. 1997, Vol. 42, pp. 1-14.
Phillips, A.G.; Vacca, G.; Ahn, S. A top-down perspective on dopamine, motivation and memory. Pharmacol. Biochem. Behav., 2008, 90(2), 236-249.
[] [PMID: 18045671 ]
Menniti, F.S.; Diliberto, E.J., Jr Newly synthesized dopamine as the precursor for norepinephrine synthesis in bovine adrenomedullary chromaffin cells. J. Neurochem., 1989, 53(3), 890-897.
[] [PMID: 2760625 ]
Driver, J.A.; Logroscino, G.; Gaziano, J.M.; Kurth, T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology, 2009, 72(5), 432-438.
[] [PMID: 19188574 ]
Michel, P.P.; Toulorge, D.; Guerreiro, S.; Hirsch, E.C. Specific needs of dopamine neurons for stimulation in order to survive: implication for Parkinson disease. FASEB J., 2013, 27(9), 3414-3423.
[] [PMID: 23699175 ]
Dauer, W.; Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron, 2003, 39(6), 889-909.
[] [PMID: 12971891 ]
Brisch, R.; Saniotis, A.; Wolf, R.; Bielau, H.; Bernstein, H-G.; Steiner, J.; Bogerts, B.; Braun, K.; Jankowski, Z.; Kumaratilake, J.; Henneberg, M.; Gos, T. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front. Psychiatry, 2014, 5(47), 47.
[PMID: 24904434 ]
Rankin, L. M.; A.; Hazelwood; L.; Free, R.; B, Namkung.; Y, Rex.; E, Roof.; Sibley, D; Molecular Pharmacology of the Dopamine Receptors, 2010, pp. 63-87.
Lei, S. Cross interaction of dopaminergic and adrenergic systems in neural modulation. Int. J. Physiol. Pathophysiol. Pharmacol., 2014, 6(3), 137-142.
[PMID: 25349636 ]
Goodwin, J.S.; Larson, G.A.; Swant, J.; Sen, N.; Javitch, J.A.; Zahniser, N.R.; De Felice, L.J.; Khoshbouei, H. Amphetamine and methamphetamine differentially affect dopamine transporters in vitro and in vivo. J. Biol. Chem., 2009, 284(5), 2978-2989.
[] [PMID: 19047053 ]
Bennett, B.A.; Hollingsworth, C.K.; Martin, R.S.; Harp, J.J. Methamphetamine-induced alterations in dopamine transporter function. Brain Res., 1998, 782(1-2), 219-227.
[] [PMID: 9519266 ]
Beuming, T.; Kniazeff, J.; Bergmann, M.L.; Shi, L.; Gracia, L.; Raniszewska, K.; Newman, A.H.; Javitch, J.A.; Weinstein, H.; Gether, U.; Loland, C.J. The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat. Neurosci., 2008, 11(7), 780-789.
[] [PMID: 18568020 ]
de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M. Molecular docking as a popular tool in drug design, an in silico travel;, 2016, 9, pp. 1-11.
Rose, P.W.; Bi, C.; Bluhm, W.F.; Christie, C.H.; Dimitropoulos, D.; Dutta, S.; Green, R.K.; Goodsell, D.S.; Prlić, A.; Quesada, M.; Quinn, G.B.; Ramos, A.G.; Westbrook, J.D.; Young, J.; Zardecki, C.; Berman, H.M.; Bourne, P.E. The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res., 2013, 41(Database issue), D475-D482.
[PMID: 23193259 ]
DeLano, W.L. The PyMOL molecular graphics system Proteins: Structure, Function and Bioinformatics. Fuzziness: Structural Disorder in Protein Complexes, 2002, 30, 442-454.
Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[] [PMID: 21919503 ]
Meng, X-Y.; Zhang, H-X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des., 2011, 7(2), 146-157.
[] [PMID: 21534921 ]
Claytor, R.; Lile, J.A.; Nader, M.A. The effects of eticlopride and the selective D3-antagonist PNU 99194-A on food- and cocaine-maintained responding in rhesus monkeys. Pharmacol. Biochem. Behav., 2006, 83(3), 456-464.
[] [PMID: 16631246 ]
Hall, D.A.; Stanis, J.J.; Marquez Avila, H.; Gulley, J.M. A comparison of amphetamine- and methamphetamine-induced locomotor activity in rats: evidence for qualitative differences in behavior. Psychopharmacology (Berl.), 2008, 195(4), 469-478.
[] [PMID: 17874316 ]
Ares-Santos, S.; Granado, N.; Moratalla, R. The role of dopamine receptors in the neurotoxicity of methamphetamine. J. Intern. Med., 2013, 273(5), 437-453.
[] [PMID: 23600399 ]
Calipari, E.S.; Ferris, M.J. Amphetamine mechanisms and actions at the dopamine terminal revisited. J. Neurosci., 2013, 33(21), 8923-8925.
[] [PMID: 23699503 ]
Chen, R.; Han, D.D.; Gu, H.H. A triple mutation in the second transmembrane domain of mouse dopamine transporter markedly decreases sensitivity to cocaine and methylphenidate. J. Neurochem., 2005, 94(2), 352-359.
[] [PMID: 15998286 ]
Calipari, E.S.; Ferris, M.J.; Salahpour, A.; Caron, M.G.; Jones, S.R. Methylphenidate amplifies the potency and reinforcing effects of amphetamines by increasing dopamine transporter expression. Nat. Commun., 2013, 4, 2720-2720.
[] [PMID: 24193139 ]
Tilley, M.R.; Gu, H.H. The effects of methylphenidate on knockin mice with a methylphenidate-resistant dopamine transporter. J. Pharmacol. Exp. Ther., 2008, 327(2), 554-560.
[] [PMID: 18698001 ]
Huang, X.; Gu, H.H.; Zhan, C-G. Mechanism for cocaine blocking the transport of dopamine: insights from molecular modeling and dynamics simulations. J. Phys. Chem. B, 2009, 113(45), 15057-15066.
[] [PMID: 19831380 ]
Navarro, G.; Moreno, E.; Bonaventura, J.; Brugarolas, M.; Farré, D.; Aguinaga, D.; Mallol, J.; Cortés, A.; Casadó, V.; Lluís, C.; Ferre, S.; Franco, R.; Canela, E.; McCormick, P.J.; Cocaine Inhibits Dopamine, D. Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers. PLoS One, 2013, 8(4)e61245
[] [PMID: 23637801 ]
Feyissa, A.M.; Kelly, J.P. A review of the neuropharmacological properties of khat. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(5), 1147-1166.
[] [PMID: 18561890 ]
Simmler, L.D.; Buser, T.A.; Donzelli, M.; Schramm, Y.; Dieu, L.H.; Huwyler, J.; Chaboz, S.; Hoener, M.C.; Liechti, M.E. Pharmacological characterization of designer cathinones in vitro. Br. J. Pharmacol., 2013, 168(2), 458-470.
[] [PMID: 22897747 ]
Pifl, C.; Reither, H.; Hornykiewicz, O. The profile of mephedrone on human monoamine transporters differs from 3,4-methylenedioxymethamphetamine primarily by lower potency at the vesicular monoamine transporter. Eur. J. Pharmacol., 2015, 755, 119-126.
[] [PMID: 25771452 ]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [122 - 133]
Pages: 12
DOI: 10.2174/1573409915666181204144411
Price: $65

Article Metrics

PDF: 34
PRC: 1