Qualitative and Quantitative Analysis of the Major Ingredients of a Herbal Preparation, Ciwujia Injection by Combination of HPLC-Q-TOF-MS, HPLC-TQ-MS/MS and UPLC-PDA

Author(s): Yunjiao Xie, Panpan Wang, Yijun Ruan, Peiying Shi*, Hong Yao*

Journal Name: Current Pharmaceutical Analysis

Volume 15 , Issue 4 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Ciwujia injection, prepared from water extraction of Acanthopanax senticosus, is widely used for the treatment of cardiovascular diseases in the clinic in China. The ingredients of the preparation are still not efficiently clear and its quality control method requires further improvement.

Objective: In this paper, the qualitative and quantitative methods for quality control of Ciwujia injection were originally developed by a combination of HPLC-Q-TOF-MS, HPLC-TQ-MS/MS and UPLCPDA.

Methods: With HPLC-Q-TOF-MS and HPLC-TQ-MS/MS, compounds were identified firstly by comparison of their MS spectra and retention times with those of standards or recorded information in the literature. Further, a new UPLC-PDA method was originally established to simultaneously determine the multiple ingredients in the preparations.

Results: For qualitative analysis, 22 compounds were identified by the presented method. For quantitative analysis, the validated method exhibited good linearity (R2 > 0.998), repeatability (RSD < 1.50%), intra- and inter-day precisions (RSD < 8.33%) and recoveries (95.93-108.58%) for the simultaneous determination of the active ingredients, including protocatechuic acid-3-glucoside, l-phenylalanine, protocatechuic acid, neochlorogenic acid, chlorogenic acid, gentiopicroside, eleutheroside B, and cryptochlorogenic acid, and was successfully utilized to analyze the eight compounds in 4 batches of Ciwujia injection.

Conclusion: The presented method is simple and rapid for quality control of Ciwujia injection, and could provide a useful reference for the quality control and routine analysis of others Ciwujia preparations.

Keywords: Ciwujia injection, identification, quantitative determination, HPLC-Q-TOF-MS, HPLC-TQ-MS, UPLC-PDA, Acanthopanax senticosus.

[1]
Nestler, G. Traditional Chinese medicine. Med. Clin. North Am., 2002, 86(1), 63-73.
[2]
Zhang, X.; Sang, D.; Zhang, Z.; Kong, S. Analysis and study on 47 cases of adverse reactions of Chinese medicine injection. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(2), 363-364.
[3]
Gui, L.; Liu, J.; Zhang, C.; Liu, D.; Pharmacy, D. Analysis on 561 cases of clinical adverse drug reaction/event caused by Danshen injection. Chin. J. Pharmacoepidemiolo, 2017, 26(8), 547-550.
[4]
Zhu, S.; Xing, B.; Mei, D.; Wang, L.; Feng, L.; Zhang, X. Analysis on adverse drug reaction reports induced by Ginkgo biloba leaves extract injection from 2003 to 2013 in beijing. Chin. J. Pharmacoepidemiolo., 2017, 26(1), 50-53.
[5]
Deyama, T.; Nishibe, S.; Nakazawa, Y. Constituents and pharmacological effects of Eucommia and Siberian ginseng. Acta Pharmacol. Sin., 2001, 22, 1057-1070.
[6]
Lee, S.; Park, H.J.; Jeon, S.J.; Kim, E.; Lee, H.E.; Kim, H.; Kwon, Y.; Zhang, J.; Jung, I.H.; Ryu, J.H. Cognitive ameliorating effect of Acanthopanax koreanum against scopolamine-induced memory impairment in mice. Phytother. Res., 2017, 31(3), 425-432.
[7]
Kuźniewski, R.; Załuski, D.; Olech, M.; Banaszczak, P.; Nowak, R. LC-ESI-MS/MS profiling of phenolics in the leaves of Eleutherococcus senticosus cultivated in the West Europe and anti-hyaluronidase and anti-acetylcholinestarase activities. Nat. Prod. Res., 2018, 32(4), 448-452.
[8]
Song, Y.; Yang, C.J.; Wang, Z.B.; Zhao, N.; Feng, X.S.; Meng, F.H. Chemical constituents of Eleutherococcus sessiliflorus extract and its sedative-hypnotic effect. Nat. Prod. Res., 2017, 31(17), 1-6.
[9]
Li, F.; Zhang, N.; Wu, Q.; Yuan, Y.; Yang, Z.; Zhou, M.; Zhu, J.; Tang, Q. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy. Int. J. Mol. Med., 2016, 39(1), 199-207.
[10]
Wang, X.; Zhou, G.; Liu, C. Acanthopanax versus 3-methyladenine ameliorates sodium taurocholate-induced severe acute pancreatitis by inhibiting the autophagic pathway in rats. Mediators Inflamm., 2016, 2, 8369704.
[11]
Fang, J.N.; Proksch, A.; Wagner, H. Immunologically active polysaccharides of Acanthopanax senticosus. Phytochemistry, 1985, 24(11), 2619-2622.
[12]
Hu, H.B.; Zhu, J.H. Flavonoid constituents from the roots of Acanthopanax brachypus. Chem. Pharm. Bull., 2011, 59(1), 135-139.
[13]
Huang, L.; Zhao, H.; Huang, B.; Zheng, C.; Peng, W.; Qin, L. Acanthopanax senticosus: Review of botany, chemistry and pharmacology. Pharmazie, 2011, 66, 83-97.
[14]
Huang, J.; Shao, Q.; Xiang, Y.H.; Ge, Z.W.; Fan, X.H. Identification of phenylpropanoids in ciwujia injection by HPLC-MS. Zhongguo Zhongyao Zazhi, 2014, 39(13), 2513-2520.
[15]
Zhou, H.; Xing, J.; Liu, S.; Song, F.; Cai, Z.; Pi, Z.; Liu, Z.; Liu, S. Screening and determination for potential α-glucosidase inhibitors from leaves of Acanthopanax senticosus harms by using UF-LC/MS and ESI-MSn. Phytochem. Anal., 2012, 23(4), 315-323.
[16]
Li, Q.; Jia, Y.; Xu, L.; Wang, X.; Zhen, Z.; Liu, Y.; Bi, K. Simultaneous determination of protocatechuic acid, syringin, chlorogenic acid, caffeic acid, liriodendrin and isofraxidin in Acanthopanax senticosus Harms by HPLC-DAD. Biol. Pharm. Bull., 2006, 29(3), 532-534.
[17]
Liu, S.P.; An, J.T.; Wang, R.; Li, Q. Simultaneous quantification of five bioactive compounds of Acanthopanax senticosus and its extract by ultra performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. Molecules, 2012, 17(7), 7903-7913.
[18]
Yang, S.X.; Zhao, G.Z.; Zhang, S.M. Determination of syringin in Ciwujia injection by HPLC. Chinese J. Pharmaceut. Anal., 2001, 1, 16-17.
[19]
Chen, Y.C.; Song, W.; Liu, Q.S. Determination of quercetin in Acanthopanax and Acanthopanax injection by high performance capillary electrophoresis (HPCE). China Pharm., 2002, 3, 37-38.
[20]
Yu, F.P.; Lian, C.B. Determination of syringin and chlorogenic acid in Ciwujia injection by UFLC. China Pharmacist., 2010, 13(12), 1769-1770.
[21]
D’Archivio, A.A.; Maggi, M.A. Geographical identification of saffron (Crocus sativus l.) by linear discriminant analysis applied to the UV-visible spectra of aqueous extracts. Food Chem., 2017, 219(15), 408-413.
[22]
Hua, L.; Yang, M.H.; Miao, J.H.; Ma, X.J. Simultaneous chromatographic fingerprinting and quantitative analysis of Flemingia philippinensis by LC-DAD. Chromatographia, 2009, 70(3-4), 447-454.
[23]
Liu, Y.Y.; Hu, X.L.; Bao, Y.F.; Yin, D.Q. Simultaneous determination of 29 pharmaceuticals in fish muscle and plasma by ultrasonic extraction followed by SPE-UHPLC-MS/MS. J. Sep. Sci., 2018, 41(10), 2139-2150.
[24]
Flamini, R. Mass spectrometry in grape and wine chemistry. Part I: polyphenols. Mass Spectrom. Rev., 2003, 2, 218-250.
[25]
Mawatari, S.; Hazeyama, S.; Fujino, T. Measurement of ether phospholipids in human plasma with HPLC-ELSD and LC/ESI-MS after hydrolysis of plasma with phospholipase A1. Lipids, 2016, 51(8), 997-1006.
[26]
Kang, S.W.; Kang, K.; Kim, M.A.; Jeon, N.R.; Kim, S.M.; Jeon, J.S.; Nho, C.W.; Um, B.H. Phytoestrogenic activity of Aceriphyllum rossii and rapid identification of phytoestrogens by LC-NMR/MS and bioassay-guided isolation. Eur. Food Res. Technol., 2014, 239(2), 237-246.
[27]
Mochizuki, A.; Nakazawa, H.; Adachi, N.; Takekawa, K.; Shojo, H. Identification and quantification of mepirapim and acetyl fentanyl in authentic human whole blood and urine samples by GC-MS/MS and LC-MS/MS. Forensic Toxicol., 2018, 36(1), 81-87.
[28]
Steinmann, D.; Ganzera, M. Recent advances on HPLC/MS in medicinal plant analysis. J. Pharm. Biomed. Anal., 2011, 55(4), 744-757.
[29]
D’Archivio, A.A.; Di Donato, F.; Foschi, M.; Maggi, M.A.; Ruggieri, F. UHPLC analysis of saffron (Crocus sativus L.): Optimization of separation using chemometrics and detection of minor crocetin esters. Molecules, 2018, 23(8), 1851.
[30]
Díaz-García, M.C.; Obón, J.M.; Castellar, M.R.; Collado, J.; Alacid, M. Quantification by UHPLC of total individual polyphenols in fruit juices. Food Chem., 2013, 138(2-3), 938-949.
[31]
Weisz, G.M.; Kammerer, D.R.; Carle, R. Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MSn. Food Chem., 2009, 115(2), 758-765.
[32]
Challice, J.S.; Williams, A.H. Phenolic compounds of the genus Pyrus-I: The occurrence of flavones and phenolic acid derivatives of 3, 4-dihydroxybenzyl alcohol 4-glucoside in Pyrus calleryana. Phytochemistry, 1968, 7(1), 119-130.
[33]
Xu, H.X.; Kadota, S.; Kurokawa, M.; Shiraki, K.; Matsumoto, T.; Namba, T. Isolation and structure of woodorien, a new glucoside having antiviral activity, from Woodwardia orientalis. Chem. Pharm. Bull., 1993, 41(10), 1803-1806.
[34]
Yang, G.E.; Li, W.; Huang, C.; Lin, L.; Zhang, Q.B.; Koike, K.Z. Phenolic Constituents from the stems of Acanthopanax senticosus. Chem. Nat. Compd., 2011, 46(6), 876-879.
[35]
Mcnamara, C.E.; Perry, N.B.; Follett, J.M.; Pharmenter, G.A.; Douglas, J.A. A new glucosyl feruloyl quinic acid as a potential marker for roots and rhizomes of Goldenseal, Hydrastis canadensis. J. Nat. Prod., 2004, 67(11), 1818-1822.
[36]
Niwa, M.; Iwadare, Y.; Wu, Y.C.; Hirata, Y. Two new phenylpropanoid glycosides from Wikstroemia sikokiana. Chem. Pharm. Bull., 1988, 36(3), 1158-1161.
[37]
Singh, I.P.; Bharate, S.B. Phloroglucinol compounds of natural origin. Nat. Prod. Rep., 2006, 23, 558-591.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 4
Year: 2019
Published on: 19 March, 2019
Page: [388 - 398]
Pages: 11
DOI: 10.2174/1573412915666181204115655
Price: $65

Article Metrics

PDF: 36
HTML: 1