Role of Pro-inflammatory Cytokines in Regulation of Skeletal Muscle Metabolism: A Systematic Review

Author(s): Bhawana Sharma, Rajesh Dabur*.

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 13 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Background: Metabolic pathways perturbations lead to skeletal muscular atrophy in the cachexia and sarcopenia due to increased catabolism. Pro-inflammatory cytokines induce the catabolic pathways that impair the muscle integrity and function. Hence, this review primarily concentrates on the effects of pro-inflammatory cytokines in regulation of skeletal muscle metabolism.

Objective: This review will discuss the role of pro-inflammatory cytokines in skeletal muscles during muscle wasting conditions. Moreover, the coordination among the pro-inflammatory cytokines and their regulated molecular signaling pathways which increase the protein degradation will be discussed.

Results: During normal conditions, pro-inflammatory cytokines are required to balance anabolism and catabolism and to maintain normal myogenesis process. However, during muscle wasting their enhanced expression leads to marked destructive metabolism in the skeletal muscles. Proinflammatory cytokines primarily exert their effects by increasing the expression of calpains and E3 ligases as well as of Nf-κB, required for protein breakdown and local inflammation. Proinflammatory cytokines also locally suppress the IGF-1and insulin functions, hence increase the FoxO activation and decrease the Akt function, the central point of carbohydrates lipid and protein metabolism.

Conclusion: Current advancements have revealed that the muscle mass loss during skeletal muscular atrophy is multifactorial. Despite great efforts, not even a single FDA approved drug is available in the market. It indicates the well-organized coordination among the pro-inflammatory cytokines that need to be further understood and explored.

Keywords: Skeletal muscle, Pro-inflammatory cytokines, metabolism, muscle homeostasis, molecular targets, drug discovery.

[1]
Kamei, Y.; Miura, S.; Suzuki, M.; Kai, Y.; Mizukami, J.; Taniguchi, T.; Mochida, K.; Hata, T.; Matsuda, J.; Aburatani, H.; Nishino, I.; Ezaki, O. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J. Biol. Chem., 2004, 279(39), 41114-41123.
[http://dx.doi.org/10.1074/jbc.M400674200] [PMID: 15272020]
[2]
Lenk, K.; Schuler, G.; Adams, V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J. Cachexia Sarcopenia Muscle, 2010, 1(1), 9-21.
[http://dx.doi.org/10.1007/s13539-010-0007-1] [PMID: 21475693]
[3]
Bonaldo, P.; Sandri, M. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech., 2013, 6(1), 25-39.
[http://dx.doi.org/10.1242/dmm.010389] [PMID: 23268536]
[4]
Fanzani, A.; Conraads, V.M.; Penna, F.; Martinet, W. Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J. Cachexia Sarcopenia Muscle, 2012, 3(3), 163-179.
[http://dx.doi.org/10.1007/s13539-012-0074-6] [PMID: 22673968]
[5]
Jackman, R.W.; Kandarian, S.C. The molecular basis of skeletal muscle atrophy. Am. J. Physiol. Cell Physiol., 2004, 287(4), C834-C843.
[http://dx.doi.org/10.1152/ajpcell.00579.2003] [PMID: 15355854]
[6]
Kandarian, S.C.; Jackman, R.W. Intracellular signaling during skeletal muscle atrophy. Muscle Nerve, 2006, 33(2), 155-165.
[http://dx.doi.org/10.1002/mus.20442] [PMID: 16228971]
[7]
Guimarães-Ferreira, L.; Nicastro, H.; Wilson, J.; Zanchi, N.E. Skeletal muscle physiology. ScientificWorldJournal, 2013, 2013782352
[http://dx.doi.org/10.1155/2013/782352] [PMID: 23844411]
[8]
Murton, A.J.; Constantin, D.; Greenhaff, P.L. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim. Biophys. Acta, 2008, 1782(12), 730-743.
[http://dx.doi.org/10.1016/j.bbadis.2008.10.011] [PMID: 18992328]
[9]
Bakkar, N.; Ladner, K.; Canan, B.D.; Liyanarachchi, S.; Bal, N.C.; Pant, M.; Periasamy, M.; Li, Q.; Janssen, P.M.; Guttridge, D.C. IKKα and alternative NF-κB regulate PGC-1β to promote oxidative muscle metabolism. J. Cell Biol., 2012, 196(4), 497-511.
[http://dx.doi.org/10.1083/jcb.201108118] [PMID: 22351927]
[10]
Dinarello, C.A. Proinflammatory cytokines. Chest, 2000, 118(2), 503-508.
[http://dx.doi.org/10.1378/chest.118.2.503] [PMID: 10936147]
[11]
Späte, U.; Schulze, P.C. Proinflammatory cytokines and skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care, 2004, 7(3), 265-269.
[http://dx.doi.org/10.1097/00075197-200405000-00005] [PMID: 15075917]
[12]
Argilés, J.M.; Busquets, S.; López-Soriano, F.J. The pivotal role of cytokines in muscle wasting during cancer. Int. J. Biochem. Cell Biol., 2005, 37(10), 2036-2046.
[http://dx.doi.org/10.1016/j.biocel.2005.03.014] [PMID: 16105746]
[13]
Li, H.; Malhotra, S.; Kumar, A. Nuclear factor-kappa B signaling in skeletal muscle atrophy. J. Mol. Med. (Berl.), 2008, 86(10), 1113-1126.
[http://dx.doi.org/10.1007/s00109-008-0373-8] [PMID: 18574572]
[14]
Mittal, A.; Bhatnagar, S.; Kumar, A.; Lach-Trifilieff, E.; Wauters, S.; Li, H.; Makonchuk, D.Y.; Glass, D.J.; Kumar, A. The TWEAK-Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice. J. Cell Biol., 2010, 188(6), 833-849.
[http://dx.doi.org/10.1083/jcb.200909117] [PMID: 20308426]
[15]
Seruga, B.; Zhang, H.; Bernstein, L.J.; Tannock, I.F. Cytokines and their relationship to the symptoms and outcome of cancer. Nat. Rev. Cancer, 2008, 8(11), 887-899.
[http://dx.doi.org/10.1038/nrc2507] [PMID: 18846100]
[16]
Feldman, A.M.; Combes, A.; Wagner, D.; Kadakomi, T.; Kubota, T.; Li, Y.Y.; McTiernan, C. The role of tumor necrosis factor in the pathophysiology of heart failure. J. Am. Coll. Cardiol., 2000, 35(3), 537-544.
[http://dx.doi.org/10.1016/S0735-1097(99)00600-2] [PMID: 10716453]
[17]
Niewczas, M.A.; Gohda, T.; Skupien, J.; Smiles, A.M.; Walker, W.H.; Rosetti, F.; Cullere, X.; Eckfeldt, J.H.; Doria, A.; Mayadas, T.N.; Warram, J.H.; Krolewski, A.S. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J. Am. Soc. Nephrol., 2012, 23(3), 507-515.
[http://dx.doi.org/10.1681/ASN.2011060627] [PMID: 22266663]
[18]
Minkah, B. Pro-inflammatory cytokines as markers for the diagnosis of protein energy malnutrition, 2010.
[19]
Abdul-Ghani, M.A.; DeFronzo, R.A. Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol., 2010, 2010476279
[http://dx.doi.org/10.1155/2010/476279] [PMID: 20445742]
[20]
DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care, 2009, 32(Suppl. 2), S157-S163.
[http://dx.doi.org/10.2337/dc09-S302] [PMID: 19875544]
[21]
Rosenfield, R.L.; Ehrmann, D.A. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr. Rev., 2016, 37(5), 467-520.
[http://dx.doi.org/10.1210/er.2015-1104] [PMID: 27459230]
[22]
Ragheb, R.; Shanab, G.M.; Medhat, A.M.; Seoudi, D.M.; Adeli, K.; Fantus, I.G. Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: evidence for PKC activation and oxidative stress-activated signaling pathways. Biochem. Biophys. Res. Commun., 2009, 389(2), 211-216.
[http://dx.doi.org/10.1016/j.bbrc.2009.08.106] [PMID: 19706288]
[23]
Wei, Y.; Chen, K.; Whaley-Connell, A.T.; Stump, C.S.; Ibdah, J.A.; Sowers, J.R. Skeletal muscle insulin resistance: role of inflammatory cytokines and reactive oxygen species. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 294(3), R673-R680.
[http://dx.doi.org/10.1152/ajpregu.00561.2007] [PMID: 18094066]
[24]
Meshkani, R.; Adeli, K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin. Biochem., 2009, 42(13-14), 1331-1346.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.05.018] [PMID: 19501581]
[25]
Watson, R.T.; Kanzaki, M.; Pessin, J.E. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr. Rev., 2004, 25(2), 177-204.
[http://dx.doi.org/10.1210/er.2003-0011] [PMID: 15082519]
[26]
Tomás, E.; Lin, Y.S.; Dagher, Z.; Saha, A.; Luo, Z.; Ido, Y.; Ruderman, N.B. Hyperglycemia and insulin resistance: possible mechanisms. Ann. N. Y. Acad. Sci., 2002, 967(1), 43-51.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04262.x] [PMID: 12079834]
[27]
Björnholm, M.; Zierath, J.R. Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes. Biochem. Soc. Trans., 2005, 33(Pt 2), 354-357.
[http://dx.doi.org/10.1042/BST0330354] [PMID: 15787605]
[28]
Sakamoto, K.; Holman, G.D. Emerging role for AS160/TBC1D4 and TBC1D1 in the reg-ulation of GLUT4 traffic. Am J Physiol- Endoc M, 2008, 295(1), E29-37.
[http://dx.doi.org/10.1152/ajpendo.90331.2008] [PMID: 18477703]
[29]
Itani, S.I.; Saha, A.K.; Kurowski, T.G.; Coffin, H.R.; Tornheim, K.; Ruderman, N.B. Glucose autoregulates its uptake in skeletal muscle: involvement of AMP-activated protein kinase. Diabetes, 2003, 52(7), 1635-1640.
[http://dx.doi.org/10.2337/diabetes.52.7.1635] [PMID: 12829626]
[30]
Klaus, S.; Keipert, S.; Rossmeisl, M.; Kopecky, J. Augmenting energy expenditure by mitochondrial uncoupling: a role of AMP-activated protein kinase. Genes Nutr., 2012, 7(3), 369-386.
[http://dx.doi.org/10.1007/s12263-011-0260-8] [PMID: 22139637]
[31]
Ryder, J.W.; Yang, J.; Galuska, D.; Rincón, J.; Björnholm, M.; Krook, A.; Lund, S.; Pedersen, O.; Wallberg-Henriksson, H.; Zierath, J.R.; Holman, G.D. Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes, 2000, 49(4), 647-654.
[http://dx.doi.org/10.2337/diabetes.49.4.647] [PMID: 10871204]
[32]
Tilg, H.; Moschen, A.R. Inflammatory mechanisms in the regulation of insulin resistance. Mol. Med., 2008, 14(3-4), 222-231.
[http://dx.doi.org/10.2119/2007-00119.Tilg] [PMID: 18235842]
[33]
Koh, H.J. Regulation of exercise-stimulated glucose uptake in skeletal muscle. Ann. Pediatr. Endocrinol. Metab., 2016, 21(2), 61-65.
[http://dx.doi.org/10.6065/apem.2016.21.2.61] [PMID: 27462580]
[34]
Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; Waget, A.; Delmée, E.; Cousin, B.; Sulpice, T.; Chamontin, B.; Ferrières, J.; Tanti, J.F.; Gibson, G.R.; Casteilla, L.; Delzenne, N.M.; Alessi, M.C.; Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007, 56(7), 1761-1772.
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[35]
Plomgaard, P.; Bouzakri, K.; Krogh-Madsen, R.; Mittendorfer, B.; Zierath, J.R.; Pedersen, B.K. Tumor necrosis factor-α induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes, 2005, 54(10), 2939-2945.
[http://dx.doi.org/10.2337/diabetes.54.10.2939] [PMID: 16186396]
[36]
Hommelberg, P.P.; Langen, R.C.; Schols, A.M.; Mensink, R.P.; Plat, J. Inflammatory signaling in skeletal muscle insulin resistance: green signal for nutritional intervention? Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(6), 647-655.
[http://dx.doi.org/10.1097/MCO.0b013e32833f1acd] [PMID: 20842028]
[37]
Halse, R.; Pearson, S.L.; McCormack, J.G.; Yeaman, S.J.; Taylor, R. Effects of tumor necrosis factor-α on insulin action in cultured human muscle cells. Diabetes, 2001, 50(5), 1102-1109.
[http://dx.doi.org/10.2337/diabetes.50.5.1102] [PMID: 11334414]
[38]
Glass, D.J. Signaling pathways perturbing muscle mass. Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(3), 225-229.
[http://dx.doi.org/10.1097/MCO.0b013e32833862df] [PMID: 20397318]
[39]
Dong, Y.; Dekens, D.W.; De Deyn, P.P.; Naude, P.J.; Eisel, U.L. Targeting of tumor necrosis factor alpha receptors as a therapeutic strategy for neurodegenerative disorders. Antibodies (Basel), 2015, 4(4), 369-408.
[http://dx.doi.org/10.3390/antib4040369]
[40]
Chen, N.J.; Chio, I.I.C.; Lin, W.J.; Duncan, G.; Chau, H.; Katz, D.; Huang, H.L.; Pike, K.A.; Hao, Z.; Su, Y.W.; Yamamoto, K.; de Pooter, R.F.; Zúñiga-Pflücker, J.C.; Wakeham, A.; Yeh, W.C.; Mak, T.W. Beyond tumor necrosis factor receptor: TRADD signaling in toll-like receptors. Proc. Natl. Acad. Sci. USA, 2008, 105(34), 12429-12434.
[http://dx.doi.org/10.1073/pnas.0806585105] [PMID: 18719121]
[41]
Chen, G.; Goeddel, D.V. TNF-R1 signaling: a beautiful pathway. Science, 2002, 296(5573), 1634-1635.
[http://dx.doi.org/10.1126/science.1071924] [PMID: 12040173]
[42]
O’Donnell, M.A.; Legarda-Addison, D.; Skountzos, P.; Yeh, W.C.; Ting, A.T. Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr. Biol., 2007, 17(5), 418-424.
[http://dx.doi.org/10.1016/j.cub.2007.01.027] [PMID: 17306544]
[43]
Meylan, E.; Burns, K.; Hofmann, K.; Blancheteau, V.; Martinon, F.; Kelliher, M.; Tschopp, J. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κ B activation. Nat. Immunol., 2004, 5(5), 503-507.
[http://dx.doi.org/10.1038/ni1061] [PMID: 15064760]
[44]
Cabal-Hierro, L.; Rodríguez, M.; Artime, N.; Iglesias, J.; Ugarte, L.; Prado, M.A.; Lazo, P.S. TRAF-mediated modulation of NF-kB AND JNK activation by TNFR2. Cell. Signal., 2014, 26(12), 2658-2666.
[http://dx.doi.org/10.1016/j.cellsig.2014.08.011] [PMID: 25152365]
[45]
Schiaffino, S.; Mammucari, C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle, 2011, 1(1), 4.
[http://dx.doi.org/10.1186/2044-5040-1-4] [PMID: 21798082]
[46]
Reid, M.B.; Li, Y.P. Tumor necrosis factor-α and muscle wasting: a cellular perspective. Respir. Res., 2001, 2(5), 269-272.
[http://dx.doi.org/10.1186/rr67] [PMID: 11686894]
[47]
Valerio, A.; Cardile, A.; Cozzi, V.; Bracale, R.; Tedesco, L.; Pisconti, A.; Palomba, L.; Cantoni, O.; Clementi, E.; Moncada, S.; Carruba, M.O.; Nisoli, E. TNF-α downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J. Clin. Invest., 2006, 116(10), 2791-2798.
[http://dx.doi.org/10.1172/JCI28570] [PMID: 16981010]
[48]
Hall, D.T.; Ma, J.F.; Marco, S.D.; Gallouzi, I.E. Inducible nitric oxide synthase (iNOS) in muscle wasting syndrome, sarcopenia, and cachexia. Aging (Albany NY), 2011, 3(8), 702-715.
[http://dx.doi.org/10.18632/aging.100358] [PMID: 21832306]
[49]
Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta, 2011, 1813(5), 878-888.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.034] [PMID: 21296109]
[50]
De Paepe, B.; De Bleecker, J.L. Cytokines and chemokines as regulators of skeletal muscle inflammation: presenting the case of Duchenne muscular dystrophy. Mediators Inflamm., 2013, 2013540370
[http://dx.doi.org/10.1155/2013/540370] [PMID: 24302815]
[51]
Ma, J.F.; Sanchez, B.J.; Hall, D.T.; Tremblay, A.K.; Di Marco, S.; Gallouzi, I.E. STAT3 promotes IFNγ/TNFα-induced muscle wasting in an NF-κB-dependent and IL-6-independent manner. EMBO Mol. Med., 2017, 9(5), 622-637.
[http://dx.doi.org/10.15252/emmm.201607052] [PMID: 28264935]
[52]
Zhang, L.; Pan, J.; Dong, Y.; Tweardy, D.J.; Dong, Y.; Garibotto, G.; Mitch, W.E. Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell Metab., 2013, 18(3), 368-379.
[http://dx.doi.org/10.1016/j.cmet.2013.07.012] [PMID: 24011072]
[53]
Belizário, J.E.; Fontes-Oliveira, C.C.; Borges, J.P.; Kashiabara, J.A.; Vannier, E. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. Springerplus, 2016, 5(1), 619.
[http://dx.doi.org/10.1186/s40064-016-2197-2] [PMID: 27330885]
[54]
Wojdasiewicz, P.; Poniatowski, L.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm., 2014, 2014561459
[http://dx.doi.org/10.1155/2014/561459] [PMID: 24876674]
[55]
Dagdeviren, S.; Jung, D.Y.; Lee, E.; Friedline, R.H.; Noh, H.L.; Kim, J.H.; Patel, P.R.; Tsitsilianos, N.; Tsitsilianos, A.V.; Tran, D.A.; Tsougranis, G.H.; Kearns, C.C.; Uong, C.P.; Kwon, J.Y.; Muller, W.; Lee, K.W.; Kim, J.K. Altered interleukin-10 signaling in skeletal muscle regulates obesity-mediated inflammation and insulin resistance. Mol. Cell. Biol., 2016, 36(23), 2956-2966.
[http://dx.doi.org/10.1128/MCB.00181-16] [PMID: 27644327]
[56]
Hutchins, A.P.; Diez, D.; Miranda-Saavedra, D. The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. Brief. Funct. Genomics, 2013, 12(6), 489-498.
[http://dx.doi.org/10.1093/bfgp/elt028] [PMID: 23943603]
[57]
Walter, M.R. The molecular basis of IL-10 function: from receptor structure to the onset of signaling. Curr. Top. Microbiol. Immunol., 2014, 380, 191-212.
[http://dx.doi.org/10.1007/978-3-662-43492-5_9] [PMID: 25004819]
[58]
Sato, S.; Ogura, Y.; Tajrishi, M.M.; Kumar, A. Elevated levels of TWEAK in skeletal muscle promote visceral obesity, insulin resistance, and metabolic dysfunction. FASEB J., 2015, 29(3), 988-1002.
[http://dx.doi.org/10.1096/fj.14-260703] [PMID: 25466899]
[59]
Lagathu, C.; Yvan-Charvet, L.; Bastard, J.P.; Maachi, M.; Quignard-Boulangé, A.; Capeau, J.; Caron, M. Long-term treatment with interleukin-1β induces insulin resistance in murine and human adipocytes. Diabetologia, 2006, 49(9), 2162-2173.
[http://dx.doi.org/10.1007/s00125-006-0335-z] [PMID: 16865359]
[60]
Jager, J.; Grémeaux, T.; Cormont, M.; Le Marchand-Brustel, Y.; Tanti, J.F. Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology, 2007, 148(1), 241-251.
[http://dx.doi.org/10.1210/en.2006-0692] [PMID: 17038556]
[61]
Kain, V.; Kapadia, B.; Viswakarma, N.; Seshadri, S.; Prajapati, B.; Jena, P.K.; Teja Meda, C.L.; Subramanian, M.; Kaimal Suraj, S.; Kumar, S.T.; Prakash Babu, P.; Thimmapaya, B.; Reddy, J.K.; Parsa, K.V.; Misra, P. Co-activator binding protein PIMT mediates TNF-α induced insulin resistance in skeletal muscle via the transcriptional down-regulation of MEF2A and GLUT4. Sci. Rep., 2015, 5, 15197.
[http://dx.doi.org/10.1038/srep15197] [PMID: 26468734]
[62]
Lappas, M. Double stranded viral RNA induces inflammation and insulin resistance in skeletal muscle from pregnant women in vitro. Metabolism, 2015, 64(5), 642-653.
[http://dx.doi.org/10.1016/j.metabol.2015.02.002] [PMID: 25707553]
[63]
Aljada, A.; Saadeh, R.; Assian, E.; Ghanim, H.; Dandona, P. Insulin inhibits the expression of intercellular adhesion molecule-1 by human aortic endothelial cells through stimulation of nitric oxide. J. Clin. Endocrinol. Metab., 2000, 85(7), 2572-2575.
[http://dx.doi.org/10.1210/jc.85.7.2572] [PMID: 10902810]
[64]
Nieto-Vazquez, I.; Fernández-Veledo, S.; de Alvaro, C.; Lorenzo, M. Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. Diabetes, 2008, 57(12), 3211-3221.
[http://dx.doi.org/10.2337/db07-1062] [PMID: 18796617]
[65]
Viollet, B.; Lantier, L.; Devin-Leclerc, J.; Hebrard, S.; Amouyal, C.; Mounier, R.; Foretz, M.; Andreelli, F. Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front. Biosci., 2009, 14, 3380-3400.
[http://dx.doi.org/10.2741/3460] [PMID: 19273282]
[66]
Lumeng, C.N.; Deyoung, S.M.; Saltiel, A.R. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am. J. Physiol. Endocrinol. Metab., 2007, 292(1), E166-E174.
[http://dx.doi.org/10.1152/ajpendo.00284.2006] [PMID: 16926380]
[67]
Lontchi-Yimagou, E.; Sobngwi, E.; Matsha, T.E.; Kengne, A.P. Diabetes mellitus and inflammation. Curr. Diab. Rep., 2013, 13(3), 435-444.
[http://dx.doi.org/10.1007/s11892-013-0375-y] [PMID: 23494755]
[68]
Lowe, G.; Woodward, M.; Hillis, G.; Rumley, A.; Li, Q.; Harrap, S.; Marre, M.; Hamet, P.; Patel, A.; Poulter, N.; Chalmers, J. Circulating inflammatory markers and the risk of vascular complications and mortality in people with type 2 diabetes and cardiovascular disease or risk factors: the ADVANCE study. Diabetes, 2014, 63(3), 1115-1123.
[http://dx.doi.org/10.2337/db12-1625] [PMID: 24222348]
[69]
Perry, B.D.; Caldow, M.K.; Brennan-Speranza, T.C.; Sbaraglia, M.; Jerums, G.; Garnham, A.; Wong, C.; Levinger, P.; Asrar Ul Haq, M.; Hare, D.L.; Price, S.R.; Levinger, I. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exerc. Immunol. Rev., 2016, 22, 94-109.
[PMID: 26859514]
[70]
Saponaro, C.; Gaggini, M.; Carli, F.; Gastaldelli, A. The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients, 2015, 7(11), 9453-9474.
[http://dx.doi.org/10.3390/nu7115475] [PMID: 26580649]
[71]
Omar, B.; Zmuda-Trzebiatowska, E.; Manganiello, V.; Göransson, O.; Degerman, E. Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cell. Signal., 2009, 21(5), 760-766.
[http://dx.doi.org/10.1016/j.cellsig.2009.01.015] [PMID: 19167487]
[72]
Düvel, K.; Yecies, J.L.; Menon, S.; Raman, P.; Lipovsky, A.I.; Souza, A.L.; Triantafellow, E.; Ma, Q.; Gorski, R.; Cleaver, S.; Vander Heiden, M.G.; MacKeigan, J.P.; Finan, P.M.; Clish, C.B.; Murphy, L.O.; Manning, B.D. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell, 2010, 39(2), 171-183.
[http://dx.doi.org/10.1016/j.molcel.2010.06.022] [PMID: 20670887]
[73]
Li, S.; Ogawa, W.; Emi, A.; Hayashi, K.; Senga, Y.; Nomura, K.; Hara, K.; Yu, D.; Kasuga, M. Role of S6K1 in regulation of SREBP1c expression in the liver. Biochem. Biophys. Res. Commun., 2011, 412(2), 197-202.
[http://dx.doi.org/10.1016/j.bbrc.2011.07.038] [PMID: 21806970]
[74]
Chang, Y.; Wang, J.; Lu, X.; Thewke, D.P.; Mason, R.J. KGF induces lipogenic genes through a PI3K and JNK/SREBP-1 pathway in H292 cells. J. Lipid Res., 2005, 46(12), 2624-2635.
[http://dx.doi.org/10.1194/jlr.M500154-JLR200] [PMID: 16162944]
[75]
Peterson, T.R.; Sengupta, S.S.; Harris, T.E.; Carmack, A.E.; Kang, S.A.; Balderas, E.; Guertin, D.A.; Madden, K.L.; Carpenter, A.E.; Finck, B.N.; Sabatini, D.M. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell, 2011, 146(3), 408-420.
[http://dx.doi.org/10.1016/j.cell.2011.06.034] [PMID: 21816276]
[76]
Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y.J.; Gao, B.; Wierzbicki, M.; Verbeuren, T.J.; Shaw, R.J.; Cohen, R.A.; Zang, M. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab., 2011, 13(4), 376-388.
[http://dx.doi.org/10.1016/j.cmet.2011.03.009] [PMID: 21459323]
[77]
Costamagna, D.; Costelli, P.; Sampaolesi, M.; Penna, F. Role of inflammation in muscle homeostasis and myogenesis. Mediators Inflamm., 2015, 2015805172
[http://dx.doi.org/10.1155/2015/805172] [PMID: 26508819]
[78]
Tan, P.; Peng, M.; Liu, D.; Guo, H.; Mai, K.; Nian, R.; Macq, B.; Ai, Q. Suppressor of cytokine signaling 3 (SOCS3) is related to pro-inflammatory cytokine production and triglyceride deposition in turbot (Scophthalmus maximus). Fish Shellfish Immunol., 2017, 70, 381-390.
[http://dx.doi.org/10.1016/j.fsi.2017.09.006] [PMID: 28882805]
[79]
Xie, P. TRAF molecules in cell signaling and in human diseases. J. Mol. Signal., 2013, 8(1), 7.
[http://dx.doi.org/10.1186/1750-2187-8-7] [PMID: 23758787]
[80]
Dey, P.; Panga, V.; Raghunathan, S. A cytokine signalling network for the regulation of inducible nitric oxide synthase expression in rheumatoid arthritis. PLoS One, 2016, 11(9)e0161306
[http://dx.doi.org/10.1371/journal.pone.0161306] [PMID: 27626941]
[81]
Pina, T.; Armesto, S.; Lopez-Mejias, R.; Genre, F.; Ubilla, B.; Gonzalez-Lopez, M.A.; Gonzalez-Vela, M.C.; Corrales, A.; Blanco, R.; Garcia-Unzueta, M.T.; Hernandez, J.L.; Llorca, J.; Gonzalez-Gay, M.A. Anti-TNF-α therapy improves insulin sensitivity in non-diabetic patients with psoriasis: a 6-month prospective study. J. Eur. Acad. Dermatol. Venereol., 2015, 29(7), 1325-1330.
[http://dx.doi.org/10.1111/jdv.12814] [PMID: 25353352]
[82]
Babon, J.J.; Varghese, L.N.; Nicola, N.A. Inhibition of IL-6 family cytokines by SOCS3. Semin. Immunol., 2014, 26(1), 13-19.
[http://dx.doi.org/10.1016/j.smim.2013.12.004] [PMID: 24418198]
[83]
Belfort, R.; Mandarino, L.; Kashyap, S.; Wirfel, K.; Pratipanawatr, T.; Berria, R.; Defronzo, R.A.; Cusi, K. Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes, 2005, 54(6), 1640-1648.
[http://dx.doi.org/10.2337/diabetes.54.6.1640] [PMID: 15919784]
[84]
Kim, J.Y.; Hickner, R.C.; Cortright, R.L.; Dohm, G.L.; Houmard, J.A. Lipid oxidation is reduced in obese human skeletal muscle. Am. J. Physiol. Endocrinol. Metab., 2000, 279(5), E1039-E1044.
[http://dx.doi.org/10.1152/ajpendo.2000.279.5.E1039] [PMID: 11052958]
[85]
Corcoran, M.P.; Lamon-Fava, S.; Fielding, R.A. Skeletal muscle lipid deposition and insulin resistance: effect of dietary fatty acids and exercise. Am. J. Clin. Nutr., 2007, 85(3), 662-677.
[http://dx.doi.org/10.1093/ajcn/85.3.662] [PMID: 17344486]
[86]
Pang, S.; Tang, H.; Zhuo, S.; Zang, Y.Q.; Le, Y. Regulation of fasting fuel metabolism by toll-like receptor 4. Diabetes, 2010, 59(12), 3041-3048.
[http://dx.doi.org/10.2337/db10-0418] [PMID: 20855545]
[87]
Glickman, M.H.; Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev., 2002, 82(2), 373-428.
[http://dx.doi.org/10.1152/physrev.00027.2001] [PMID: 11917093]
[88]
Frisard, M.I.; McMillan, R.P.; Marchand, J.; Wahlberg, K.A.; Wu, Y.; Voelker, K.A.; Heilbronn, L.; Haynie, K.; Muoio, B.; Li, L.; Hulver, M.W. Toll-like receptor 4 modulates skeletal muscle substrate metabolism. Am. J. Physiol. Endocrinol. Metab., 2010, 298(5), E988-E998.
[http://dx.doi.org/10.1152/ajpendo.00307.2009] [PMID: 20179247]
[89]
Rogero, M.M.; Calder, P.C. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients, 2018, 10(4), 1-12.
[http://dx.doi.org/10.3390/nu10040432] [PMID: 29601492]
[90]
Wegrzyn, J.; Potla, R.; Chwae, Y.J.; Sepuri, N.B.; Zhang, Q.; Koeck, T.; Derecka, M.; Szczepanek, K.; Szelag, M.; Gornicka, A.; Moh, A.; Moghaddas, S.; Chen, Q.; Bobbili, S.; Cichy, J.; Dulak, J.; Baker, D.P.; Wolfman, A.; Stuehr, D.; Hassan, M.O.; Fu, X.Y.; Avadhani, N.; Drake, J.I.; Fawcett, P.; Lesnefsky, E.J.; Larner, A.C. Function of mitochondrial Stat3 in cellular respiration. Science, 2009, 323(5915), 793-797.
[http://dx.doi.org/10.1126/science.1164551] [PMID: 19131594]
[91]
Holland, W.L.; Bikman, B.T.; Wang, L.P.; Yuguang, G.; Sargent, K.M.; Bulchand, S.; Knotts, T.A.; Shui, G.; Clegg, D.J.; Wenk, M.R.; Pagliassotti, M.J.; Scherer, P.E.; Summers, S.A. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J. Clin. Invest., 2011, 121(5), 1858-1870.
[http://dx.doi.org/10.1172/JCI43378] [PMID: 21490391]
[92]
Guadagnin, E.; Mázala, D.; Chen, Y.W. Stat3 in skeletal muscle function and disorders. Int. J. Mol. Sci., 2018, 19(8), 1-16.
[http://dx.doi.org/10.3390/ijms19082265] [PMID: 30072615]
[93]
Barish, G.D.; Downes, M.; Alaynick, W.A.; Yu, R.T.; Ocampo, C.B.; Bookout, A.L.; Mangelsdorf, D.J.; Evans, R.M. A nuclear receptor atlas: macrophage activation. Mol. Endocrinol., 2005, 19(10), 2466-2477.
[http://dx.doi.org/10.1210/me.2004-0529] [PMID: 16051664]
[94]
Castrillo, A.; Joseph, S.B.; Vaidya, S.A.; Haberland, M.; Fogelman, A.M.; Cheng, G.; Tontonoz, P. Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol. Cell, 2003, 12(4), 805-816.
[http://dx.doi.org/10.1016/S1097-2765(03)00384-8] [PMID: 14580333]
[95]
Gordon, B.S.; Kelleher, A.R.; Kimball, S.R. Regulation of muscle protein synthesis and the effects of catabolic states. Int. J. Biochem. Cell Biol., 2013, 45(10), 2147-2157.
[http://dx.doi.org/10.1016/j.biocel.2013.05.039] [PMID: 23769967]
[96]
Phillips, R.S.; Enwonwu, C.O.; Falkler, W.A. Pro- versus anti-inflammatory cytokine profile in African children with acute oro-facial noma (cancrum oris, noma). Eur. Cytokine Netw., 2005, 16(1), 70-77.
[PMID: 15809209]
[97]
Nicastro, H.; da Luz, C.R.; Chaves, D.F.; Bechara, L.R.; Voltarelli, V.A.; Rogero, M.M.; Lancha, A.H., Jr Does branched-chain amino acids supplementation modulate skeletal muscle remodeling through inflammation modulation? Possible mechanisms of action. J. Nutr. Metab., 2012, 2012136937
[http://dx.doi.org/10.1155/2012/136937] [PMID: 22536489]
[98]
Tisdale, M.J. Catabolic mediators of cancer cachexia. Curr. Opin. Support. Palliat. Care, 2008, 2(4), 256-261.
[http://dx.doi.org/10.1097/SPC.0b013e328319d7fa] [PMID: 19069310]
[99]
Peterson, J.M.; Bakkar, N.; Guttridge, D.C. NF-κB signaling in skeletal muscle health and disease. Curr. Top. Dev. Biol., 2011, 96(96), 85-119.
[http://dx.doi.org/10.1016/B978-0-12-385940-2.00004-8] [PMID: 21621068]
[100]
Patel, H.J.; Patel, B.M. TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci., 2017, 170, 56-63.
[http://dx.doi.org/10.1016/j.lfs.2016.11.033] [PMID: 27919820]
[101]
Kadowaki, M.; Kanazawa, T. Amino acids as regulators of proteolysis. J. Nutr., 2003, 133(6)(Suppl. 1), 2052S-2056S.
[http://dx.doi.org/10.1093/jn/133.6.2052S] [PMID: 12771364]
[102]
Glass, D.J. Molecular mechanisms modulating muscle mass. Trends Mol. Med., 2003, 9(8), 344-350.
[http://dx.doi.org/10.1016/S1471-4914(03)00138-2] [PMID: 12928036]
[103]
Goll, D.E.; Thompson, V.F.; Li, H.; Wei, W.; Cong, J. The calpain system. Physiol. Rev., 2003, 83(3), 731-801.
[http://dx.doi.org/10.1152/physrev.00029.2002] [PMID: 12843408]
[104]
Huang, J.; Zhu, X. The molecular mechanisms of calpains action on skeletal muscle atrophy. Physiol. Res., 2016, 65(4), 547-560.
[http://dx.doi.org/10.33549/physiolres.933087] [PMID: 26988155]
[105]
Kramerova, I.; Kudryashova, E.; Tidball, J.G.; Spencer, M.J. Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro. Hum. Mol. Genet., 2004, 13(13), 1373-1388.
[http://dx.doi.org/10.1093/hmg/ddh153] [PMID: 15138196]
[106]
Richard, I.; Roudaut, C.; Marchand, S.; Baghdiguian, S.; Herasse, M.; Stockholm, D.; Ono, Y.; Suel, L.; Bourg, N.; Sorimachi, H.; Lefranc, G.; Fardeau, M.; Sébille, A.; Beckmann, J.S. Loss of calpain 3 proteolytic activity leads to muscular dystrophy and to apoptosis-associated IkappaBalpha/nuclear factor kappaB pathway perturbation in mice. J. Cell Biol., 2000, 151(7), 1583-1590.
[http://dx.doi.org/10.1083/jcb.151.7.1583] [PMID: 11134085]
[107]
Tidball, J.G.; Spencer, M.J. Calpains and muscular dystrophies. Int. J. Biochem. Cell Biol., 2000, 32(1), 1-5.
[http://dx.doi.org/10.1016/S1357-2725(99)00095-3] [PMID: 10661889]
[108]
Beckmann, J.S.; Spencer, M. Calpain 3, the “gatekeeper” of proper sarcomere assembly, turnover and maintenance. Neuromuscul. Disord., 2008, 18(12), 913-921.
[http://dx.doi.org/10.1016/j.nmd.2008.08.005] [PMID: 18974005]
[109]
Tidball, J.G.; Spencer, M.J. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J. Physiol., 2002, 545(3), 819-828.
[http://dx.doi.org/10.1113/jphysiol.2002.024935] [PMID: 12482888]
[110]
Smith, I.J.; Lecker, S.H.; Hasselgren, P.O. Calpain activity and muscle wasting in sepsis. Am. J. Physiol. Endocrinol. Metab., 2008, 295(4), E762-E771.
[http://dx.doi.org/10.1152/ajpendo.90226.2008] [PMID: 18492780]
[111]
Bartoli, M.; Richard, I. Calpains in muscle wasting. Int. J. Biochem. Cell Biol., 2005, 37(10), 2115-2133.
[http://dx.doi.org/10.1016/j.biocel.2004.12.012] [PMID: 16125114]
[112]
Nelson, W.B.; Smuder, A.J.; Hudson, M.B.; Talbert, E.E.; Powers, S.K. Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation. Crit. Care Med., 2012, 40(6), 1857-1863.
[http://dx.doi.org/10.1097/CCM.0b013e318246bb5d] [PMID: 22487998]
[113]
Matsumoto, A.; Fujita, N.; Arakawa, T.; Fujino, H.; Miki, A. Influence of electrical stimulation on calpain and ubiquitin-proteasome systems in the denervated and unloaded rat tibialis anterior muscles. Acta Histochem., 2014, 116(5), 936-942.
[http://dx.doi.org/10.1016/j.acthis.2014.03.006] [PMID: 24745757]
[114]
Fareed, M.U.; Evenson, A.R.; Wei, W.; Menconi, M.; Poylin, V.; Petkova, V.; Pignol, B.; Hasselgren, P.O. Treatment of rats with calpain inhibitors prevents sepsis-induced muscle proteolysis independent of atrogin-1/MAFbx and MuRF1 expression. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 290(6), R1589-R1597.
[http://dx.doi.org/10.1152/ajpregu.00668.2005] [PMID: 16455766]
[115]
Purintrapiban, J.; Wang, M.C.; Forsberg, N.E. Degradation of sarcomeric and cytoskeletal proteins in cultured skeletal muscle cells. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2003, 136(3), 393-401.
[http://dx.doi.org/10.1016/S1096-4959(03)00201-X] [PMID: 14602148]
[116]
Yang, H.; Menconi, M.J.; Wei, W.; Petkova, V.; Hasselgren, P.O. Dexamethasone upregulates the expression of the nuclear cofactor p300 and its interaction with C/EBPbeta in cultured myotubes. J. Cell. Biochem., 2005, 94(5), 1058-1067.
[http://dx.doi.org/10.1002/jcb.20371] [PMID: 15669015]
[117]
Yang, H.; Wei, W.; Menconi, M.; Hasselgren, P.O. Dexamethasone-induced protein degradation in cultured myotubes is p300/HAT dependent. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(1), R337-R4.
[http://dx.doi.org/10.1152/ajpregu.00230.2006] [PMID: 16973938]
[118]
Ji, J.; Su, L.; Liu, Z. Critical role of calpain in inflammation. Biomed. Rep., 2016, 5(6), 647-652.
[http://dx.doi.org/10.3892/br.2016.785] [PMID: 28101338]
[119]
McCarthy, D.A.; Ranganathan, A.; Subbaram, S.; Flaherty, N.L.; Patel, N.; Trebak, M.; Hempel, N.; Melendez, J.A. Redox-control of the alarmin, Interleukin-1α. Redox Biol., 2013, 1(1), 218-225.
[http://dx.doi.org/10.1016/j.redox.2013.03.001] [PMID: 24024155]
[120]
Smith, A.W.; Doonan, B.P.; Tyor, W.R.; Abou-Fayssal, N.; Haque, A.; Banik, N.L. Regulation of Th1/Th17 cytokines and IDO gene expression by inhibition of calpain in PBMCs from MS patients. J. Neuroimmunol., 2011, 232(1-2), 179-185.
[http://dx.doi.org/10.1016/j.jneuroim.2010.09.030] [PMID: 21075457]
[121]
Iguchi-Hashimoto, M.; Usui, T.; Yoshifuji, H.; Shimizu, M.; Kobayashi, S.; Ito, Y.; Murakami, K.; Shiomi, A.; Yukawa, N.; Kawabata, D.; Nojima, T.; Ohmura, K.; Fujii, T.; Mimori, T. Overexpression of a minimal domain of calpastatin suppresses IL-6 production and Th17 development via reduced NF-κB and increased STAT5 signals. PLoS One, 2011, 6(10)e27020
[http://dx.doi.org/10.1371/journal.pone.0027020] [PMID: 22046434]
[122]
Pan, H.C.; Yang, C.N.; Hung, Y.W.; Lee, W.J.; Tien, H.R.; Shen, C.C.; Sheehan, J.; Chou, C.T.; Sheu, M.L. Reciprocal modulation of C/EBP-α and C/EBP-β by IL-13 in activated microglia prevents neuronal death. Eur. J. Immunol., 2013, 43(11), 2854-2865.
[http://dx.doi.org/10.1002/eji.201343301] [PMID: 23881867]
[123]
Yamamoto, Y.; Gaynor, R.B. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J. Clin. Invest., 2001, 107(2), 135-142.
[http://dx.doi.org/10.1172/JCI11914] [PMID: 11160126]
[124]
Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol., 2015, 6, 260-271.
[http://dx.doi.org/10.1016/j.redox.2015.08.010] [PMID: 26296072]
[125]
Stalker, T.J.; Gong, Y.; Scalia, R. The calcium-dependent protease calpain causes endothelial dysfunction in type 2 diabetes. Diabetes, 2005, 54(4), 1132-1140.
[http://dx.doi.org/10.2337/diabetes.54.4.1132] [PMID: 15793253]
[126]
Letavernier, E.; Perez, J.; Bellocq, A.; Mesnard, L.; de Castro Keller, A.; Haymann, J.P.; Baud, L. Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension. Circ. Res., 2008, 102(6), 720-728.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.160077] [PMID: 18258859]
[127]
Zhao, Y.; Malinin, N.L.; Meller, J.; Ma, Y.; West, X.Z.; Bledzka, K.; Qin, J.; Podrez, E.A.; Byzova, T.V. Regulation of cell adhesion and migration by Kindlin-3 cleavage by calpain. J. Biol. Chem., 2012, 287(47), 40012-40020.
[http://dx.doi.org/10.1074/jbc.M112.380469] [PMID: 23012377]
[128]
Franco, S.J.; Huttenlocher, A. Regulating cell migration: calpains make the cut. J. Cell Sci., 2005, 118(Pt 17), 3829-3838.
[http://dx.doi.org/10.1242/jcs.02562] [PMID: 16129881]
[129]
Cui, Z.; Han, Z.; Li, Z.; Hu, H.; Patel, J.M.; Antony, V.; Block, E.R.; Su, Y. Involvement of calpain-calpastatin in cigarette smoke-induced inhibition of lung endothelial nitric oxide synthase. Am. J. Respir. Cell Mol. Biol., 2005, 33(5), 513-520.
[http://dx.doi.org/10.1165/rcmb.2005-0046OC] [PMID: 16100081]
[130]
Dong, Y.; Wu, Y.; Wu, M.; Wang, S.; Zhang, J.; Xie, Z.; Xu, J.; Song, P.; Wilson, K.; Zhao, Z.; Lyons, T.; Zou, M.H. Activation of protease calpain by oxidized and glycated LDL increases the degradation of endothelial nitric oxide synthase. J. Cell. Mol. Med., 2009, 13(9A), 2899-2910.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00416.x] [PMID: 18624772]
[131]
Wang, S.; Peng, Q.; Zhang, J.; Liu, L. Na+/H+ exchanger is required for hyperglycaemia-induced endothelial dysfunction via calcium-dependent calpain. Cardiovasc. Res., 2008, 80(2), 255-262.
[http://dx.doi.org/10.1093/cvr/cvn179] [PMID: 18591204]
[132]
McClung, J.M.; Judge, A.R.; Talbert, E.E.; Powers, S.K. Calpain-1 is required for hydrogen peroxide-induced myotube atrophy. Am. J. Physiol. Cell Physiol., 2009, 296(2), C363-C371.
[http://dx.doi.org/10.1152/ajpcell.00497.2008] [PMID: 19109522]
[133]
Dargelos, E.; Brulé, C.; Stuelsatz, P.; Mouly, V.; Veschambre, P.; Cottin, P.; Poussard, S. Up-regulation of calcium-dependent proteolysis in human myoblasts under acute oxidative stress. Exp. Cell Res., 2010, 316(1), 115-125.
[http://dx.doi.org/10.1016/j.yexcr.2009.07.025] [PMID: 19651121]
[134]
Siems, W.; Capuozzo, E.; Lucano, A.; Salerno, C.; Crifò, C. High sensitivity of plasma membrane ion transport ATPases from human neutrophils towards 4-hydroxy-2,3-trans-nonenal. Life Sci., 2003, 73(20), 2583-2590.
[http://dx.doi.org/10.1016/S0024-3205(03)00661-1] [PMID: 12967682]
[135]
Oda, A.; Wakao, H.; Fujita, H. Calpain is a signal transducer and activator of transcription (STAT) 3 and STAT5 protease. Blood, 2002, 99(5), 1850-1852.
[http://dx.doi.org/10.1182/blood.V99.5.1850] [PMID: 11861304]
[136]
Wei, W.; Yang, H.; Cao, P.; Menconi, M.; Chamberlain, C.; Petkova, V.; Hasselgren, P.O. Degradation of C/EBPbeta in cultured myotubes is calpain-dependent. J. Cell. Physiol., 2006, 208(2), 386-398.
[http://dx.doi.org/10.1002/jcp.20684] [PMID: 16646084]
[137]
Chockalingam, P.S.; Cholera, R.; Oak, S.A.; Zheng, Y.; Jarrett, H.W.; Thomason, D.B. Dystrophin-glycoprotein complex and Ras and Rho GTPase signaling are altered in muscle atrophy. Am. J. Physiol. Cell Physiol., 2002, 283(2), C500-C511.
[http://dx.doi.org/10.1152/ajpcell.00529.2001] [PMID: 12107060]
[138]
Sneddon, A.A.; Delday, M.I.; Maltin, C.A. Amelioration of denervation-induced atrophy by clenbuterol is associated with increased PKC-α activity. Am. J. Physiol. Endocrinol. Metab., 2000, 279(1), E188-E195.
[http://dx.doi.org/10.1152/ajpendo.2000.279.1.E188] [PMID: 10893339]
[139]
Schulz, R.A.; Yutzey, K.E. Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev. Biol., 2004, 266(1), 1-16.
[http://dx.doi.org/10.1016/j.ydbio.2003.10.008] [PMID: 14729474]
[140]
Horsley, V.; Jansen, K.M.; Mills, S.T.; Pavlath, G.K. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell, 2003, 113(4), 483-494.
[http://dx.doi.org/10.1016/S0092-8674(03)00319-2] [PMID: 12757709]
[141]
Sato, S.; Fujita, N.; Tsuruo, T. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA, 2000, 97(20), 10832-10837.
[http://dx.doi.org/10.1073/pnas.170276797] [PMID: 10995457]
[142]
Smith, I.J.; Dodd, S.L. Calpain activation causes a proteasome-dependent increase in protein degradation and inhibits the Akt signalling pathway in rat diaphragm muscle. Exp. Physiol., 2007, 92(3), 561-573.
[http://dx.doi.org/10.1113/expphysiol.2006.035790] [PMID: 17272355]
[143]
Sandri, M.; Sandri, C.; Gilbert, A.; Skurk, C.; Calabria, E.; Picard, A.; Walsh, K.; Schiaffino, S.; Lecker, S.H.; Goldberg, A.L. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell, 2004, 117(3), 399-412.
[http://dx.doi.org/10.1016/S0092-8674(04)00400-3] [PMID: 15109499]
[144]
Stitt, T.N.; Drujan, D.; Clarke, B.A.; Panaro, F.; Timofeyva, Y.; Kline, W.O.; Gonzalez, M.; Yancopoulos, G.D.; Glass, D.J. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell, 2004, 14(3), 395-403.
[http://dx.doi.org/10.1016/S1097-2765(04)00211-4] [PMID: 15125842]
[145]
Glass, D.J. Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. Biochem. Cell Biol., 2005, 37(10), 1974-1984.
[http://dx.doi.org/10.1016/j.biocel.2005.04.018] [PMID: 16087388]
[146]
Bartke, T.; Pohl, C.; Pyrowolakis, G.; Jentsch, S. Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol. Cell, 2004, 14(6), 801-811.
[http://dx.doi.org/10.1016/j.molcel.2004.05.018] [PMID: 15200957]
[147]
Lecker, S.H.; Jagoe, R.T.; Gilbert, A.; Gomes, M.; Baracos, V.; Bailey, J.; Price, S.R.; Mitch, W.E.; Goldberg, A.L. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J., 2004, 18(1), 39-51.
[http://dx.doi.org/10.1096/fj.03-0610com] [PMID: 14718385]
[148]
Saini, A.; Al-Shanti, N.; Faulkner, S.H.; Stewart, C.E. Pro- and anti-apoptotic roles for IGF-I in TNF-α-induced apoptosis: a MAP kinase mediated mechanism. Growth Factors, 2008, 26(5), 239-253.
[http://dx.doi.org/10.1080/08977190802291634] [PMID: 18651291]
[149]
Li, Y.P.; Chen, Y.; Li, A.S.; Reid, M.B. Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am. J. Physiol. Cell Physiol., 2003, 285(4), C806-C812.
[http://dx.doi.org/10.1152/ajpcell.00129.2003] [PMID: 12773310]
[150]
Stupka, N.; Tarnopolsky, M.A.; Yardley, N.J.; Phillips, S.M. Cellular adaptation to repeated eccentric exercise-induced muscle damage. J. Appl. Physiol., 2001, 91(4), 1669-1678.
[http://dx.doi.org/10.1152/jappl.2001.91.4.1669] [PMID: 11568149]
[151]
Pickart, C.M. Back to the future with ubiquitin. Cell, 2004, 116(2), 181-190.
[http://dx.doi.org/10.1016/S0092-8674(03)01074-2] [PMID: 14744430]
[152]
Cai, D.; Frantz, J.D.; Tawa, N.E., Jr; Melendez, P.A.; Oh, B.C.; Lidov, H.G.; Hasselgren, P.O.; Frontera, W.R.; Lee, J.; Glass, D.J.; Shoelson, S.E. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell, 2004, 119(2), 285-298.
[http://dx.doi.org/10.1016/j.cell.2004.09.027] [PMID: 15479644]
[153]
Hunter, R.B.; Stevenson, E.; Koncarevic, A.; Mitchell-Felton, H.; Essig, D.A.; Kandarian, S.C. Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J., 2002, 16(6), 529-538.
[http://dx.doi.org/10.1096/fj.01-0866com] [PMID: 11919155]
[154]
Guttridge, D.C.; Mayo, M.W.; Madrid, L.V.; Wang, C.Y.; Baldwin, A.S., Jr NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science, 2000, 289(5488), 2363-2366.
[http://dx.doi.org/10.1126/science.289.5488.2363] [PMID: 11009425]
[155]
Gomes, M.D.; Lecker, S.H.; Jagoe, R.T.; Navon, A.; Goldberg, A.L. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc. Natl. Acad. Sci. USA, 2001, 98(25), 14440-14445.
[http://dx.doi.org/10.1073/pnas.251541198] [PMID: 11717410]
[156]
Bodine, S.C.; Latres, E.; Baumhueter, S.; Lai, V.K.M.; Nunez, L.; Clarke, B.A.; Poueymirou, W.T.; Panaro, F.J.; Na, E.; Dharmarajan, K.; Pan, Z.Q.; Valenzuela, D.M.; DeChiara, T.M.; Stitt, T.N.; Yancopoulos, G.D.; Glass, D.J. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 2001, 294(5547), 1704-1708.
[http://dx.doi.org/10.1126/science.1065874] [PMID: 11679633]
[157]
Hasselgren, P.O.; Fischer, J.E. Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann. Surg., 2001, 233(1), 9-17.
[http://dx.doi.org/10.1097/00000658-200101000-00003] [PMID: 11141219]
[158]
Sedger, L.M.; McDermott, M.F. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev., 2014, 25(4), 453-472.
[http://dx.doi.org/10.1016/j.cytogfr.2014.07.016] [PMID: 25169849]
[159]
Sishi, B.J.; Engelbrecht, A.M. Tumor necrosis factor alpha (TNF-α) inactivates the PI3-kinase/PKB pathway and induces atrophy and apoptosis in L6 myotubes. Cytokine, 2011, 54(2), 173-184.
[http://dx.doi.org/10.1016/j.cyto.2011.01.009] [PMID: 21300557]
[160]
Paul, P.K.; Gupta, S.K.; Bhatnagar, S.; Panguluri, S.K.; Darnay, B.G.; Choi, Y.; Kumar, A. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J. Cell Biol., 2010, 191(7), 1395-1411.
[http://dx.doi.org/10.1083/jcb.201006098] [PMID: 21187332]
[161]
Fitts, R.H.; Riley, D.R.; Widrick, J.J. Functional and structural adaptations of skeletal muscle to microgravity. J. Exp. Biol., 2001, 204(Pt 18), 3201-3208.
[PMID: 11581335]
[162]
Schieven, G.L. The biology of p38 kinase: a central role in inflammation. Curr. Top. Med. Chem., 2005, 5(10), 921-928.
[http://dx.doi.org/10.2174/1568026054985902] [PMID: 16178737]
[163]
Granado, M.; Martín, A.I.; Priego, T.; López-Calderón, A.; Villanúa, M.A. Tumour necrosis factor blockade did not prevent the increase of muscular muscle RING finger-1 and muscle atrophy F-box in arthritic rats. J. Endocrinol., 2006, 191(1), 319-326.
[http://dx.doi.org/10.1677/joe.1.06931] [PMID: 17065414]
[164]
Edström, E.; Altun, M.; Hägglund, M.; Ulfhake, B. Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J. Gerontol. A Biol. Sci. Med. Sci., 2006, 61(7), 663-674.
[http://dx.doi.org/10.1093/gerona/61.7.663] [PMID: 16870627]
[165]
Hunter, R.B.; Kandarian, S.C. Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J. Clin. Invest., 2004, 114(10), 1504-1511.
[http://dx.doi.org/10.1172/JCI200421696] [PMID: 15546001]
[166]
Kwon, Y.T.; Xia, Z.; Davydov, I.V.; Lecker, S.H.; Varshavsky, A. Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3α) of the N-end rule pathway. Mol. Cell. Biol., 2001, 21(23), 8007-8021.
[http://dx.doi.org/10.1128/MCB.21.23.8007-8021.2001] [PMID: 11689692]
[167]
Combaret, L.; Taillandier, D.; Dardevet, D.; Béchet, D.; Rallière, C.; Claustre, A.; Grizard, J.; Attaix, D. Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles. Biochem. J., 2004, 378(Pt 1), 239-246.
[http://dx.doi.org/10.1042/bj20031660] [PMID: 14636157]
[168]
Kwon, D.Y.; Motley, W.W.; Fischbeck, K.H.; Burnett, B.G. Increasing expression and decreasing degradation of SMN ameliorate the spinal muscular atrophy phenotype in mice. Hum. Mol. Genet., 2011, 20(18), 3667-3677.
[http://dx.doi.org/10.1093/hmg/ddr288] [PMID: 21693563]
[169]
Menconi, M.; Gonnella, P.; Petkova, V.; Lecker, S.; Hasselgren, P.O. Dexamethasone and corticosterone induce similar, but not identical, muscle wasting responses in cultured L6 and C2C12 myotubes. J. Cell. Biochem., 2008, 105(2), 353-364.
[http://dx.doi.org/10.1002/jcb.21833] [PMID: 18615595]
[170]
Dehoux, M.; Van Beneden, R.; Pasko, N.; Lause, P.; Verniers, J.; Underwood, L.; Ketelslegers, J.M.; Thissen, J.P. Role of the insulin-like growth factor I decline in the induction of atrogin-1/MAFbx during fasting and diabetes. Endocrinology, 2004, 145(11), 4806-4812.
[http://dx.doi.org/10.1210/en.2004-0406] [PMID: 15284206]
[171]
Judge, A.R.; Koncarevic, A.; Hunter, R.B.; Liou, H.C.; Jackman, R.W.; Kandarian, S.C. Role for IkappaBalpha, but not c-Rel, in skeletal muscle atrophy. Am. J. Physiol. Cell Physiol., 2007, 292(1), C372-C382.
[http://dx.doi.org/10.1152/ajpcell.00293.2006] [PMID: 16928772]
[172]
Li, Y.P.; Reid, M.B. NF-kappaB mediates the protein loss induced by TNF-α in differentiated skeletal muscle myotubes. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, 279(4), R1165-R1170.
[http://dx.doi.org/10.1152/ajpregu.2000.279.4.R1165] [PMID: 11003979]
[173]
Whitehouse, A.S.; Tisdale, M.J. Downregulation of ubiquitin-dependent proteolysis by eicosapentaenoic acid in acute starvation. Biochem. Biophys. Res. Commun., 2001, 285(3), 598-602.
[http://dx.doi.org/10.1006/bbrc.2001.5209] [PMID: 11453634]
[174]
Wang, H.; Liu, D.; Cao, P.; Lecker, S.; Hu, Z. Atrogin-1 affects muscle protein synthesis and degradation when energy metabolism is impaired by the antidiabetes drug berberine. Diabetes, 2010, 59(8), 1879-1889.
[http://dx.doi.org/10.2337/db10-0207] [PMID: 20522589]
[175]
Abrigo, J.; Rivera, J.C.; Aravena, J.; Cabrera, D.; Simon, F.; Ezquer, F.; Ezquer, M.; Cabello-Verrugio, C. High fat diet-induced skeletal muscle wasting is decreased by mesenchymal stem cells administration: implications on oxidative stress, ubiquitin proteasome pathway activation, and myonuclear apoptosis. Oxid. Med. Cell. Longev., 2016, 20169047821
[http://dx.doi.org/10.1155/2016/9047821] [PMID: 27579157]
[176]
Crossland, H.; Constantin-Teodosiu, D.; Gardiner, S.M.; Constantin, D.; Greenhaff, P.L. A potential role for Akt/FOXO signalling in both protein loss and the impairment of muscle carbohydrate oxidation during sepsis in rodent skeletal muscle. J. Physiol., 2008, 586(22), 5589-5600.
[http://dx.doi.org/10.1113/jphysiol.2008.160150] [PMID: 18818241]
[177]
Dogra, C.; Changotra, H.; Wedhas, N.; Qin, X.; Wergedal, J.E.; Kumar, A. TNF-related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle-wasting cytokine. FASEB J., 2007, 21(8), 1857-1869.
[http://dx.doi.org/10.1096/fj.06-7537com] [PMID: 17314137]
[178]
Winkles, J.A. The TWEAK-Fn14 cytokine-receptor axis: discovery, biology and therapeutic targeting. Nat. Rev. Drug Discov., 2008, 7(5), 411-425.
[http://dx.doi.org/10.1038/nrd2488] [PMID: 18404150]
[179]
Bhatnagar, S.; Kumar, A. The TWEAK-Fn14 system: breaking the silence of cytokine-induced skeletal muscle wasting. Curr. Mol. Med., 2012, 12(1), 3-13.
[http://dx.doi.org/10.2174/156652412798376107] [PMID: 22082477]
[180]
Foulstone, E.J.; Huser, C.; Crown, A.L.; Holly, J.M.; Stewart, C.E. Differential signalling mechanisms predisposing primary human skeletal muscle cells to altered proliferation and differentiation: roles of IGF-I and TNFalpha. Exp. Cell Res., 2004, 294(1), 223-235.
[http://dx.doi.org/10.1016/j.yexcr.2003.10.034] [PMID: 14980516]
[181]
Langen, R.C.; Schols, A.M.; Kelders, M.C.; van der Velden, J.L.; Wouters, E.F.; Janssen-Heininger, Y.M. Muscle wasting and impaired muscle regeneration in a murine model of chronic pulmonary inflammation. Am. J. Respir. Cell Mol. Biol., 2006, 35(6), 689-696.
[http://dx.doi.org/10.1165/rcmb.2006-0103OC] [PMID: 16794259]
[182]
Dogra, C.; Changotra, H.; Wergedal, J.E.; Kumar, A. Regulation of phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-kappa B signaling pathways in dystrophin-deficient skeletal muscle in response to mechanical stretch. J. Cell. Physiol., 2006, 208(3), 575-585.
[http://dx.doi.org/10.1002/jcp.20696] [PMID: 16741926]
[183]
Enwere, E.K.; Holbrook, J.; Lejmi-Mrad, R.; Vineham, J.; Timusk, K.; Sivaraj, B.; Isaac, M.; Uehling, D.; Al-awar, R.; LaCasse, E.; Korneluk, R.G. TWEAK and cIAP1 regulate myoblast fusion through the noncanonical NF-κB signaling pathway. Sci. Signal., 2012, 5(246), ra75.
[http://dx.doi.org/10.1126/scisignal.2003086] [PMID: 23074266]
[184]
Girgenrath, M.; Weng, S.; Kostek, C.A.; Browning, B.; Wang, M.; Brown, S.A.; Winkles, J.A.; Michaelson, J.S.; Allaire, N.; Schneider, P.; Scott, M.L.; Hsu, Y.M.; Yagita, H.; Flavell, R.A.; Miller, J.B.; Burkly, L.C.; Zheng, T.S. TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration. EMBO J., 2006, 25(24), 5826-5839.
[http://dx.doi.org/10.1038/sj.emboj.7601441] [PMID: 17124496]
[185]
Ogura, Y.; Mishra, V.; Hindi, S.M.; Kuang, S.; Kumar, A. Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) suppresses satellite cell self-renewal through inversely modulating Notch and NF-κB signaling pathways. J. Biol. Chem., 2013, 288(49), 35159-35169.
[http://dx.doi.org/10.1074/jbc.M113.517300] [PMID: 24151074]
[186]
Sato, S.; Ogura, Y.; Kumar, A. TWEAK/Fn14 signaling axis mediates skeletal muscle atrophy and metabolic dysfunction. Front. Immunol., 2014, 5, 18.
[http://dx.doi.org/10.3389/fimmu.2014.00018] [PMID: 24478779]
[187]
Fan, J.; Kou, X.; Yang, Y.; Chen, N. MicroRNA-regulated pro-inflammatory cytokines in sarcopenia. Mediators Inflamm., 2016, 20161438686
[http://dx.doi.org/10.1155/2016/1438686] [PMID: 27382188]
[188]
Raben, N.; Hill, V.; Shea, L.; Takikita, S.; Baum, R.; Mizushima, N.; Ralston, E.; Plotz, P. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet., 2008, 17(24), 3897-3908.
[http://dx.doi.org/10.1093/hmg/ddn292] [PMID: 18782848]
[189]
Takikita, S.; Schreiner, C.; Baum, R.; Xie, T.; Ralston, E.; Plotz, P.H.; Raben, N. Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle. PLoS One, 2010, 5(12)e15239
[http://dx.doi.org/10.1371/journal.pone.0015239] [PMID: 21179212]
[190]
Klionsky, D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 2007, 8(11), 931-937.
[http://dx.doi.org/10.1038/nrm2245] [PMID: 17712358]
[191]
Kon, M.; Cuervo, A.M. Chaperone-mediated autophagy in health and disease. FEBS Lett., 2010, 584(7), 1399-1404.
[http://dx.doi.org/10.1016/j.febslet.2009.12.025] [PMID: 20026330]
[192]
Arndt, V.; Dick, N.; Tawo, R.; Dreiseidler, M.; Wenzel, D.; Hesse, M.; Fürst, D.O.; Saftig, P.; Saint, R.; Fleischmann, B.K.; Hoch, M.; Höhfeld, J. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr. Biol., 2010, 20(2), 143-148.
[http://dx.doi.org/10.1016/j.cub.2009.11.022] [PMID: 20060297]
[193]
Crotzer, V.L.; Blum, J.S. Autophagy and intracellular surveillance: Modulating MHC class II antigen presentation with stress. Proc. Natl. Acad. Sci. USA, 2005, 102(22), 7779-7780.
[http://dx.doi.org/10.1073/pnas.0503088102] [PMID: 15911750]
[194]
Rajawat, Y.S.; Hilioti, Z.; Bossis, I. Aging: central role for autophagy and the lysosomal degradative system. Ageing Res. Rev., 2009, 8(3), 199-213.
[http://dx.doi.org/10.1016/j.arr.2009.05.001] [PMID: 19427410]
[195]
Bach, M.; Larance, M.; James, D.E.; Ramm, G. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem. J., 2011, 440(2), 283-291.
[http://dx.doi.org/10.1042/BJ20101894] [PMID: 21819378]
[196]
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13(2), 132-141.
[http://dx.doi.org/10.1038/ncb2152] [PMID: 21258367]
[197]
Sandri, M. Autophagy in skeletal muscle. FEBS Lett., 2010, 584(7), 1411-1416.
[http://dx.doi.org/10.1016/j.febslet.2010.01.056] [PMID: 20132819]
[198]
Mammucari, C.; Milan, G.; Romanello, V.; Masiero, E.; Rudolf, R.; Del Piccolo, P.; Burden, S.J.; Di Lisi, R.; Sandri, C.; Zhao, J.; Goldberg, A.L.; Schiaffino, S.; Sandri, M. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab., 2007, 6(6), 458-471.
[http://dx.doi.org/10.1016/j.cmet.2007.11.001] [PMID: 18054315]
[199]
Momeni, H.R. Role of calpain in apoptosis. Cell J., 2011, 13(2), 65-72.
[PMID: 23507938]
[200]
Brechtel, K.; Dahl, D.B.; Machann, J.; Bachmann, O.P.; Wenzel, I.; Maier, T.; Claussen, C.D.; Häring, H.U.; Jacob, S.; Schick, F. Fast elevation of the intramyocellular lipid content in the presence of circulating free fatty acids and hyperinsulinemia: a dynamic 1H-MRS study. Magn. Reson. Med., 2001, 45(2), 179-183.
[http://dx.doi.org/10.1002/1522-2594(200102)45:2<179:AID-MRM1023>3.0.CO;2-D] [PMID: 11180422]
[201]
Ge, Y.; Huang, M.; Yao, Y.M. Autophagy and proinflammatory cytokines: Interactions and clinical implications. Cytokine Growth Factor Rev., 2018, 43, 38-46.
[http://dx.doi.org/10.1016/j.cytogfr.2018.07.001] [PMID: 30031632]
[202]
Wang, Y.; Li, T.; Wu, B.; Liu, H.; Luo, J.; Feng, D.; Shi, Y. STAT1 regulates MD-2 expression in monocytes of sepsis via miR-30a. Inflammation, 2014, 37(6), 1903-1911.
[http://dx.doi.org/10.1007/s10753-014-9922-1] [PMID: 24858600]
[203]
Buchser, W.J.; Laskow, T.C.; Pavlik, P.J.; Lin, H.M.; Lotze, M.T. Cell-mediated autophagy promotes cancer cell survival. Cancer Res., 2012, 72(12), 2970-2979.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3396] [PMID: 22505650]
[204]
Park, H.J.; Lee, S.J.; Kim, S.H.; Han, J.; Bae, J.; Kim, S.J.; Park, C.G.; Chun, T. IL-10 inhibits the starvation induced autophagy in macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway. Mol. Immunol., 2011, 48(4), 720-727.
[http://dx.doi.org/10.1016/j.molimm.2010.10.020] [PMID: 21095008]
[205]
Van Grol, J.; Subauste, C.; Andrade, R.M.; Fujinaga, K.; Nelson, J.; Subauste, C.S. HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3. PLoS One, 2010, 5(7)e11733
[http://dx.doi.org/10.1371/journal.pone.0011733] [PMID: 20661303]
[206]
Martinez-Outschoorn, U.E.; Whitaker-Menezes, D.; Lin, Z.; Flomenberg, N.; Howell, A.; Pestell, R.G.; Lisanti, M.P.; Sotgia, F. Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal caveolin-1 as a key regulator. Cell Cycle, 2011, 10(11), 1784-1793.
[http://dx.doi.org/10.4161/cc.10.11.15674] [PMID: 21566463]
[207]
Wu, T.T.; Li, W.M.; Yao, Y.M. Interactions between autophagy and inhibitory cytokines. Int. J. Biol. Sci., 2016, 12(7), 884-897.
[http://dx.doi.org/10.7150/ijbs.15194] [PMID: 27313501]
[208]
Sharma, G.; Dutta, R.K.; Khan, M.A.; Ishaq, M.; Sharma, K.; Malhotra, H.; Majumdar, S. IL-27 inhibits IFN-γ induced autophagy by concomitant induction of JAK/PI3 K/Akt/mTOR cascade and up-regulation of Mcl-1 in Mycobacterium tuberculosis H37Rv infected macrophages. Int. J. Biochem. Cell Biol., 2014, 55, 335-347.
[http://dx.doi.org/10.1016/j.biocel.2014.08.022] [PMID: 25194337]
[209]
Lin, N.Y.; Stefanica, A.; Distler, J.H. Autophagy: a key pathway of TNF-induced inflammatory bone loss. Autophagy, 2013, 9(8), 1253-1255.
[http://dx.doi.org/10.4161/auto.25467] [PMID: 23811580]
[210]
Jia, G.; Cheng, G.; Gangahar, D.M.; Agrawal, D.K. Insulin-like growth factor-1 and TNF-α regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol. Cell Biol., 2006, 84(5), 448-454.
[http://dx.doi.org/10.1111/j.1440-1711.2006.01454.x] [PMID: 16942488]
[211]
Bell, C.; English, L.; Boulais, J.; Chemali, M.; Caron-Lizotte, O.; Desjardins, M.; Thibault, P. Quantitative proteomics reveals the induction of mitophagy in TNF-α activated macrophages. Mol. Cell. Proteomics, 2013, 12(9), 2394-2407.
[http://dx.doi.org/10.1074/mcp.M112.025775] [PMID: 23674617]
[212]
Ye, Y.C.; Yu, L.; Wang, H.J.; Tashiro, S.; Onodera, S.; Ikejima, T. TNFα-induced necroptosis and autophagy via supression of the p38-NF-κB survival pathway in L929 cells. J. Pharmacol. Sci., 2011, 117(3), 160-169.
[http://dx.doi.org/10.1254/jphs.11105FP] [PMID: 22027097]
[213]
Zhang, M.; Kenny, S.J.; Ge, L.; Xu, K.; Schekman, R. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. eLife, 2015, 4(e11205), 1-23.
[http://dx.doi.org/10.7554/eLife.11205.002] [PMID: 26523392]
[214]
Xu, B.; Bai, B.; Sha, S.; Yu, P.; An, Y.; Wang, S.; Kong, X.; Liu, C.; Wei, N.; Feng, Q.; Zhao, Q. Interleukin-1β induces autophagy by affecting calcium homeostasis and trypsinogen activation in pancreatic acinar cells. Int. J. Clin. Exp. Pathol., 2014, 7(7), 3620-3631.
[PMID: 25120739]
[215]
Shen, J.; Xu, S.; Zhou, H.; Liu, H.; Jiang, W.; Hao, J.; Hu, Z. IL-1β induces apoptosis and autophagy via mitochondria pathway in human degenerative nucleus pulposus cells. Sci. Rep., 2017. 7(41067), 1-12.
[http://dx.doi.org/10.1038/srep41067]
[216]
Chang, C.P.; Yang, M.C.; Lei, H.Y. Concanavalin A/IFN-gamma triggers autophagy-related necrotic hepatocyte death through IRGM1-mediated lysosomal membrane disruption. PLoS One, 2011, 6(12)e28323
[http://dx.doi.org/10.1371/journal.pone.0028323] [PMID: 22163006]
[217]
Matsuzawa, T.; Kim, B.H.; Shenoy, A.R.; Kamitani, S.; Miyake, M.; Macmicking, J.D. IFN-γ elicits macrophage autophagy via the p38 MAPK signaling pathway. J. Immunol., 2012, 189(2), 813-818.
[http://dx.doi.org/10.4049/jimmunol.1102041] [PMID: 22675202]
[218]
Yuan, J.; Yu, M.; Li, H.H.; Long, Q.; Liang, W.; Wen, S.; Wang, M.; Guo, H.P.; Cheng, X.; Liao, Y.H. Autophagy contributes to IL-17-induced plasma cell differentiation in experimental autoimmune myocarditis. Int. Immunopharmacol., 2014, 18(1), 98-105.
[http://dx.doi.org/10.1016/j.intimp.2013.11.008] [PMID: 24269624]
[219]
Liu, H.; Mi, S.; Li, Z.; Hua, F.; Hu, Z.W. Interleukin 17A inhibits autophagy through activation of PIK3CA to interrupt the GSK3B-mediated degradation of BCL2 in lung epithelial cells. Autophagy, 2013, 9(5), 730-742.
[http://dx.doi.org/10.4161/auto.24039] [PMID: 23514933]
[220]
Zhou, Y.; Wu, P.W.; Yuan, X.W.; Li, J.; Shi, X.L. Interleukin-17A inhibits cell autophagy under starvation and promotes cell migration via TAB2/TAB3-p38 mitogen-activated protein kinase pathways in hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(2), 250-263.
[PMID: 26875893]
[221]
Sims, J.E.; Smith, D.E. The IL-1 family: regulators of immunity. Nat. Rev. Immunol., 2010, 10(2), 89-102.
[http://dx.doi.org/10.1038/nri2691] [PMID: 20081871]
[222]
Gao, Y.; Ma, L.; Luo, C.L.; Wang, T.; Zhang, M.Y.; Shen, X.; Meng, H.H.; Ji, M.M.; Wang, Z.F.; Chen, X.P.; Tao, L.Y. IL-33 exerts neuroprotective effect in mice intracerebral hemorrhage model through suppressing inflammation/apoptotic/autophagic pathway. Mol. Neurobiol., 2017, 54(5), 3879-3892.
[http://dx.doi.org/10.1007/s12035-016-9947-6] [PMID: 27405469]
[223]
Gao, Y.; Luo, C.L.; Li, L.L.; Ye, G.H.; Gao, C.; Wang, H.C.; Huang, W.W.; Wang, T.; Wang, Z.F.; Ni, H.; Chen, X.P. IL-33 provides neuroprotection through suppressing apoptotic, autophagic and NF-κB-mediated inflammatory pathways in a rat model of recurrent neonatal seizure. Front. Mol. Neurosci., 2017, 10((423), 1-12.)
[http://dx.doi.org/10.3389/fnmol.2017.00423]
[224]
Gabay, C.; Towne, J.E. Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions. J. Leukoc. Biol., 2015, 97(4), 645-652.
[http://dx.doi.org/10.1189/jlb.3RI1014-495R] [PMID: 25673295]
[225]
Dutt, V.; Gupta, S.; Dabur, R.; Injeti, E.; Mittal, A. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacol. Res., 2015, 99, 86-100.
[http://dx.doi.org/10.1016/j.phrs.2015.05.010] [PMID: 26048279]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 13
Year: 2020
Page: [2161 - 2188]
Pages: 28
DOI: 10.2174/0929867326666181129095309
Price: $65

Article Metrics

PDF: 22
HTML: 1