Labeling of Nanofiber-Forming Peptides by Site-Directed Bioconjugation: Effect of Spacer Length on Self-Assembly

Author(s): Alessandra Scelsi, Brigida Bochicchio*, Antonietta Pepe*

Journal Name: Current Organic Synthesis

Volume 16 , Issue 2 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The conjugation of small organic molecules to self-assembling peptides is a versatile tool to decorate nanostructures with original functionalities. Labeling with chromophores or fluorophores, for example, creates optically active fibers with potential interest in photonic devices.

Aim and Objective: In this work, we present a rapid and effective labeling procedure for a self-assembling peptide able to form nanofibers. Rapid periodate oxidation of the N-terminal serine residue of the peptide and subsequent conjugation with dansyl moiety generated fluorophore-decorated peptides.

Results: Three dansyl-conjugated self-assembling peptides with variable spacer-length were synthesized and characterized and the role of the size of the linker between fluorophore and peptide in self-assembling was investigated. Our results show that a short linker can alter the self-assembly in nanofibers of the peptide.

Conclusions: Herein we report on an alternative strategy for creating functionalized nanofibrils, able to expand the toolkit of chemoselective bioconjugation strategies to be used in site-specific decoration of self-assembling peptides.

Keywords: Bioconjugation, peptide, periodate oxidation, self-assembly, fluorescent tag, atomic force microscopy.

[1]
Whitesides, G.M.; Grzybowski, B. Self-assembly at all scales. Science, 2002, 295(5564), 2418-2421.
[2]
Hauser, C.A.E.; Zhang, S. Designer self-assembling peptide nanofiber biological materials. Chem. Soc. Rev., 2010, 39(8), 2780-2790.
[3]
Gazit, E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem. Soc. Rev., 2007, 36(8), 1263-1269.
[4]
Scelsi, A.; Bochicchio, B.; Smith, A.; Saiani, A.; Pepe, A. Nanospheres from the self-assembly of an elastin-inspired triblock peptide. RSC Advances, 2015, 5, 95007-95013.
[5]
Kol, N.; Adler-Abramovich, L.; Barlam, D.; Shneck, R.Z.; Gazit, E.; Rousso, I. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett., 2005, 5(7), 1343-1346.
[6]
Zelzer, M.; Ulijn, R.V. Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. Chem. Soc. Rev., 2010, 39(9), 3351-3357.
[7]
Kirkham, S.; Hamley, I.W.; Smith, A.M.; Gouveia, R.M.; Connon, C.J.; Reza, M.; Ruokolainen, J. A self-assembling fluorescent dipeptide conjugate for cell labelling. Colloids and surfaces B Biointerfaces, 2016, 137, 104-108.
[8]
Wang, H.; Mao, D.; Wang, Y.; Wang, K.; Yi, X.; Kong, D.; Yang, Z.; Liu, Q.; Ding, D. Biocompatible fluorescent supramolecular nanofibrous hydrogel for long-term cell tracking and tumor imaging applications. Sci. Rep., 2015, 5, 16680.
[9]
Yan, X.; Li, J.; Mohwald, H. Self-assembly of hexagonal peptide microtubes and their optical waveguiding. Adv. Mater., 2011, 23(25), 2796-27801.
[10]
Bai, S.; Debnath, S.; Javid, N.; Frederix, P.W.; Fleming, S.; Pappas, C.; Ulijn, R.V. Differential self-assembly and tunable emission of aromatic peptide bola-amphiphiles containing perylene bisimide in polar solvents including water. Langmuir, 2014, 30(25), 7576-7584.
[11]
Channon, K.J.; Devlin, G.L.; Magennis, S.W.; Finlayson, C.E.; Tickler, A.K.; Silva, C.; MacPhee, C.E. Modification of fluorophore photophysics through peptide-driven self-assembly. J. Am. Chem. Soc., 2008, 130(16), 5487-5491.
[12]
Kalia, J.; Raines, R.T. Advances in Bioconjugation. Curr. Org. Chem., 2010, 14(2), 138-147.
[13]
McKay. Craig S.; Finn, M.G. Click chemistry in complex mixtures: Bioorthogonal bioconjugation. Chem. Biol., 2014, 21(9), 1075-1101.
[14]
Thompson, S.W. Selected histochemical and histopathological methods; Charles C. Thomas: Springfield, IL, 1966.
[15]
Fields, R.; Dixon, H.B. A spectrophotometric method for the microdetermination of periodate. Biochem. J., 1968, 108(5), 883-887.
[16]
Geoghegan, K.F.; Emery, M.J.; Martin, W.H.; McColl, A.S.; Daumy, G.O. Site-directed double fluorescent tagging of human renin and collagenase (MMP-1) substrate peptides using the periodate oxidation of N-terminal serine. An apparently general strategy for provision of energy-transfer substrates for proteases. Bioconjug. Chem., 1993, 4(6), 537-544.
[17]
Geoghegan, K.F.; Stroh, J.G. Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate oxidation of a 2-amino alcohol. Application to modification at N-terminal serine. Bioconjug. Chem., 1992, 3(2), 138-146.
[18]
Shiose, Y.; Kuga, H.; Ohki, H.; Ikeda, M.; Yamashita, F.; Hashida, M. Systematic research of peptide spacers controlling drug release from macromolecular prodrug system, carboxymethyldextran polyalcohol-peptide-drug conjugates. Bioconjug. Chem., 2009, 20(1), 60-70.
[19]
Sun, W.; Bandmann, H.; Schrader, T. A fluorescent polymeric heparin sensor. Chemistry, 2007, 13(27), 7701-7707.
[20]
Steel, D.M.; Whitehead, A.S. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol. Today, 1994, 15(2), 81-88.
[21]
Rubin, N.; Perugia, E.; Wolf, S.G.; Klein, E.; Fridkin, M.; Addadi, L. Relation between serum amyloid A truncated peptides and their suprastructure chirality. J. Am. Chem. Soc., 2010, 132(12), 4242-4248.
[22]
Westermark, G.T.; Engstrom, U.; Westermark, P. The N-terminal segment of protein AA determines its fibrillogenic property. Biochem. Biophys. Res. Commun., 1992, 182(1), 27-33.
[23]
El-Mahdi, O.; Melnyk, O. alpha-Oxo aldehyde or glyoxylyl group chemistry in peptide bioconjugation. Bioconjug. Chem., 2013, 24(5), 735-765.
[24]
Abdel-Magid, A.F.; Carson, K.G.; Harris, B.D.; Maryanoff, C.A.; Shah, R.D. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures (1). J. Org. Chem., 1996, 61(11), 3849-3862.
[25]
Walker, J.M. The dansyl method for identifying N-terminal amino acids. In: Basic Protein and Peptide Protocols; Walker, J.M., Ed.; Humana Press: Totowa, NJ, 1994; pp. 321-328.
[26]
Eftink, M.R.; Shastry, M.C. Fluorescence methods for studying kinetics of protein-folding reactions. Methods Enzymol., 1997, 278, 258-286.
[27]
Truong, K.; Ikura, M. The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr. Opin. Struct. Biol., 2001, 11(5), 573-578.
[28]
Tang, M.; Huang, J.; Weng, X.; Yang, L.; Liu, M.; Zhou, M.; Wang, X.; Gao, J.; Yi, W.; Zeng, W.; Sun, L.; Cao, Y. Evaluation of a dansyl-based amino acid DNSBA as an imaging probe for apoptosis detection. Apoptosis, 2015, 20(3), 410-420.
[29]
Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: New York, 2006.
[30]
Chen, R.F. Fluorescence of dansyl amino acids in organic solvents and protein solutions. Arch. Biochem. Biophys., 1967, 120(3), 609-620.
[31]
Jayawarna, V.; Ali, M.; Jowitt, T.A.; Miller, A.E.; Saiani, A.; Gough, J.E.; Ulijn, R.V. Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv. Mater., 2006, 18, 611-614.
[32]
Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin., 2007, 39(8), 549-559.
[33]
Dong, A.; Prestrelski, S.J.; Allison, S.D.; Carpenter, J.F. Infrared spectroscopic studies of lyophilization- and temperature-induced protein aggregation. J. Pharm. Sci., 1995, 84(4), 415-424.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 2
Year: 2019
Page: [319 - 325]
Pages: 7
DOI: 10.2174/1570179416666181127150142
Price: $65

Article Metrics

PDF: 45
HTML: 8