[1]
(a) Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
(b) Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1), 123-150.
[2]
(a) Hallett, J.P.; Welton, T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5), 3508-3576.
(b) Sun, X.; Luo, H.; Dai, S. Ionic liquids-based extraction: A promising strategy for the advanced nuclear fuel cycle. Chem. Rev., 2011, 112(4), 2100-2128.
[3]
(a) Zhang, S.; Ueno, K.; Dokko, K.; Watanabe, M. Recent advances in electrolytes for lithium-sulfur batteries. Adv. Energy Mater., 2015, 5(16), 1500117-1500145.
(b) Zhang, Q.; Shreeve, J.n.M. Energetic ionic liquids as explosives and propellant fuels: A new journey of ionic liquid chemistry. Chem. Rev., 2014, 114(20), 10527-10574.
(c) Zhang, S.G.; Miran, M.S.; Ikoma, A.; Dokko, K.; Watanabe, M. Protic ionic liquids and salts as versatile carbon precursors. J. Am. Chem. Soc., 2014, 136(5), 1690-1693.
(d) Smiglak, M.; Pringle, J.M.; Lu, X.; Han, L.; Zhang, S.; Gao, H.; MacFarlane, D.R.; Rogers, R.D. Ionic liquids for energy, materials, and medicine. Chem. Commun., 2014, 50(66), 9228-9250.
(e) MacFarlane, D.R.; Tachikawa, N.; Forsyth, M.; Pringle, J.M.; Howlett, P.C.; Elliott, G.D.; Davis, J.H.; Watanabe, M.; Simon, P.; Angell, C.A. Energy applications of ionic liquids. Energy Environ. Sci., 2014, 7(1), 232-250.
[4]
(a) Hayashi, S.; Hamaguchi, H. Discovery of a magnetic ionic liquid [bmim]FeCl4. Chem. Lett., 2004, 33(12), 1590-1591.
(b) Hayashi, S.; Saha, S.; Hamaguchi, H. A new class of magnetic fluids: bmim[FeCl/sub 4/] and nbmim[FeCl/sub 4/] ionic liquids. IEEE Trans. Magn., 2006, 42(1), 12-14.
(c) Sitze, M.S.; Schreiter, E.R.; Patterson, E.V.; Greeman, R.G. Ionic liquids based on FeCl3 and FeCl2. raman scattering and ab initio calculations. Inorg. Chem., 2001, 40(10), 2298-2304.
(d) Zhang, Q.; Yang, J.; Lu, X.; Gui, J.; Huang, M. Studies on an ionic liquid based on FeCl3 and its properties. Fluid Phase Equilib., 2004, 226, 207-211.
(e) Lee, S.H.; Ha, S.H.; You, C.Y.; Koo, Y.M. Recovery of magnetic ionic liquid [bmim] FeCl4 using electromagnet. Korean J. Chem. Eng., 2007, 24(3), 436-437.
[5]
(a) Bica, K.; Gaertner, P. Eur. Metal‐containing ionic liquids as efficient catalysts for hydroxymethylation in water. J. Org. Chem., 2008, 2008(20), 3453-3456.
(b) Tang, S.; Babai, A.; Mudring, A.V. Europium‐based ionic liquids as luminescent soft materials. Angew. Chem. Int. Ed., 2008, 47(40), 7631-7634.
(c) Yoshida, Y.; Saito, G. Influence of structural variations in 1-alkyl-3-methylimidazolium cation and tetrahalogenoferrate (III) anion on the physical properties of the paramagnetic ionic liquids. J. Mater. Chem., 2006, 16(13), 1254-1262.
[6]
(a) Jiang, Y.; Guo, C.; Liu, H. Magnetically rotational reactor for absorbing benzene emissions by ionic liquids. China Particuol., 2007, 5(1-2), 130-133.
(b) Raeissi, S.; Peters, C.J. A potential ionic liquid for CO2-separating gas membranes: selection and gas solubility studies. Green Chem., 2009, 11(2), 185-192.
(c) Albo, J.; Santos, E.; Neves, L.A.; Simeonov, S.P.; Afonso, C.A.M.; Crespo, J.G.; Irabien, A. Separation performance of CO2 through supported magnetic ionic liquid membranes (SMILMs). Separ. Purif. Tech., 2012, 97, 26-33.
(d) Ko, N.H.; Lee, J.S.; Huh, E.S.; Lee, H.; Jung, K.D.; Kim, H.S.; Cheong, M. Extractive desulfurization using fe-containing ionic liquids. Energy Fuels, 2008, 22(3), 1687-1690.
(e) Clark, K.D.; Nacham, O.; Yu, H.; Li, T.; Yamsek, M.M.; Ronning, D.R.; Anderson, J.L. Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis. Anal. Chem., 2015, 87(3), 1552-1559.
[7]
(a) Valkenberg, M.H.; deCastro, C.; Hölderich, W.F. Applied Friedel-Crafts acylation of aromatics catalysed by supported ionic liquids. Catalysis A. General, 2001, 215(1-2), 185-190.
(b) Bica, K.; Gaertner, P. An Iron-containing ionic liquid as recyclable catalyst for aryl grignard cross-coupling of alkyl halides. Org. Lett., 2006, 8(4), 733-735.
(c) Wanga, H.; Yan, R.; Li, Z.; Zhang, X.; Zhang, S. Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly(ethylene terephthalate). Catal. Commun., 2010, 11(8), 763-767.
(d) Panja, S.K.; Saha, S. Recyclable, magnetic ionic liquid bmim[FeCl4]-catalyzed, multicomponent, solvent-free, green synthesis of quinazolines. RSC Advances, 2013, 3(34), 14495-14500.
(e) Nguyen, M.D.; Nguyen, L.V.; Jeon, E.H.; Kim, J.H.; Cheong, M.; Sik, K.H.; Lee, J.S. Fe-containing ionic liquids as catalysts for the dimerization of bicyclo[2.2.1]hepta-2,5-diene. J. Catal., 2008, 258(1), 5-13.
[8]
A, Saha.; S, Payra.; D, Dutta.; S, Banerjee. Acid-functionalised magnetic ionic liquid [AcMIm]FeCl4 as catalyst for oxidative hydroxylation of arylboronic acids and regioselective friedel-crafts acylation. ChemPlusChem, 2017, 82(8), 1129-1134.
[9]
(a) Foye, O. Principi di Chemico Farmaceutica; Piccin: Padora, Italy, 1991. 416
(b) Andreani, L.; Lapi, E. Boll. Chim. Farm., 1960, 99, 583.
(c) Zhang, L.; Chen, Z.; Zheng, Q.; Xu, L.; Lei, H.; Yaoxue, B. 1982, 17, 17. Chem. Abstr., 1982, 96, 135383e.
(d) Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem., 1993, 28(6), 517-520.
[10]
Armesto, D.; Horspool, W.; Martin, N.; Ramos, A.; Seoane, C. Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3,5-dicyano-6-phenyl-4H-pyrans. J. Org. Chem., 1989, 54(13), 3069-3072.
[11]
(a) Banerjee, S.; Horn, A.; Khatri, H.; Sereda, G. A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett., 2011, 52(16), 1878-1881.
(b) Rong, L.; Li, X.; Wang, H.; Shi, D.; Tu, S.; Zhuang, Q. Efficient synthesis of tetrahydrobenzo[b]pyrans under solvent‐free conditions at room temperature. Synth. Commun., 2006, 36, 2363-2369.
(c) Balalaie, S.; Ahmadi, M.; Bararjanian, M. Tetra-methyl ammonium hydroxide: An efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media. Catal. Commun., 2007, 8(11), 1724-1728.
(d) Balalaie, S.; Bararjanian, M.; Ahmadi, M.; Hekmat, S.; Salehi, P. Diammonium hydrogen phosphate: An efficient and versatile catalyst for the one‐pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media. Synth. Commun., 2007, 37, 1097-1108.
(e) Guo, S.B.; Wang, S.X.; Li, J.T. D,L Proline-catalyzed one-pot synthesis of pyrans and pyrano[2,3-c]pyrazole derivatives by a grinding method under solvent-free conditions. Synth. Commun., 2007, 37, 2111-2120.
(f) Ranu, B.C.; Banerjee, S.; Roy, S. A task specific basic ionic liquid,[bmIm] OH-promoted efficient, green and one-pot synthesis of tetrahydrobenzo [b] pyran derivatives. Indian. Chem, 2008, 47B, 1108-1112.
(g) Lian, X.; Huang, Y.; Li, Y.; Zheng, W. A Green synthesis of tetrahydrobenzo[b]pyran derivatives through three-component condensation using N-methylimidazole as organocatalyst. Monatshefte fur
Chemie., 2008, 139(2), 129-131.
(h) Tahmassebi, D.; Bryson, J.; Binz, S. 1,4-Diazabicyclo[2.2.2]octane as an Efficient catalyst for a clean, one-pot synthesis of tetrahydrobenzo[b]pyran derivatives via multicomponent reaction in aqueous media. Synth. Commun., 2011, 41, 2701-2711.
(i)Wang, X.; Shi, D.; Tu, S.; Yao, C. A convenient synthesis of 5-Oxo-5,6,7,8-tetrahydro-4 H -benzo-[b]-pyran derivatives catalyzed by KF-alumina. Synth. Commun., 2003, 33, 119-126.
(j)Hekmatshoar, R.; Majedi, S.; Bakhtiari, K. Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives. Catal. Commun., 2008, 9(2), 307-310.
(k)Seifi, M.; Sheibani, H. High surface area MgO as a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3,4-dihydropyrano[c]chromene derivatives in aqueous media. Catal. Lett., 2008, 126(3-4), 275-279.
(l)Tabatabaeian, K.; Heidari, H.; Mamaghani, M.; Mahmoodi, N. Ru(II) complexes bearing tertiary phosphine ligands: a novel and efficient homogeneous catalyst for one-pot synthesis of dihydropyrano[3,2-c]chromene and tetrahydrobenzo[b]pyran derivatives. Appl. Organomet. Chem., 2012, 26(2), 56-61.
(m)Fotouhi, L.; Heravi, M.; Fatehi, A.; Bakhtiari, K. Electrogenerated base-promoted synthesis of tetrahydrobenzo[b]pyran derivatives. Tetrahedron Lett., 2007, 48(31), 5379-5381.
(n)Jin, S.; Wang, Q.; Wang, X; Zhang, S.; Li, S. A clean one-pot synthesis of tetrahydrobenzo[b]pyran derivatives
catalyzed by hexadecyltrimethyl ammonium bromide in
aqueous media. Synlett, 2004, 5, 0871-0873.
(o)Tu, S.; Gao, Y.; Guo, C.; Shi, D.; Lu, Z. A convenient synthesis of 2-amino-5,6,7,8-tetrahydro-5-oxo-4-aryl-7,7-dimethyl-4h-benzo-[b]-pyran-3-carbonitrile under microwave irradiation. Synth. Commun., 2002, 32, 2137-2141.
(p)Banerjee, S.; Saha, A. Free-ZnO nanoparticles: a mild, efficient and reusable catalyst for the one-pot multicomponent synthesis of tetrahydrobenzo[b]pyran and dihydropyrimidone derivatives. New J. Chem., 2013, 37(12), 4170-4175.