The Role of TRP Channels in Allergic Inflammation and its Clinical Relevance

Author(s): Joo Hyun Nam, Woo Kyung Kim*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 9 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Allergy refers to an abnormal adaptive immune response to non-infectious environmental substances (allergen) that can induce various diseases such as asthma, atopic dermatitis, and allergic rhinitis. In this allergic inflammation, various immune cells, such as B cells, T cells, and mast cells, are involved and undergo complex interactions that cause a variety of pathophysiological conditions. In immune cells, calcium ions play a crucial role in controlling intracellular Ca2+ signaling pathways. Cations, such as Na+, indirectly modulate the calcium signal generation by regulating cell membrane potential. This intracellular Ca2+ signaling is mediated by various cation channels; among them, the Transient Receptor Potential (TRP) family is present in almost all immune cell types, and each channel has a unique function in regulating Ca2+ signals. In this review, we focus on the role of TRP ion channels in allergic inflammatory responses in T cells and mast cells. In addition, the TRP ion channels, which are attracting attention in clinical practice in relation to allergic diseases, and the current status of the development of therapeutic agents that target TRP channels are discussed.

Keywords: T cells, TRP channels, allergic rhinitis, asthma, atopic dermatitis, calcium signaling, mast cells.

[1]
A current view on inflammation. Nat. Immunol., 2017, 18(8), 825.
[http://dx.doi.org/10.1038/ni.3798] [PMID: 28722714]
[2]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[3]
Locksley, R.M. Asthma and allergic inflammation. Cell, 2010, 140(6), 777-783.
[http://dx.doi.org/10.1016/j.cell.2010.03.004] [PMID: 20303868]
[4]
Galli, S.J.; Tsai, M.; Piliponsky, A.M. The development of allergic inflammation. Nature, 2008, 454(7203), 445-454.
[http://dx.doi.org/10.1038/nature07204] [PMID: 18650915]
[5]
Netea, M.G.; Balkwill, F.; Chonchol, M.; Cominelli, F.; Donath, M.Y.; Giamarellos-Bourboulis, E.J.; Golenbock, D.; Gresnigt, M.S.; Heneka, M.T.; Hoffman, H.M.; Hotchkiss, R.; Joosten, L.A.B.; Kastner, D.L.; Korte, M.; Latz, E.; Libby, P.; Mandrup-Poulsen, T.; Mantovani, A.; Mills, K.H.G.; Nowak, K.L.; O’Neill, L.A.; Pickkers, P.; van der Poll, T.; Ridker, P.M.; Schalkwijk, J.; Schwartz, D.A.; Siegmund, B.; Steer, C.J.; Tilg, H.; van der Meer, J.W.M.; van de Veerdonk, F.L.; Dinarello, C.A. A guiding map for inflammation. Nat. Immunol., 2017, 18(8), 826-831.
[http://dx.doi.org/10.1038/ni.3790] [PMID: 28722720]
[6]
Barnes, P.J. Pathophysiology of allergic inflammation. Immunol. Rev., 2011, 242(1), 31-50.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01020.x] [PMID: 21682737]
[7]
Abboud, D.; Hanson, J. Chemokine neutralization as an innovative therapeutic strategy for atopic dermatitis. Drug Discov. Today, 2017, 22(4), 702-711.
[http://dx.doi.org/10.1016/j.drudis.2016.11.023] [PMID: 27956056]
[8]
Berair, R.; Brightling, C.E. Asthma therapy and its effect on airway remodelling. Drugs, 2014, 74(12), 1345-1369.
[http://dx.doi.org/10.1007/s40265-014-0250-4] [PMID: 25056652]
[9]
Clare, J.J. Targeting ion channels for drug discovery. Discov. Med., 2010, 9(46), 253-260.
[PMID: 20350493]
[10]
Furue, M.; Chiba, T.; Tsuji, G.; Ulzii, D.; Kido-Nakahara, M.; Nakahara, T.; Kadono, T. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol. Int., 2017, 66(3), 398-403.
[http://dx.doi.org/10.1016/j.alit.2016.12.002] [PMID: 28057434]
[11]
Geppetti, P.; Patacchini, R.; Nassini, R. Transient receptor potential channels and occupational exposure. Curr. Opin. Allergy Clin. Immunol., 2014, 14(2), 77-83.
[http://dx.doi.org/10.1097/ACI.0000000000000040] [PMID: 24451914]
[12]
Hetherington, K.J.; Heaney, L.G. Drug therapies in severe asthma - the era of stratified medicine. Clin. Med. (Lond.), 2015, 15(5), 452-456.
[http://dx.doi.org/10.7861/clinmedicine.15-5-452] [PMID: 26430184]
[13]
Klimek, L.; Schmidt-Weber, C.B.; Kramer, M.F.; Skinner, M.A.; Heath, M.D. Clinical use of adjuvants in allergen-immunotherapy. Expert Rev. Clin. Immunol., 2017, 13(6), 599-610.
[http://dx.doi.org/10.1080/1744666X.2017.1292133] [PMID: 28162007]
[14]
Barnes, P.J. Molecular mechanisms of corticosteroids in allergic diseases. Allergy, 2001, 56(10), 928-936.
[http://dx.doi.org/10.1034/j.1398-9995.2001.00001.x] [PMID: 11576070]
[15]
Adcock, I.M.; Caramori, G.; Chung, K.F. New targets for drug development in asthma. Lancet, 2008, 372(9643), 1073-1087.
[http://dx.doi.org/10.1016/S0140-6736(08)61449-X] [PMID: 18805336]
[16]
Barnes, P.J. New therapies for asthma: is there any progress? Trends Pharmacol. Sci., 2010, 31(7), 335-343.
[http://dx.doi.org/10.1016/j.tips.2010.04.009] [PMID: 20554041]
[17]
Cosens, D.J.; Manning, A. Abnormal electroretinogram from a Drosophila mutant. Nature, 1969, 224(5216), 285-287.
[http://dx.doi.org/10.1038/224285a0] [PMID: 5344615]
[18]
Montell, C.; Rubin, G.M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron, 1989, 2(4), 1313-1323.
[http://dx.doi.org/10.1016/0896-6273(89)90069-X] [PMID: 2516726]
[19]
Hardie, R.C.; Minke, B. The TRP gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron, 1992, 8(4), 643-651.
[http://dx.doi.org/10.1016/0896-6273(92)90086-S] [PMID: 1314617]
[20]
Nilius, B.; Owsianik, G. The transient receptor potential family of ion channels. Genome Biol., 2011, 12(3), 218.
[http://dx.doi.org/10.1186/gb-2011-12-3-218] [PMID: 21401968]
[21]
Wu, L.J.; Sweet, T.B.; Clapham, D.E. International union of basic and clinical pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol. Rev., 2010, 62(3), 381-404.
[http://dx.doi.org/10.1124/pr.110.002725] [PMID: 20716668]
[22]
Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol., 2013, 29, 355-384.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155833] [PMID: 24099085]
[23]
Zheng, J. Molecular mechanism of TRP channels. Compr. Physiol., 2013, 3(1), 221-242.
[PMID: 23720286]
[24]
Nowycky, M.C.; Thomas, A.P. Intracellular calcium signaling. J. Cell Sci., 2002, 115(Pt 19), 3715-3716.
[http://dx.doi.org/10.1242/jcs.00078] [PMID: 12235281]
[25]
Feske, S.; Wulff, H.; Skolnik, E.Y. Ion channels in innate and adaptive immunity. Annu. Rev. Immunol., 2015, 33, 291-353.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112212] [PMID: 25861976]
[26]
Feske, S. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol., 2007, 7(9), 690-702.
[http://dx.doi.org/10.1038/nri2152] [PMID: 17703229]
[27]
Gees, M.; Colsoul, B.; Nilius, B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb. Perspect. Biol., 2010, 2(10)a003962
[http://dx.doi.org/10.1101/cshperspect.a003962] [PMID: 20861159]
[28]
Cho, H.; Kehrl, J.H. Regulation of immune function by G protein-coupled receptors, trimeric G proteins, and RGS proteins. Prog. Mol. Biol. Transl. Sci., 2009, 86, 249-298.
[http://dx.doi.org/10.1016/S1877-1173(09)86009-2] [PMID: 20374719]
[29]
Vig, M.; Kinet, J.P. Calcium signaling in immune cells. Nat. Immunol., 2009, 10(1), 21-27.
[http://dx.doi.org/10.1038/ni.f.220] [PMID: 19088738]
[30]
Bertin, S.; Raz, E. Transient Receptor Potential (TRP) channels in T cells. Semin. Immunopathol., 2016, 38(3), 309-319.
[http://dx.doi.org/10.1007/s00281-015-0535-z] [PMID: 26468011]
[31]
Harteneck, C.; Gollasch, M. Pharmacological modulation of diacylglycerol-sensitive TRPC3/6/7 channels. Curr. Pharm. Biotechnol., 2011, 12(1), 35-41.
[http://dx.doi.org/10.2174/138920111793937943] [PMID: 20932261]
[32]
Pillai, A.K.A.A.H.L.S. Cellular and Molecular Immunology; Elsevier Saunders, 2015.
[33]
Zhu, J.; Yamane, H.; Paul, W.E. Differentiation of effector CD4 T cell populations(*). Annu. Rev. Immunol., 2010, 28, 445-489.
[http://dx.doi.org/10.1146/annurev-immunol-030409-101212] [PMID: 20192806]
[34]
Luckheeram, R.V.; Zhou, R.; Verma, A.D.; Xia, B. CD4+T cells: differentiation and functions. Clin. Dev. Immunol., 2012, 2012, 925135
[http://dx.doi.org/10.1155/2012/925135] [PMID: 22474485]
[35]
Tao, X.; Constant, S.; Jorritsma, P.; Bottomly, K. Strength of TCR signal determines the costimulatory requirements for Th1 and Th2 CD4+ T cell differentiation. J. Immunol., 1997, 159(12), 5956-5963.
[PMID: 9550393]
[36]
Liou, J.; Kim, M.L.; Heo, W.D.; Jones, J.T.; Myers, J.W.; Ferrell, J.E. Jr.; Meyer, T. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol., 2005, 15(13), 1235-1241.
[http://dx.doi.org/10.1016/j.cub.2005.05.055] [PMID: 16005298]
[37]
Roos, J.; DiGregorio, P.J.; Yeromin, A.V.; Ohlsen, K.; Lioudyno, M.; Zhang, S.; Safrina, O.; Kozak, J.A.; Wagner, S.L.; Cahalan, M.D.; Veliçelebi, G.; Stauderman, K.A. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol., 2005, 169(3), 435-445.
[http://dx.doi.org/10.1083/jcb.200502019] [PMID: 15866891]
[38]
Feske, S.; Gwack, Y.; Prakriya, M.; Srikanth, S.; Puppel, S.H.; Tanasa, B.; Hogan, P.G.; Lewis, R.S.; Daly, M.; Rao, A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature, 2006, 441(7090), 179-185.
[http://dx.doi.org/10.1038/nature04702] [PMID: 16582901]
[39]
Prakriya, M.; Feske, S.; Gwack, Y.; Srikanth, S.; Rao, A.; Hogan, P.G. Orai1 is an essential pore subunit of the CRAC channel. Nature, 2006, 443(7108), 230-233.
[http://dx.doi.org/10.1038/nature05122] [PMID: 16921383]
[40]
Vig, M.; Peinelt, C.; Beck, A.; Koomoa, D.L.; Rabah, D.; Koblan-Huberson, M.; Kraft, S.; Turner, H.; Fleig, A.; Penner, R.; Kinet, J.P. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science, 2006, 312(5777), 1220-1223.
[http://dx.doi.org/10.1126/science.1127883] [PMID: 16645049]
[41]
McCarl, C.A.; Picard, C.; Khalil, S.; Kawasaki, T.; Rother, J.; Papolos, A.; Kutok, J.; Hivroz, C.; Ledeist, F.; Plogmann, K.; Ehl, S.; Notheis, G.; Albert, M.H.; Belohradsky, B.H.; Kirschner, J.; Rao, A.; Fischer, A.; Feske, S. ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J. Allergy. Clin. Immunol., 2009, 124(6), 1311-1318. e7.
[http://dx.doi.org/10.1016/j.jaci.2009.10.007] [PMID: 20004786]
[42]
Picard, C.; McCarl, C.A.; Papolos, A.; Khalil, S.; Lüthy, K.; Hivroz, C.; LeDeist, F.; Rieux-Laucat, F.; Rechavi, G.; Rao, A.; Fischer, A.; Feske, S. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med., 2009, 360(19), 1971-1980.
[http://dx.doi.org/10.1056/NEJMoa0900082] [PMID: 19420366]
[43]
Ogawa, N.; Kurokawa, T.; Mori, Y. Sensing of redox status by TRP channels. Cell Calcium, 2016, 60(2), 115-122.
[http://dx.doi.org/10.1016/j.ceca.2016.02.009] [PMID: 26969190]
[44]
Inada, H.; Iida, T.; Tominaga, M. Different expression patterns of TRP genes in murine B and T lymphocytes. Biochem. Biophys. Res. Commun., 2006, 350(3), 762-767.
[http://dx.doi.org/10.1016/j.bbrc.2006.09.111] [PMID: 17027915]
[45]
Schwarz, E.C.; Wolfs, M.J.; Tonner, S.; Wenning, A.S.; Quintana, A.; Griesemer, D.; Hoth, M. TRP channels in lymphocytes. Handb. Exp. Pharmacol., 2007, (179), 445-456.
[http://dx.doi.org/10.1007/978-3-540-34891-7_26] [PMID: 17217072]
[46]
Bertin, S.; Aoki-Nonaka, Y.; Lee, J.; de Jong, P.R.; Kim, P.; Han, T.; Yu, T.; To, K.; Takahashi, N.; Boland, B.S.; Chang, J.T.; Ho, S.B.; Herdman, S.; Corr, M.; Franco, A.; Sharma, S.; Dong, H.; Akopian, A.N.; Raz, E. The TRPA1 ion channel is expressed in CD4+ T cells and restrains T-cell-mediated colitis through inhibition of TRPV1. Gut, 2017, 66(9), 1584-1596.
[http://dx.doi.org/10.1136/gutjnl-2015-310710] [PMID: 27325418]
[47]
Rao, G.K.; Kaminski, N.E. Induction of intracellular calcium elevation by Delta9-tetrahydrocannabinol in T cells involves TRPC1 channels. J. Leukoc. Biol., 2006, 79(1), 202-213.
[http://dx.doi.org/10.1189/jlb.0505274] [PMID: 16244107]
[48]
Wenning, A.S.; Neblung, K.; Strauss, B.; Wolfs, M.J.; Sappok, A.; Hoth, M.; Schwarz, E.C. TRP expression pattern and the functional importance of TRPC3 in primary human T-cells. Biochim. Biophys. Acta, 2011, 1813(3), 412-423.
[http://dx.doi.org/10.1016/j.bbamcr.2010.12.022] [PMID: 21215279]
[49]
Philipp, S.; Strauss, B.; Hirnet, D.; Wissenbach, U.; Mery, L.; Flockerzi, V.; Hoth, M. TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J. Biol. Chem., 2003, 278(29), 26629-26638.
[http://dx.doi.org/10.1074/jbc.M304044200] [PMID: 12736256]
[50]
Carrillo, C.; Hichami, A.; Andreoletti, P.; Cherkaoui-Malki, M.; del Mar Cavia, M.; Abdoul-Azize, S.; Alonso-Torre, S.R.; Khan, N.A. Diacylglycerol-containing oleic acid induces increases in [Ca(2+)](i) via TRPC3/6 channels in human T-cells. Biochim. Biophys. Acta, 2012, 1821(4), 618-626.
[http://dx.doi.org/10.1016/j.bbalip.2012.01.008] [PMID: 22306362]
[51]
Tseng, P.H.; Lin, H.P.; Hu, H.; Wang, C.; Zhu, M.X.; Chen, C.S. The canonical transient receptor potential 6 channel as a putative phosphatidylinositol 3,4,5-trisphosphate-sensitive calcium entry system. Biochemistry, 2004, 43(37), 11701-11708.
[http://dx.doi.org/10.1021/bi049349f] [PMID: 15362854]
[52]
Bertin, S.; Aoki-Nonaka, Y.; de Jong, P.R.; Nohara, L.L.; Xu, H.; Stanwood, S.R.; Srikanth, S.; Lee, J.; To, K.; Abramson, L.; Yu, T.; Han, T.; Touma, R.; Li, X.; González-Navajas, J.M.; Herdman, S.; Corr, M.; Fu, G.; Dong, H.; Gwack, Y.; Franco, A.; Jefferies, W.A.; Raz, E. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells. Nat. Immunol., 2014, 15(11), 1055-1063.
[http://dx.doi.org/10.1038/ni.3009] [PMID: 25282159]
[53]
Majhi, R.K.; Sahoo, S.S.; Yadav, M.; Pratheek, B.M.; Chattopadhyay, S.; Goswami, C. Functional expression of TRPV channels in T cells and their implications in immune regulation. FEBS J., 2015, 282(14), 2661-2681.
[http://dx.doi.org/10.1111/febs.13306] [PMID: 25903376]
[54]
Samivel, R.; Kim, D.W.; Son, H.R.; Rhee, Y.H.; Kim, E.H.; Kim, J.H.; Bae, J.S.; Chung, Y.J.; Chung, P.S.; Raz, E.; Mo, J.H. The role of TRPV1 in the CD4+ T cell-mediated inflammatory response of allergic rhinitis. Oncotarget, 2016, 7(1), 148-160.
[http://dx.doi.org/10.18632/oncotarget.6653] [PMID: 26700618]
[55]
Pottosin, I.; Delgado-Enciso, I.; Bonales-Alatorre, E.; Nieto-Pescador, M.G.; Moreno-Galindo, E.G.; Dobrovinskaya, O. Mechanosensitive Ca2+-permeable channels in human leukemic cells: pharmacological and molecular evidence for TRPV2. Biochim. Biophys. Acta, 2015, 1848(1 Pt A), 51-59.
[http://dx.doi.org/10.1016/j.bbamem.2014.09.008] [PMID: 25268680]
[56]
Santoni, G.; Farfariello, V.; Liberati, S.; Morelli, M.B.; Nabissi, M.; Santoni, M.; Amantini, C. The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses. Front. Immunol., 2013, 4, 34.
[http://dx.doi.org/10.3389/fimmu.2013.00034] [PMID: 23420671]
[57]
Vassilieva, I.O.; Tomilin, V.N.; Marakhova, I.I.; Shatrova, A.N.; Negulyaev, Y.A.; Semenova, S.B. Expression of transient receptor potential vanilloid channels TRPV5 and TRPV6 in human blood lymphocytes and Jurkat leukemia T cells. J. Membr. Biol., 2013, 246(2), 131-140.
[http://dx.doi.org/10.1007/s00232-012-9511-x] [PMID: 23111462]
[58]
Tomilin, V.N.; Cherezova, A.L.; Negulyaev, Y.A.; Semenova, S.B. TRPV5/V6 channels mediate Ca(2+) influx in jurkat T cells under the control of extracellular pH. J. Cell. Biochem., 2016, 117(1), 197-206.
[http://dx.doi.org/10.1002/jcb.25264] [PMID: 26096460]
[59]
Cui, J.; Bian, J.S.; Kagan, A.; McDonald, T.V. CaT1 contributes to the stores-operated calcium current in Jurkat T-lymphocytes. J. Biol. Chem., 2002, 277(49), 47175-47183.
[http://dx.doi.org/10.1074/jbc.M205870200] [PMID: 12361955]
[60]
Beck, A.; Kolisek, M.; Bagley, L.A.; Fleig, A.; Penner, R. Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J., 2006, 20(7), 962-964.
[http://dx.doi.org/10.1096/fj.05-5538fje] [PMID: 16585058]
[61]
Gasser, A.; Glassmeier, G.; Fliegert, R.; Langhorst, M.F.; Meinke, S.; Hein, D.; Krüger, S.; Weber, K.; Heiner, I.; Oppenheimer, N.; Schwarz, J.R.; Guse, A.H. Activation of T cell calcium influx by the second messenger ADP-ribose. J. Biol. Chem., 2006, 281(5), 2489-2496.
[http://dx.doi.org/10.1074/jbc.M506525200] [PMID: 16316998]
[62]
Magnone, M.; Bauer, I.; Poggi, A.; Mannino, E.; Sturla, L.; Brini, M.; Zocchi, E.; De Flora, A.; Nencioni, A.; Bruzzone, S. NAD+ levels control Ca2+ store replenishment and mitogen-induced increase of cytosolic Ca2+ by Cyclic ADP-ribose-dependent TRPM2 channel gating in human T lymphocytes. J. Biol. Chem., 2012, 287(25), 21067-21081.
[http://dx.doi.org/10.1074/jbc.M111.324269] [PMID: 22547068]
[63]
Melzer, N.; Hicking, G.; Göbel, K.; Wiendl, H. TRPM2 cation channels modulate T cell effector functions and contribute to autoimmune CNS inflammation. PLoS One, 2012, 7(10)e47617
[http://dx.doi.org/10.1371/journal.pone.0047617] [PMID: 23077651]
[64]
Pang, B.; Shin, D.H.; Park, K.S.; Huh, Y.J.; Woo, J.; Zhang, Y.H.; Kang, T.M.; Lee, K.Y.; Kim, S.J. Differential pathways for calcium influx activated by concanavalin A and CD3 stimulation in Jurkat T cells. Pflugers Arch., 2012, 463(2), 309-318.
[http://dx.doi.org/10.1007/s00424-011-1039-x] [PMID: 22020731]
[65]
Launay, P.; Cheng, H.; Srivatsan, S.; Penner, R.; Fleig, A.; Kinet, J.P. TRPM4 regulates calcium oscillations after T cell activation. Science, 2004, 306(5700), 1374-1377.
[http://dx.doi.org/10.1126/science.1098845] [PMID: 15550671]
[66]
Takezawa, R.; Cheng, H.; Beck, A.; Ishikawa, J.; Launay, P.; Kubota, H.; Kinet, J.P.; Fleig, A.; Yamada, T.; Penner, R. A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol. Pharmacol., 2006, 69(4), 1413-1420.
[http://dx.doi.org/10.1124/mol.105.021154] [PMID: 16407466]
[67]
Weber, K.S.; Hildner, K.; Murphy, K.M.; Allen, P.M. Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J. Immunol., 2010, 185(5), 2836-2846.
[http://dx.doi.org/10.4049/jimmunol.1000880] [PMID: 20656926]
[68]
Desai, B.N.; Krapivinsky, G.; Navarro, B.; Krapivinsky, L.; Carter, B.C.; Febvay, S.; Delling, M.; Penumaka, A.; Ramsey, I.S.; Manasian, Y.; Clapham, D.E. Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev. Cell, 2012, 22(6), 1149-1162.
[http://dx.doi.org/10.1016/j.devcel.2012.04.006] [PMID: 22698280]
[69]
Kuras, Z.; Yun, Y.H.; Chimote, A.A.; Neumeier, L.; Conforti, L. KCa3.1 and TRPM7 channels at the uropod regulate migration of activated human T cells. PLoS One, 2012, 7(8)e43859
[http://dx.doi.org/10.1371/journal.pone.0043859] [PMID: 22952790]
[70]
Dietrich, A.; Fahlbusch, M.; Gudermann, T. Classical Transient Receptor Potential 1 (TRPC1): channel or channel regulator? Cells, 2014, 3(4), 939-962.
[http://dx.doi.org/10.3390/cells3040939] [PMID: 25268281]
[71]
Yildirim, E.; Carey, M.A.; Card, J.W.; Dietrich, A.; Flake, G.P.; Zhang, Y.; Bradbury, J.A.; Rebolloso, Y.; Germolec, D.R.; Morgan, D.L.; Zeldin, D.C.; Birnbaumer, L. Severely blunted allergen-induced pulmonary Th2 cell response and lung hyperresponsiveness in type 1 transient receptor potential channel-deficient mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2012, 303(6), L539-L549.
[http://dx.doi.org/10.1152/ajplung.00389.2011] [PMID: 22797250]
[72]
Sel, S.; Rost, B.R.; Yildirim, A.O.; Sel, B.; Kalwa, H.; Fehrenbach, H.; Renz, H.; Gudermann, T.; Dietrich, A. Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin. Exp. Allergy, 2008, 38(9), 1548-1558.
[http://dx.doi.org/10.1111/j.1365-2222.2008.03043.x] [PMID: 18631347]
[73]
Strübing, C.; Krapivinsky, G.; Krapivinsky, L.; Clapham, D.E. Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J. Biol. Chem., 2003, 278(40), 39014-39019.
[http://dx.doi.org/10.1074/jbc.M306705200] [PMID: 12857742]
[74]
Nazıroğlu, M.; Braidy, N. Thermo-sensitive TRP channels: novel targets for treating chemotherapy-induced peripheral pain. Front. Physiol., 2017, 8, 1040.
[http://dx.doi.org/10.3389/fphys.2017.01040] [PMID: 29326595]
[75]
Bíró, T.; Tóth, B.I.; Marincsák, R.; Dobrosi, N.; Géczy, T.; Paus, R. TRP channels as novel players in the pathogenesis and therapy of itch. Biochim. Biophys. Acta, 2007, 1772(8), 1004-1021.
[http://dx.doi.org/10.1016/j.bbadis.2007.03.002] [PMID: 17462867]
[76]
Vennekens, R.; Owsianik, G.; Nilius, B. Vanilloid transient receptor potential cation channels: an overview. Curr. Pharm. Des., 2008, 14(1), 18-31.
[http://dx.doi.org/10.2174/138161208783330763] [PMID: 18220815]
[77]
Wissenbach, U.; Niemeyer, B.A. Trpv6. Handb. Exp. Pharmacol., 2007, (179), 221-234.
[http://dx.doi.org/10.1007/978-3-540-34891-7_13] [PMID: 17217060]
[78]
de Groot, T.; Bindels, R.J.; Hoenderop, J.G. TRPV5: an ingeniously controlled calcium channel. Kidney Int., 2008, 74(10), 1241-1246.
[http://dx.doi.org/10.1038/ki.2008.320] [PMID: 18596722]
[79]
Na, T.; Peng, J.B. TRPV5: a Ca(2+) channel for the fine-tuning of Ca(2+) reabsorption. Handb. Exp. Pharmacol., 2014, 222, 321-357.
[http://dx.doi.org/10.1007/978-3-642-54215-2_13] [PMID: 24756712]
[80]
Omari, S.A.; Adams, M.J.; Geraghty, D.P. TRPV1 channels in immune cells and hematological malignancies. Adv. Pharmacol., 2017, 79, 173-198.
[http://dx.doi.org/10.1016/bs.apha.2017.01.002] [PMID: 28528668]
[81]
Perraud, A.L.; Fleig, A.; Dunn, C.A.; Bagley, L.A.; Launay, P.; Schmitz, C.; Stokes, A.J.; Zhu, Q.; Bessman, M.J.; Penner, R.; Kinet, J.P.; Scharenberg, A.M. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature, 2001, 411(6837), 595-599.
[http://dx.doi.org/10.1038/35079100] [PMID: 11385575]
[82]
Sumoza-Toledo, A.; Penner, R. TRPM2: a multifunctional ion channel for calcium signalling. J. Physiol., 2011, 589(Pt 7), 1515-1525.
[http://dx.doi.org/10.1113/jphysiol.2010.201855] [PMID: 21135052]
[83]
Lange, I.; Penner, R.; Fleig, A.; Beck, A. Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Calcium, 2008, 44(6), 604-615.
[http://dx.doi.org/10.1016/j.ceca.2008.05.001] [PMID: 18572241]
[84]
Yamamoto, S.; Shimizu, S.; Kiyonaka, S.; Takahashi, N.; Wajima, T.; Hara, Y.; Negoro, T.; Hiroi, T.; Kiuchi, Y.; Okada, T.; Kaneko, S.; Lange, I.; Fleig, A.; Penner, R.; Nishi, M.; Takeshima, H.; Mori, Y. TRPM2-mediated Ca2+influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat. Med., 2008, 14(7), 738-747.
[http://dx.doi.org/10.1038/nm1758] [PMID: 18542050]
[85]
Di, A.; Gao, X.P.; Qian, F.; Kawamura, T.; Han, J.; Hecquet, C.; Ye, R.D.; Vogel, S.M.; Malik, A.B. The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat. Immunol., 2011, 13(1), 29-34.
[http://dx.doi.org/10.1038/ni.2171] [PMID: 22101731]
[86]
Yamamoto, S.; Shimizu, S. Targeting TRPM2 in ROS-coupled diseases. Pharmaceuticals (Basel), 2016, 9(3)E57
[http://dx.doi.org/10.3390/ph9030057] [PMID: 27618067]
[87]
Iles, K.E.; Forman, H.J. Macrophage signaling and respiratory burst. Immunol. Res., 2002, 26(1-3), 95-105.
[http://dx.doi.org/10.1385/IR:26:1-3:095] [PMID: 12403349]
[88]
Fialkow, L.; Wang, Y.; Downey, G.P. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic. Biol. Med., 2007, 42(2), 153-164.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.09.030] [PMID: 17189821]
[89]
Ernst, I.M.; Fliegert, R.; Guse, A.H. Adenine dinucleotide second messengers and T-lymphocyte calcium signaling. Front. Immunol., 2013, 4, 259.
[http://dx.doi.org/10.3389/fimmu.2013.00259] [PMID: 24009611]
[90]
Sumoza-Toledo, A.; Fleig, A.; Penner, R. TRPM2 channels are not required for acute airway inflammation in OVA-induced severe allergic asthma in mice. J. Inflamm. (Lond.), 2013, 10(1), 19.
[http://dx.doi.org/10.1186/1476-9255-10-19] [PMID: 23631390]
[91]
Paravicini, T.M.; Chubanov, V.; Gudermann, T. TRPM7: a unique channel involved in magnesium homeostasis. Int. J. Biochem. Cell Biol., 2012, 44(8), 1381-1384.
[http://dx.doi.org/10.1016/j.biocel.2012.05.010] [PMID: 22634382]
[92]
Fleig, A.; Chubanov, V. Trpm7. Handb. Exp. Pharmacol., 2014, 222, 521-546.
[http://dx.doi.org/10.1007/978-3-642-54215-2_21] [PMID: 24756720]
[93]
Jin, J.; Desai, B.N.; Navarro, B.; Donovan, A.; Andrews, N.C.; Clapham, D.E. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science, 2008, 322(5902), 756-760.
[http://dx.doi.org/10.1126/science.1163493] [PMID: 18974357]
[94]
Beesetty, P.; Wieczerzak, K.B.; Gibson, J.N.; Kaitsuka, T.; Luu, C.T.; Matsushita, M.; Kozak, J.A. Inactivation of TRPM7 kinase in mice results in enlarged spleens, reduced T-cell proliferation and diminished store-operated calcium entry. Sci. Rep., 2018, 8(1), 3023.
[http://dx.doi.org/10.1038/s41598-018-21004-w] [PMID: 29445164]
[95]
Malpuech-Brugère, C.; Nowacki, W.; Daveau, M.; Gueux, E.; Linard, C.; Rock, E.; Lebreton, J.; Mazur, A.; Rayssiguier, Y. Inflammatory response following acute magnesium deficiency in the rat. Biochim. Biophys. Acta, 2000, 1501(2-3), 91-98.
[http://dx.doi.org/10.1016/S0925-4439(00)00018-1] [PMID: 10838183]
[96]
Ryazanova, L.V.; Hu, Z.; Suzuki, S.; Chubanov, V.; Fleig, A.; Ryazanov, A.G. Elucidating the role of the TRPM7 alpha-kinase: TRPM7 kinase inactivation leads to magnesium deprivation resistance phenotype in mice. Sci. Rep., 2014, 4, 7599.
[http://dx.doi.org/10.1038/srep07599] [PMID: 25534891]
[97]
Galli, S.J.; Tsai, M. IgE and mast cells in allergic disease. Nat. Med., 2012, 18(5), 693-704.
[http://dx.doi.org/10.1038/nm.2755] [PMID: 22561833]
[98]
Freichel, M.; Almering, J.; Tsvilovskyy, V. The role of TRP proteins in mast cells. Front. Immunol., 2012, 3, 150.
[http://dx.doi.org/10.3389/fimmu.2012.00150] [PMID: 22701456]
[99]
Baba, Y.; Nishida, K.; Fujii, Y.; Hirano, T.; Hikida, M.; Kurosaki, T. Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat. Immunol., 2008, 9(1), 81-88.
[http://dx.doi.org/10.1038/ni1546] [PMID: 18059272]
[100]
Vig, M.; DeHaven, W.I.; Bird, G.S.; Billingsley, J.M.; Wang, H.; Rao, P.E.; Hutchings, A.B.; Jouvin, M.H.; Putney, J.W.; Kinet, J.P. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat. Immunol., 2008, 9(1), 89-96.
[http://dx.doi.org/10.1038/ni1550] [PMID: 18059270]
[101]
Ashmole, I.; Duffy, S.M.; Leyland, M.L.; Morrison, V.S.; Begg, M.; Bradding, P. CRACM/Orai ion channel expression and function in human lung mast cells. J. Allergy. Clin. Immunol.,, 2012, 129(6), 1628-1635.e1622
[102]
Bulanova, E.; Bulfone-Paus, S. P2 receptor-mediated signaling in mast cell biology. Purinergic Signal., 2010, 6(1), 3-17.
[http://dx.doi.org/10.1007/s11302-009-9173-z] [PMID: 19921464]
[103]
Halova, I.; Draberova, L.; Draber, P. Mast cell chemotaxis - chemoattractants and signaling pathways. Front. Immunol., 2012, 3, 119.
[http://dx.doi.org/10.3389/fimmu.2012.00119] [PMID: 22654878]
[104]
Wajdner, H.E.; Farrington, J.; Barnard, C.; Peachell, P.T.; Schnackenberg, C.G.; Marino, J.P., Jr; Xu, X.; Affleck, K.; Begg, M.; Seward, E.P. Orai and TRPC channel characterization in FcεRI-mediated calcium signaling and mediator secretion in human mast cells. Physiol. Rep., 2017, 5(5)e13166
[http://dx.doi.org/10.14814/phy2.13166] [PMID: 28292887]
[105]
Kim, K.S.; Shin, D.H.; Nam, J.H.; Park, K.S.; Zhang, Y.H.; Kim, W.K.; Kim, S.J. Functional expression of TRPV4 cation channels in human mast cell line (HMC-1). Korean J. Physiol. Pharmacol., 2010, 14(6), 419-425.
[http://dx.doi.org/10.4196/kjpp.2010.14.6.419] [PMID: 21311684]
[106]
Bradding, P.; Okayama, Y.; Kambe, N.; Saito, H. Ion channel gene expression in human lung, skin, and cord blood-derived mast cells. J. Leukoc. Biol., 2003, 73(5), 614-620.
[http://dx.doi.org/10.1189/jlb.1202602] [PMID: 12714576]
[107]
Cohen, R.; Torres, A.; Ma, H.T.; Holowka, D.; Baird, B. Ca2+ waves initiate antigen-stimulated Ca2+ responses in mast cells. J. Immunol., 2009, 183(10), 6478-6488.
[http://dx.doi.org/10.4049/jimmunol.0901615] [PMID: 19864608]
[108]
Suzuki, R.; Liu, X.; Olivera, A.; Aguiniga, L.; Yamashita, Y.; Blank, U.; Ambudkar, I.; Rivera, J. Loss of TRPC1-mediated Ca2+ influx contributes to impaired degranulation in Fyn-deficient mouse bone marrow-derived mast cells. J. Leukoc. Biol., 2010, 88(5), 863-875.
[http://dx.doi.org/10.1189/jlb.0510253] [PMID: 20571036]
[109]
Medic, N.; Desai, A.; Olivera, A.; Abramowitz, J.; Birnbaumer, L.; Beaven, M.A.; Gilfillan, A.M.; Metcalfe, D.D. Knockout of the Trpc1 gene reveals that TRPC1 can promote recovery from anaphylaxis by negatively regulating mast cell TNF-α production. Cell Calcium, 2013, 53(5-6), 315-326.
[http://dx.doi.org/10.1016/j.ceca.2013.02.001] [PMID: 23489970]
[110]
Di Capite, J.; Nelson, C.; Bates, G.; Parekh, A.B. Targeting Ca2+ release-activated Ca2+ channel channels and leukotriene receptors provides a novel combination strategy for treating nasal polyposis. J. Allergy. Clin. Immunol, 2009, 124(5), 1014-1021..1-e3
[http://dx.doi.org/10.1016/j.jaci.2009.08.030] [PMID: 19895990]
[111]
Kojima, I.; Nagasawa, M. Trpv2. Handb. Exp. Pharmacol., 2014, 222, 247-272.
[http://dx.doi.org/10.1007/978-3-642-54215-2_10] [PMID: 24756709]
[112]
Shibasaki, K. Physiological significance of TRPV2 as a mechanosensor, thermosensor and lipid sensor. J. Physiol. Sci., 2016, 66(5), 359-365.
[http://dx.doi.org/10.1007/s12576-016-0434-7] [PMID: 26841959]
[113]
Stokes, A.J.; Shimoda, L.M.; Koblan-Huberson, M.; Adra, C.N.; Turner, H.A. TRPV2-PKA signaling module for transduction of physical stimuli in mast cells. J. Exp. Med., 2004, 200(2), 137-147.
[http://dx.doi.org/10.1084/jem.20032082] [PMID: 15249591]
[114]
Zhang, D.; Spielmann, A.; Wang, L.; Ding, G.; Huang, F.; Gu, Q.; Schwarz, W. Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2. Physiol. Res., 2012, 61(1), 113-124.
[PMID: 21574765]
[115]
Solís-López, A.; Kriebs, U.; Marx, A.; Mannebach, S.; Liedtke, W.B.; Caterina, M.J.; Freichel, M.; Tsvilovskyy, V.V. Analysis of TRPV channel activation by stimulation of FCεRI and MRGPR receptors in mouse peritoneal mast cells. PLoS One, 2017, 12(2)e0171366
[http://dx.doi.org/10.1371/journal.pone.0171366] [PMID: 28158279]
[116]
Park, U.; Vastani, N.; Guan, Y.; Raja, S.N.; Koltzenburg, M.; Caterina, M.J. TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J. Neurosci., 2011, 31(32), 11425-11436.
[http://dx.doi.org/10.1523/JNEUROSCI.1384-09.2011] [PMID: 21832173]
[117]
Oda, S.; Uchida, K.; Wang, X.; Lee, J.; Shimada, Y.; Tominaga, M.; Kadowaki, M. TRPM2 contributes to antigen-stimulated Ca2+ influx in mucosal mast cells. Pflugers Arch., 2013, 465(7), 1023-1030.
[http://dx.doi.org/10.1007/s00424-013-1219-y] [PMID: 23371039]
[118]
Vennekens, R.; Olausson, J.; Meissner, M.; Bloch, W.; Mathar, I.; Philipp, S.E.; Schmitz, F.; Weissgerber, P.; Nilius, B.; Flockerzi, V.; Freichel, M. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat. Immunol., 2007, 8(3), 312-320.
[http://dx.doi.org/10.1038/ni1441] [PMID: 17293867]
[119]
Zierler, S.; Sumoza-Toledo, A.; Suzuki, S.; Dúill, F.O.; Ryazanova, L.V.; Penner, R.; Ryazanov, A.G.; Fleig, A. TRPM7 kinase activity regulates murine mast cell degranulation. J. Physiol., 2016, 594(11), 2957-2970.
[http://dx.doi.org/10.1113/JP271564] [PMID: 26660477]
[120]
McKemy, D.D.; Neuhausser, W.M.; Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature, 2002, 416(6876), 52-58.
[http://dx.doi.org/10.1038/nature719] [PMID: 11882888]
[121]
Peier, A.M.; Moqrich, A.; Hergarden, A.C.; Reeve, A.J.; Andersson, D.A.; Story, G.M.; Earley, T.J.; Dragoni, I.; McIntyre, P.; Bevan, S.; Patapoutian, A. A TRP channel that senses cold stimuli and menthol. Cell, 2002, 108(5), 705-715.
[http://dx.doi.org/10.1016/S0092-8674(02)00652-9] [PMID: 11893340]
[122]
Cho, Y.; Jang, Y.; Yang, Y.D.; Lee, C.H.; Lee, Y.; Oh, U. TRPM8 mediates cold and menthol allergies associated with mast cell activation. Cell Calcium, 2010, 48(4), 202-208.
[http://dx.doi.org/10.1016/j.ceca.2010.09.001] [PMID: 20934218]
[123]
Medic, N.; Desai, A.; Komarow, H.; Burch, L.H.; Bandara, G.; Beaven, M.A.; Metcalfe, D.D.; Gilfillan, A.M. Examination of the role of TRPM8 in human mast cell activation and its relevance to the etiology of cold-induced urticaria. Cell Calcium, 2011, 50(5), 473-480.
[http://dx.doi.org/10.1016/j.ceca.2011.08.003] [PMID: 21906810]
[124]
Weidinger, S.; Novak, N. Atopic dermatitis. Lancet, 2016, 387(10023), 1109-1122.
[http://dx.doi.org/10.1016/S0140-6736(15)00149-X] [PMID: 26377142]
[125]
Bieber, T. Atopic dermatitis. N. Engl. J. Med., 2008, 358(14), 1483-1494.
[http://dx.doi.org/10.1056/NEJMra074081] [PMID: 18385500]
[126]
Thyssen, J.P.; Kezic, S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J. Allergy Clin. Immunol., 2014, 134(4), 792-799.
[http://dx.doi.org/10.1016/j.jaci.2014.06.014] [PMID: 25065719]
[127]
Palmer, C.N.; Irvine, A.D.; Terron-Kwiatkowski, A.; Zhao, Y.; Liao, H.; Lee, S.P.; Goudie, D.R.; Sandilands, A.; Campbell, L.E.; Smith, F.J.; O’Regan, G.M.; Watson, R.M.; Cecil, J.E.; Bale, S.J.; Compton, J.G.; DiGiovanna, J.J.; Fleckman, P.; Lewis-Jones, S.; Arseculeratne, G.; Sergeant, A.; Munro, C.S.; El Houate, B.; McElreavey, K.; Halkjaer, L.B.; Bisgaard, H.; Mukhopadhyay, S.; McLean, W.H. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet., 2006, 38(4), 441-446.
[http://dx.doi.org/10.1038/ng1767] [PMID: 16550169]
[128]
Jungersted, J.M.; Scheer, H.; Mempel, M.; Baurecht, H.; Cifuentes, L.; Høgh, J.K.; Hellgren, L.I.; Jemec, G.B.; Agner, T.; Weidinger, S. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy, 2010, 65(7), 911-918.
[http://dx.doi.org/10.1111/j.1398-9995.2010.02326.x] [PMID: 20132155]
[129]
Paller, A.S.; Kabashima, K.; Bieber, T. Therapeutic pipeline for atopic dermatitis: End of the drought? J. Allergy Clin. Immunol., 2017, 140(3), 633-643.
[http://dx.doi.org/10.1016/j.jaci.2017.07.006] [PMID: 28887947]
[130]
He, A.; Feldman, S.R.; Fleischer, A.B. Jr. An assessment of the use of antihistamines in the management of atopic dermatitis. J. Am. Acad. Dermatol., 2018, 79(1), 92-96.
[http://dx.doi.org/10.1016/j.jaad.2017.12.077] [PMID: 29317281]
[131]
Yoshino, T.; Ishikawa, J.; Ohga, K.; Morokata, T.; Takezawa, R.; Morio, H.; Okada, Y.; Honda, K.; Yamada, T. YM-58483, a selective CRAC channel inhibitor, prevents antigen-induced airway eosinophilia and late phase asthmatic responses via Th2 cytokine inhibition in animal models. Eur. J. Pharmacol., 2007, 560(2-3), 225-233.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.012] [PMID: 17307161]
[132]
Chen, G.; Panicker, S.; Lau, K.Y.; Apparsundaram, S.; Patel, V.A.; Chen, S.L.; Soto, R.; Jung, J.K.; Ravindran, P.; Okuhara, D.; Bohnert, G.; Che, Q.; Rao, P.E.; Allard, J.D.; Badi, L.; Bitter, H.M.; Nunn, P.A.; Narula, S.K.; DeMartino, J.A. Characterization of a novel CRAC inhibitor that potently blocks human T cell activation and effector functions. Mol. Immunol., 2013, 54(3-4), 355-367.
[http://dx.doi.org/10.1016/j.molimm.2012.12.011] [PMID: 23357789]
[133]
Grundy, S.; Kaur, M.; Plumb, J.; Reynolds, S.; Hall, S.; House, D.; Begg, M.; Ray, D.; Singh, D. CRAC channel inhibition produces greater anti-inflammatory effects than glucocorticoids in CD8 cells from COPD patients. Clin. Sci. (Lond.), 2014, 126(3), 223-232.
[http://dx.doi.org/10.1042/CS20130152] [PMID: 23905758]
[134]
Elsholz, F.; Harteneck, C.; Muller, W.; Friedland, K. Calcium--a central regulator of keratinocyte differentiation in health and disease. Eur. J. Dermatol., 2014, 24(6), 650-661.
[http://dx.doi.org/10.1684/ejd.2014.2452] [PMID: 25514792]
[135]
Tóth, B.I.; Oláh, A.; Szöllősi, A.G.; Bíró, T. TRP channels in the skin. Br. J. Pharmacol., 2014, 171(10), 2568-2581.
[http://dx.doi.org/10.1111/bph.12569] [PMID: 24372189]
[136]
Ho, J.C.; Lee, C.H. TRP channels in skin: from physiological implications to clinical significances. Biophysics( Nagoya-shi),, 2015, 11, 17-24.
[http://dx.doi.org/10.2142/biophysics.11.17] [PMID: 27493510]
[137]
Cheng, X.; Jin, J.; Hu, L.; Shen, D.; Dong, X.P.; Samie, M.A.; Knoff, J.; Eisinger, B.; Liu, M.L.; Huang, S.M.; Caterina, M.J.; Dempsey, P.; Michael, L.E.; Dlugosz, A.A.; Andrews, N.C.; Clapham, D.E.; Xu, H. TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell, 2010, 141(2), 331-343.
[http://dx.doi.org/10.1016/j.cell.2010.03.013] [PMID: 20403327]
[138]
Aijima, R.; Wang, B.; Takao, T.; Mihara, H.; Kashio, M.; Ohsaki, Y.; Zhang, J.Q.; Mizuno, A.; Suzuki, M.; Yamashita, Y.; Masuko, S.; Goto, M.; Tominaga, M.; Kido, M.A. The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia. FASEB J., 2015, 29(1), 182-192.
[http://dx.doi.org/10.1096/fj.14-251314] [PMID: 25351988]
[139]
Nam, Y.R.; Kim, H.J.; Kim, Y.M.; Chin, Y.W.; Bae, H.S.; Kim, W.K.; Nam, J.H. Agrimonia pilosa leaf extract accelerates skin barrier restoration by activation of transient receptor potential vanilloid 3. J. Dermatol. Sci., 2017, 86(3), 255-258.
[http://dx.doi.org/10.1016/j.jdermsci.2017.03.003] [PMID: 28404452]
[140]
Roberson, D.P.; Gudes, S.; Sprague, J.M.; Patoski, H.A.; Robson, V.K.; Blasl, F.; Duan, B.; Oh, S.B.; Bean, B.P.; Ma, Q.; Binshtok, A.M.; Woolf, C.J. Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons. Nat. Neurosci., 2013, 16(7), 910-918.
[http://dx.doi.org/10.1038/nn.3404] [PMID: 23685721]
[141]
Wilson, S.; Bautista, D. Itching for relief. Nat. Neurosci., 2013, 16(7), 775-777.
[http://dx.doi.org/10.1038/nn.3442] [PMID: 23799467]
[142]
Cevikbas, F.; Wang, X.; Akiyama, T.; Kempkes, C.; Savinko, T.; Antal, A.; Kukova, G.; Buhl, T.; Ikoma, A.; Buddenkotte, J.; Soumelis, V.; Feld, M.; Alenius, H.; Dillon, S.R.; Carstens, E.; Homey, B.; Basbaum, A.; Steinhoff, M. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: Involvement of TRPV1 and TRPA1. J. Allergy Clin. Immunol., 2014, 133(2), 448-460.
[http://dx.doi.org/10.1016/j.jaci.2013.10.048] [PMID: 24373353]
[143]
Yun, J.W.; Seo, J.A.; Jeong, Y.S.; Bae, I.H.; Jang, W.H.; Lee, J.; Kim, S.Y.; Shin, S.S.; Woo, B.Y.; Lee, K.W.; Lim, K.M.; Park, Y.H. TRPV1 antagonist can suppress the atopic dermatitis-like symptoms by accelerating skin barrier recovery. J. Dermatol. Sci., 2011, 62(1), 8-15.
[PMID: 21345654]
[144]
Bonchak, J.G.; Swerlick, R.A. Emerging therapies for atopic dermatitis: TRPV1 antagonists. J. Am. Acad. Dermatol.,, 2018, 78(3S1), S63-S66.
[http://dx.doi.org/10.1016/j.jaad.2017.12.023] [PMID: 29248524]
[145]
Tan, C.H.; Rasool, S.; Johnston, G.A. Contact dermatitis: allergic and irritant. Clin. Dermatol., 2014, 32(1), 116-124.
[http://dx.doi.org/10.1016/j.clindermatol.2013.05.033] [PMID: 24314385]
[146]
Feng, J.; Yang, P.; Mack, M.R.; Dryn, D.; Luo, J.; Gong, X.; Liu, S.; Oetjen, L.K.; Zholos, A.V.; Mei, Z.; Yin, S.; Kim, B.S.; Hu, H. Sensory TRP channels contribute differentially to skin inflammation and persistent itch. Nat. Commun., 2017, 8(1), 980.
[http://dx.doi.org/10.1038/s41467-017-01056-8] [PMID: 29081531]
[147]
Wheatley, L.M.; Togias, A. Clinical practice. Allergic rhinitis. N. Engl. J. Med., 2015, 372(5), 456-463.
[http://dx.doi.org/10.1056/NEJMcp1412282] [PMID: 25629743]
[148]
Kakli, H.A.; Riley, T.D. Allergic Rhinitis. Prim. Care, 2016, 43(3), 465-475.
[http://dx.doi.org/10.1016/j.pop.2016.04.009] [PMID: 27545735]
[149]
Alenmyr, L.; Högestätt, E.D.; Zygmunt, P.M.; Greiff, L. TRPV1-mediated itch in seasonal allergic rhinitis. Allergy, 2009, 64(5), 807-810.
[http://dx.doi.org/10.1111/j.1398-9995.2009.01937.x] [PMID: 19220220]
[150]
Taylor-Clark, T.E.; Kollarik, M.; MacGlashan, D.W. Jr.; Undem, B.J. Nasal sensory nerve populations responding to histamine and capsaicin. J. Allergy Clin. Immunol., 2005, 116(6), 1282-1288.
[http://dx.doi.org/10.1016/j.jaci.2005.08.043] [PMID: 16337460]
[151]
Van Gerven, L.; Alpizar, Y.A.; Wouters, M.M.; Hox, V.; Hauben, E.; Jorissen, M.; Boeckxstaens, G.; Talavera, K.; Hellings, P.W. Capsaicin treatment reduces nasal hyperreactivity and transi-ent receptor potential cation channel subfamily V, receptor 1 (TRPV1) overexpression in patients with idiopathic rhinitis. J. Allergy. Clin. Immunol.,, 2014, 133(5), 1332-1339.1339.e1-3
[http://dx.doi.org/10.1016/j.jaci.2013.08.026] [PMID: 24139494]
[152]
Rami, H.K.; Thompson, M.; Stemp, G.; Fell, S.; Jerman, J.C.; Stevens, A.J.; Smart, D.; Sargent, B.; Sanderson, D.; Randall, A.D.; Gunthorpe, M.J.; Davis, J.B. Discovery of SB-705498: a potent, selective and orally bioavailable TRPV1 antagonist suitable for clinical development. Bioorg. Med. Chem. Lett., 2006, 16(12), 3287-3291.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.030] [PMID: 16580202]
[153]
Bareille, P.; Murdoch, R.D.; Denyer, J.; Bentley, J.; Smart, K.; Yarnall, K.; Zieglmayer, P.; Zieglmayer, R.; Lemell, P.; Horak, F. The effects of a TRPV1 antagonist, SB-705498, in the treatment of seasonal allergic rhinitis. Int. J. Clin. Pharmacol. Ther., 2013, 51(7), 576-584.
[http://dx.doi.org/10.5414/CP201890] [PMID: 23735181]
[154]
Murdoch, R.D.; Bareille, P.; Denyer, J.; Newlands, A.; Bentley, J.; Smart, K.; Yarnall, K.; Patel, D. TRPV1 inhibition does not prevent cold dry air-elicited symptoms in non-allergic rhinitis. Int. J. Clin. Pharmacol. Ther., 2014, 52(4), 267-276.
[http://dx.doi.org/10.5414/CP202013] [PMID: 24472402]
[155]
Bel, E.H. Clinical Practice. Mild asthma. N. Engl. J. Med., 2013, 369(6), 549-557.
[http://dx.doi.org/10.1056/NEJMcp1214826] [PMID: 23924005]
[156]
To, T.; Stanojevic, S.; Moores, G.; Gershon, A.S.; Bateman, E.D.; Cruz, A.A.; Boulet, L.P. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health, 2012, 12, 204.
[http://dx.doi.org/10.1186/1471-2458-12-204] [PMID: 22429515]
[157]
Israel, E.; Reddel, H.K. Severe and difficult-to-treat asthma in adults. N. Engl. J. Med., 2017, 377(10), 965-976.
[http://dx.doi.org/10.1056/NEJMra1608969] [PMID: 28877019]
[158]
Papi, A.; Brightling, C.; Pedersen, S.E.; Reddel, H.K. Asthma. Lancet, 2018, 391(10122), 783-800.
[http://dx.doi.org/10.1016/S0140-6736(17)33311-1] [PMID: 29273246]
[159]
Brouns, I.; Pintelon, I.; Timmermans, J.P.; Adriaensen, D. Novel insights in the neurochemistry and function of pulmonary sensory receptors. Adv. Anat. Embryol. Cell Biol.,, 2012, 211, 1-115. vii
[http://dx.doi.org/10.1007/978-3-642-22772-1_1] [PMID: 22128592]
[160]
Bonvini, S.J.; Belvisi, M.G. Cough and airway disease: The role of ion channels. Pulm. Pharmacol. Ther., 2017, 47, 21-28.
[http://dx.doi.org/10.1016/j.pupt.2017.06.009] [PMID: 28669932]
[161]
Nassenstein, C.; Kwong, K.; Taylor-Clark, T.; Kollarik, M.; Macglashan, D.M.; Braun, A.; Undem, B.J. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J. Physiol., 2008, 586(6), 1595-1604.
[http://dx.doi.org/10.1113/jphysiol.2007.148379] [PMID: 18218683]
[162]
Belvisi, M.G.; Birrell, M.A.; Khalid, S.; Wortley, M.A.; Dockry, R.; Coote, J.; Holt, K.; Dubuis, E.; Kelsall, A.; Maher, S.A.; Bonvini, S.; Woodcock, A.; Smith, J.A. Neurophenotypes in airway diseases. insights from translational cough studies. Am. J. Respir. Crit. Care Med., 2016, 193(12), 1364-1372.
[http://dx.doi.org/10.1164/rccm.201508-1602OC] [PMID: 26741046]
[163]
Kaneko, Y.; Szallasi, A. Transient receptor potential (TRP) channels: a clinical perspective. Br. J. Pharmacol., 2014, 171(10), 2474-2507.
[http://dx.doi.org/10.1111/bph.12414] [PMID: 24102319]
[164]
Bhattacharya, A.; Scott, B.P.; Nasser, N.; Ao, H.; Maher, M.P.; Dubin, A.E.; Swanson, D.M.; Shankley, N.P.; Wickenden, A.D.; Chaplan, S.R. Pharmacology and antitussive efficacy of 4-(3-trifluoromethyl-pyridin-2-yl)-piperazine-1-carboxylic acid (5-trifluoromethyl-pyridin-2-yl)-amide (JNJ17203212), a transient receptor potential vanilloid 1 antagonist in guinea pigs. J. Pharmacol. Exp. Ther., 2007, 323(2), 665-674.
[http://dx.doi.org/10.1124/jpet.107.127258] [PMID: 17690251]
[165]
Andrè, E.; Gatti, R.; Trevisani, M.; Preti, D.; Baraldi, P.G.; Patacchini, R.; Geppetti, P. Transient receptor potential ankyrin receptor 1 is a novel target for pro-tussive agents. Br. J. Pharmacol., 2009, 158(6), 1621-1628.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00438.x] [PMID: 19845671]
[166]
Birrell, M.A.; Belvisi, M.G.; Grace, M.; Sadofsky, L.; Faruqi, S.; Hele, D.J.; Maher, S.A.; Freund-Michel, V.; Morice, A.H. TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am. J. Respir. Crit. Care Med., 2009, 180(11), 1042-1047.
[http://dx.doi.org/10.1164/rccm.200905-0665OC] [PMID: 19729665]
[167]
Khalid, S.; Murdoch, R.; Newlands, A.; Smart, K.; Kelsall, A.; Holt, K.; Dockry, R.; Woodcock, A.; Smith, J.A. Transient receptor potential vanilloid 1 (TRPV1) antagonism in patients with refractory chronic cough: a double-blind randomized controlled trial. J. Allergy Clin. Immunol., 2014, 134(1), 56-62.
[http://dx.doi.org/10.1016/j.jaci.2014.01.038] [PMID: 24666696]
[168]
Banner, K.H.; Igney, F.; Poll, C. TRP channels: emerging targets for respiratory disease. Pharmacol. Ther., 2011, 130(3), 371-384.
[http://dx.doi.org/10.1016/j.pharmthera.2011.03.005] [PMID: 21420429]
[169]
Belvisi, M.G.; Birrell, M.A.; Wortley, M.A.; Maher, S.A.; Satia, I.; Badri, H.; Holt, K.; Round, P.; McGarvey, L.; Ford, J.; Smith, J.A. XEN-D0501, a novel transient receptor potential vanilloid 1 antagonist, does not reduce cough in patients with refractory cough. Am. J. Respir. Crit. Care Med., 2017, 196(10), 1255-1263.
[http://dx.doi.org/10.1164/rccm.201704-0769OC] [PMID: 28650204]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 9
Year: 2020
Page: [1446 - 1468]
Pages: 23
DOI: 10.2174/0929867326666181126113015
Price: $65

Article Metrics

PDF: 42
HTML: 1
EPUB: 1
PRC: 4