Novel Vaccine Candidates against Tuberculosis

Author(s): Zhihao Li, Changping Zheng, Marco Terreni, Lisa Tanzi, Matthieu Sollogoub, Yongmin Zhang*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 31 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Ranking above AIDS, Tuberculosis (TB) is the ninth leading cause of death affecting and killing many individuals every year. Drugs’ efficacy is limited by a series of problems such as Multi- Drug Resistance (MDR) and Extensively-Drug Resistance (XDR). Meanwhile, the only licensed vaccine BCG (Bacillus Calmette-Guérin) existing for over 90 years is not effective enough. Consequently, it is essential to develop novel vaccines for TB prevention and immunotherapy. This paper provides an overall review of the TB prevalence, immune system response against TB and recent progress of TB vaccine research and development. Several vaccines in clinical trials are described as well as LAM-based candidates.

Keywords: Tuberculosis, vaccine, Lipoarabinomannan, immunotherapy, response, LAM-based candidates.

[1]
Radosevic, K.; Wieland, C.W.; Rodriguez, A.; Weverling, G.J.; Mintardjo, R.; Gillissen, G.; Vogels, R.; Skeiky, Y.A.; Hone, D.M.; Sadoff, J.C.; van der Poll, T.; Havenga, M.; Goudsmit, J. Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of gamma interferon. Infect. Immun., 2007, 75(8), 4105-4115.
[http://dx.doi.org/10.1128/IAI.00004-07] [PMID: 17526747]
[2]
World Health Organization; Global Tuberculosis Report, 2019.Available at:. http://www.who.int/tb/publications/global_report/en/
[3]
Connell, D.W.; Berry, M.; Cooke, G.; Kon, O.M. Update on tuberculosis: TB in the early 21st century. Eur. Respir. Rev., 2011, 20(120), 71-84.
[http://dx.doi.org/10.1183/09059180.00000511] [PMID: 21632795]
[4]
Joe, M.; Sun, D.; Taha, H.; Completo, G.C.; Croudace, J.E.; Lammas, D.A.; Besra, G.S.; Lowary, T.L. The 5-deoxy-5-methylthio-xylofuranose residue in mycobacterial lipoarabinomannan. Absolute stereochemistry, linkage position, conformation and immunomodulatory activity. J. Am. Chem. Soc., 2006, 128(15), 5059-5072.
[http://dx.doi.org/10.1021/ja057373q] [PMID: 16608340]
[5]
Wang, L.; Feng, S.; An, L.; Gu, G.; Guo, Z. Synthetic and immunological studies of mycobacterial lipoarabinomannan oligosaccharides and their protein conjugates. J. Org. Chem., 2015, 80(20), 10060-10075.
[http://dx.doi.org/10.1021/acs.joc.5b01686] [PMID: 26375482]
[6]
Andersen, P.; Doherty, T.M. The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol., 2005, 3(8), 656-662.
[http://dx.doi.org/10.1038/nrmicro1211] [PMID: 16012514]
[7]
Trunz, B.B.; Fine, P.; Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet, 2006, 367(9517), 1173-1180.
[http://dx.doi.org/10.1016/S0140-6736(06)68507-3] [PMID: 16616560]
[8]
Källenius, G.; Pawlowski, A.; Hamasur, B.; Svenson, S.B. Mycobacterial glycoconjugates as vaccine candidates against tuberculosis. Trends Microbiol., 2008, 16(10), 456-462.
[http://dx.doi.org/10.1016/j.tim.2008.07.007] [PMID: 18774297]
[9]
Black, G.F.; Weir, R.E.; Floyd, S.; Bliss, L.; Warndorff, D.K.; Crampin, A.C.; Ngwira, B.; Sichali, L.; Nazareth, B.; Blackwell, J.M.; Branson, K.; Chaguluka, S.D.; Donovan, L.; Jarman, E.; King, E.; Fine, P.E.; Dockrell, H.M. BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet, 2002, 359(9315), 1393-1401.
[http://dx.doi.org/10.1016/S0140-6736(02)08353-8] [PMID: 11978337]
[10]
Lalor, M.K.; Ben-Smith, A.; Gorak-Stolinska, P.; Weir, R.E.; Floyd, S.; Blitz, R.; Mvula, H.; Newport, M.J.; Branson, K.; McGrath, N.; Crampin, A.C.; Fine, P.E.; Dockrell, H.M. Population differences in immune responses to bacille calmette-guérin vaccination in infancy. J. Infect. Dis., 2009, 199(6), 795-800.
[http://dx.doi.org/10.1086/597069] [PMID: 19434928]
[11]
Mansoor, N.; Scriba, T.J.; de Kock, M.; Tameris, M.; Abel, B.; Keyser, A.; Little, F.; Soares, A.; Gelderbloem, S.; Mlenjeni, S.; Denation, L.; Hawkridge, A.; Boom, W.H.; Kaplan, G.; Hussey, G.D.; Hanekom, W.A. HIV-1 infection in infants severely impairs the immune response induced by bacille calmette-guérin vaccine. J. Infect. Dis., 2009, 199(7), 982-990.
[http://dx.doi.org/10.1086/597304] [PMID: 19236280]
[12]
Kaufmann, S.H. Is the development of a new tuberculosis vaccine possible? Nat. Med., 2000, 6(9), 955-960.
[http://dx.doi.org/10.1038/79631] [PMID: 10973302]
[13]
Govindarajan, K.K.; Chai, F.Y. BCG adenitis-need for increased awareness. Malays. J. Med. Sci., 2011, 18(2), 66-69.
[PMID: 22135589]
[14]
Abebe, F.; Bjune, G. The protective role of antibody responses during Mycobacterium tuberculosis infection. Clin. Exp. Immunol., 2009, 157(2), 235-243.
[http://dx.doi.org/10.1111/j.1365-2249.2009.03967.x] [PMID: 19604263]
[15]
Lerner, T.R.; Borel, S.; Gutierrez, M.G. The innate immune response in human tuberculosis. Cell. Microbiol., 2015, 17(9), 1277-1285.
[http://dx.doi.org/10.1111/cmi.12480] [PMID: 26135005]
[16]
Allen, M.; Bailey, C.; Cahatol, I.; Dodge, L.; Yim, J.; Kassissa, C.; Luong, J.; Kasko, S.; Pandya, S.; Venketaraman, V. Mechanisms of control of Mycobacterium tuberculosis by NK cells: role of glutathione. Front. Immunol., 2015, 6, 508.
[http://dx.doi.org/10.3389/fimmu.2015.00508] [PMID: 26500648]
[17]
Cheng, Y.; Schorey, J.S. Exosomes carrying mycobacterial antigens can protect mice against Mycobacterium tuberculosis infection. Eur. J. Immunol., 2013, 43(12), 3279-3290.
[http://dx.doi.org/10.1002/eji.201343727] [PMID: 23943377]
[18]
Kaufmann, S.H. Fact and fiction in tuberculosis vaccine research: 10 years later. Lancet Infect. Dis., 2011, 11(8), 633-640.
[http://dx.doi.org/10.1016/S1473-3099(11)70146-3] [PMID: 21798463]
[19]
Silva, C.L.; Bonato, V.L.; Lima, K.M.; Coelho-Castelo, A.A.; Faccioli, L.H.; Sartori, A.; De Souza, A.O.; Leão, S.C. Cytotoxic T cells and mycobacteria. FEMS Microbiol. Lett., 2001, 197(1), 11-18.
[http://dx.doi.org/10.1111/j.1574-6968.2001.tb10575.x] [PMID: 11287139]
[20]
Kaufmann, S.H.; Parida, S.K. Changing funding patterns in tuberculosis. Nat. Med., 2007, 13(3), 299-303.
[http://dx.doi.org/10.1038/nm0307-299] [PMID: 17342144]
[21]
Kaufmann, S.H.; Hussey, G.; Lambert, P.H. New vaccines for tuberculosis. Lancet, 2010, 375(9731), 2110-2119.
[http://dx.doi.org/10.1016/S0140-6736(10)60393-5] [PMID: 20488515]
[22]
Kaufmann, S.H. Future vaccination strategies against tuberculosis: thinking outside the box. Immunity, 2010, 33(4), 567-577.
[http://dx.doi.org/10.1016/j.immuni.2010.09.015] [PMID: 21029966]
[23]
van Crevel, R.; Ottenhoff, T.H.; van der Meer, J.W. Innate immunity to Mycobacterium tuberculosis. Clin. Microbiol. Rev., 2002, 15(2), 294-309.
[http://dx.doi.org/10.1128/CMR.15.2.294-309.2002] [PMID: 11932234]
[24]
Li, H.; Javid, B. Antibodies and tuberculosis: finally coming of age? Nat. Rev. Immunol., 2018, 18(9), 591-596.
[http://dx.doi.org/10.1038/s41577-018-0028-0] [PMID: 29872140]
[25]
Aagaard, C.; Dietrich, J.; Doherty, M.; Andersen, P. TB vaccines: current status and future perspectives. Immunol. Cell Biol., 2009, 87(4), 279-286.
[http://dx.doi.org/10.1038/icb.2009.14] [PMID: 19350048]
[26]
Doherty, T.M.; Andersen, P. Vaccines for tuberculosis: novel concepts and recent progress. Clin. Microbiol. Rev., 2005, 18(4), 687-702.
[http://dx.doi.org/10.1128/CMR.18.4.687-702.2005] [PMID: 16223953]
[27]
Bavaro, T.; Piubelli, L.; Amicosante, M.; Terreni, M. From new diagnostic targets to recombinant proteins and semi-synthetic protein-based vaccines. Curr. Org. Synth., 2016, 20(11), 1150-1168.
[http://dx.doi.org/10.2174/1385272819666150810204736]]
[28]
Bekmurzayeva, A.; Sypabekova, M.; Kanayeva, D. Tuberculosis diagnosis using immunodominant, secreted antigens of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2013, 93(4), 381-388.
[http://dx.doi.org/10.1016/j.tube.2013.03.003] [PMID: 23602700]
[29]
Huygen, K. The immunodominant T-cell epitopes of the mycolyl-transferases of the antigen 85 complex of M. tuberculosis. Front. Immunol., 2014, 5, 321.
[http://dx.doi.org/10.3389/fimmu.2014.00321] [PMID: 25071781]
[30]
Lightbody, K.A.; Girvin, R.M.; Pollock, D.A.; Mackie, D.P.; Neill, S.D.; Pollock, J.M. Recognition of a common mycobacterial T-cell epitope in MPB59 of Mycobacterium bovis. Immunology, 1998, 93(3), 314-322.
[http://dx.doi.org/10.1046/j.1365-2567.1998.00449.x] [PMID: 9640240]
[31]
Mustafa, A.S.; Shaban, F.A.; Abal, A.T.; Al-Attiyah, R.; Wiker, H.G.; Lundin, K.E.; Oftung, F.; Huygen, K. Identification and HLA restriction of naturally derived Th1-cell epitopes from the secreted Mycobacterium tuberculosis antigen 85B recognized by antigen-specific human CD4(+) T-cell lines. Infect. Immun., 2000, 68(7), 3933-3940.
[http://dx.doi.org/10.1128/IAI.68.7.3933-3940.2000] [PMID: 10858206]
[32]
Valle, M.T.; Megiovanni, A.M.; Merlo, A.; Li Pira, G.; Bottone, L.; Angelini, G.; Bracci, L.; Lozzi, L.; Huygen, K.; Manca, F. Epitope focus, clonal composition and Th1 phenotype of the human CD4 response to the secretory mycobacterial antigen Ag85. Clin. Exp. Immunol., 2001, 123(2), 226-232.
[http://dx.doi.org/10.1046/j.1365-2249.2001.01450.x] [PMID: 11207652]
[33]
Kadir, N.A.; Sarmiento, M.E.; Acosta, A.; Norazmi, M-N. Cellular and humoral immunogenicity of recombinant Mycobacterium smegmatis expressing Ag85B epitopes in mice. Int. J. Mycobacteriol., 2016, 5(1), 7-13.
[http://dx.doi.org/10.1016/j.ijmyco.2015.09.006] [PMID: 26927984]
[34]
Skjøt, R.L.V.; Oettinger, T.; Rosenkrands, I.; Ravn, P.; Brock, I.; Jacobsen, S.; Andersen, P. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens. Infect. Immun., 2000, 68(1), 214-220.
[http://dx.doi.org/10.1128/IAI.68.1.214-220.2000] [PMID: 10603390]
[35]
Brandt, L.; Oettinger, T.; Holm, A.; Andersen, A.B.; Andersen, P. Key epitopes on the ESAT-6 antigen recognized in mice during the recall of protective immunity to Mycobacterium tuberculosis. J. Immunol., 1996, 157(8), 3527-3533.
[PMID: 8871652]
[36]
Harboe, M.; Malin, A.S.; Dockrell, H.S.; Wiker, H.G.; Ulvund, G.; Holm, A.; Jørgensen, M.C.; Andersen, P. B-cell epitopes and quantification of the ESAT-6 protein of Mycobacterium tuberculosis. Infect. Immun., 1998, 66(2), 717-723.
[http://dx.doi.org/10.1128/IAI.66.2.717-723.1998] [PMID: 9453632]
[37]
Temporini, C.; Bavaro, T.; Tengattini, S.; Serra, I.; Marrubini, G.; Calleri, E.; Fasanella, F.; Piubelli, L.; Marinelli, F.; Pollegioni, L.; Speranza, G.; Massolini, G.; Terreni, M. Liquid chromatography-mass spectrometry structural characterization of neo glycoproteins aiding the rational design and synthesis of a novel glycovaccine for protection against tuberculosis. J. Chromatogr. A, 2014, 1367, 57-67.
[http://dx.doi.org/10.1016/j.chroma.2014.09.041] [PMID: 25282312]
[38]
Li, L.; Yang, B.; Yu, S.; Zhang, X.; Lao, S.; Wu, C. Human CD8+ T cells from TB pleurisy respond to four immunodominant epitopes in Mtb CFP10 restricted by HLA-B alleles. PLoS One, 2013, 8(12)e82196
[http://dx.doi.org/10.1371/journal.pone.0082196] [PMID: 24349220]
[39]
Roche, P.W.; Feng, C.G.; Britton, W.J. Human T-cell epitopes on the Mycobacterium tuberculosis secreted protein MPT64. Scand. J. Immunol., 1996, 43(6), 662-670.
[http://dx.doi.org/10.1046/j.1365-3083.1996.d01-260.x] [PMID: 8658056]
[40]
Oettinger, T.; Andersen, A.B. Cloning and B-cell-epitope mapping of MPT64 from Mycobacterium tuberculosis H37Rv. Infect. Immun., 1994, 62(5), 2058-2064.
[http://dx.doi.org/10.1128/IAI.62.5.2058-2064.1994] [PMID: 7513311]
[41]
Mustafa, A.S. In silico binding predictions for identification of HLA-DR-promiscuous regions and epitopes of Mycobacterium tuberculosis protein MPT64 (Rv1980c) and their recognition by human Th1 cells. Med. Princ. Pract., 2010, 19(5), 367-372.
[http://dx.doi.org/10.1159/000316375] [PMID: 20639660]
[42]
Bertholet, S.; Ireton, G.C.; Kahn, M.; Guderian, J.; Mohamath, R.; Stride, N.; Laughlin, E.M.; Baldwin, S.L.; Vedvick, T.S.; Coler, R.N.; Reed, S.G. Identification of human T cell antigens for the development of vaccines against Mycobacterium tuberculosis. J. Immunol., 2008, 181(11), 7948-7957.
[http://dx.doi.org/10.4049/jimmunol.181.11.7948] [PMID: 19017986]
[43]
Zhou, T.; Xu, L.; Dey, B.; Hessell, A.J.; Van Ryk, D.; Xiang, S.H.; Yang, X.; Zhang, M.Y.; Zwick, M.B.; Arthos, J.; Burton, D.R.; Dimitrov, D.S.; Sodroski, J.; Wyatt, R.; Nabel, G.J.; Kwong, P.D. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature, 2007, 445(7129), 732-737.
[http://dx.doi.org/10.1038/nature05580] [PMID: 17301785]
[44]
Horwitz, M.A.; Harth, G.; Dillon, B.J.; Masleša-Galić’, S. Recombinant bacillus calmette-guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc. Natl. Acad. Sci. USA, 2000, 97(25), 13853-13858.
[http://dx.doi.org/10.1073/pnas.250480397] [PMID: 11095745]
[45]
Orme, I.M. Tuberculosis vaccine types and timings. Clin. Vaccine Immunol., 2015, 22(3), 249-257.
[http://dx.doi.org/10.1128/CVI.00718-14] [PMID: 25540272]
[46]
Grode, L.; Seiler, P.; Baumann, S.; Hess, J.; Brinkmann, V.; Nasser Eddine, A.; Mann, P.; Goosmann, C.; Bandermann, S.; Smith, D.; Bancroft, G.J.; Reyrat, J.M.; van Soolingen, D.; Raupach, B.; Kaufmann, S.H. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille calmette-guérin mutants that secrete listeriolysin. J. Clin. Invest., 2005, 115(9), 2472-2479.
[http://dx.doi.org/10.1172/JCI24617] [PMID: 16110326]
[47]
Grode, L.; Ganoza, C.A.; Brohm, C.; Weiner, J., III; Eisele, B.; Kaufmann, S.H. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine, 2013, 31(9), 1340-1348.
[http://dx.doi.org/10.1016/j.vaccine.2012.12.053] [PMID: 23290835]
[48]
Saiga, H.; Nieuwenhuizen, N.; Gengenbacher, M.; Koehler, A.B.; Schuerer, S.; Moura-Alves, P.; Wagner, I.; Mollenkopf, H.J.; Dorhoi, A.; Kaufmann, S.H. The Recombinant BCG Δ ureC: HLY vaccine targets the AIM2 inflammasome to induce autophagy and inflammation. J. Infect. Dis., 2015, 211(11), 1831-1841.
[http://dx.doi.org/10.1093/infdis/jiu675] [PMID: 25505299]
[49]
Kaufmann, S.H.; Cotton, M.F.; Eisele, B.; Gengenbacher, M.; Grode, L.; Hesseling, A.C.; Walzl, G. The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev. Vaccines, 2014, 13(5), 619-630.
[http://dx.doi.org/10.1586/14760584.2014.905746] [PMID: 24702486]
[50]
Loxton, A.G.; Knaul, J.K.; Grode, L.; Gutschmidt, A.; Meller, C.; Eisele, B.; Johnstone, H.; van der Spuy, G.; Maertzdorf, J.; Kaufmann, S.H.E.; Hesseling, A.C.; Walzl, G.; Cotton, M.F. Safety and immunogenicity of the recombinant Mycobacterium bovis BCG vaccine VPM1002 in HIV-unexposed newborn infants in South Africa. Clin. Vaccine Immunol., 2017, 24(2), e00439-e00416.
[http://dx.doi.org/10.1128/CVI.00439-16] [PMID: 27974398]
[51]
Desel, C.; Dorhoi, A.; Bandermann, S.; Grode, L.; Eisele, B.; Kaufmann, S.H.; Recombinant, B.C.G. Recombinant BCG ΔureC HLY+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J. Infect. Dis., 2011, 204(10), 1573-1584.
[http://dx.doi.org/10.1093/infdis/jir592] [PMID: 21933877]
[52]
Larsen, M.H.; Biermann, K.; Chen, B.; Hsu, T.; Sambandamurthy, V.K.; Lackner, A.A.; Aye, P.P.; Didier, P.; Huang, D.; Shao, L.; Wei, H.; Letvin, N.L.; Frothingham, R.; Haynes, B.F.; Chen, Z.W.; Jacobs, W.R., Jr Efficacy and safety of live attenuated persistent and rapidly cleared Mycobacterium tuberculosis vaccine candidates in non-human primates. Vaccine, 2009, 27(34), 4709-4717.
[http://dx.doi.org/10.1016/j.vaccine.2009.05.050] [PMID: 19500524]
[53]
Arbues, A.; Aguilo, J.I.; Gonzalo-Asensio, J.; Marinova, D.; Uranga, S.; Puentes, E.; Fernandez, C.; Parra, A.; Cardona, P.J.; Vilaplana, C.; Ausina, V.; Williams, A.; Clark, S.; Malaga, W.; Guilhot, C.; Gicquel, B.; Martin, C. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine, 2013, 31(42), 4867-4873.
[http://dx.doi.org/10.1016/j.vaccine.2013.07.051] [PMID: 23965219]
[54]
Gonzalo-Asensio, J.; Marinova, D.; Martin, C.; Aguilo, N. MTBVAC: Attenuating the human pathogen of Tuberculosis (TB) toward a promising vaccine against the TB epidemic. Front. Immunol., 2017, 8, 1803.
[http://dx.doi.org/10.3389/fimmu.2017.01803] [PMID: 29326700]
[55]
Stucki, D.; Brites, D.; Jeljeli, L.; Coscolla, M.; Liu, Q.; Trauner, A.; Fenner, L.; Rutaihwa, L.; Borrell, S.; Luo, T.; Gao, Q.; Kato-Maeda, M.; Ballif, M.; Egger, M.; Macedo, R.; Mardassi, H.; Moreno, M.; Tudo Vilanova, G.; Fyfe, J.; Globan, M.; Thomas, J.; Jamieson, F.; Guthrie, J.L.; Asante-Poku, A.; Yeboah-Manu, D.; Wampande, E.; Ssengooba, W.; Joloba, M.; Henry Boom, W.; Basu, I.; Bower, J.; Saraiva, M.; Vaconcellos, S.E.G.; Suffys, P.; Koch, A.; Wilkinson, R.; Gail-Bekker, L.; Malla, B.; Ley, S.D.; Beck, H.P.; de Jong, B.C.; Toit, K.; Sanchez-Padilla, E.; Bonnet, M.; Gil-Brusola, A.; Frank, M.; Penlap Beng, V.N.; Eisenach, K.; Alani, I.; Wangui Ndung’u, P.; Revathi, G.; Gehre, F.; Akter, S.; Ntoumi, F.; Stewart-Isherwood, L.; Ntinginya, N.E.; Rachow, A.; Hoelscher, M.; Cirillo, D.M.; Skenders, G.; Hoffner, S.; Bakonyte, D.; Stakenas, P.; Diel, R.; Crudu, V.; Moldovan, O.; Al-Hajoj, S.; Otero, L.; Barletta, F.; Jane Carter, E.; Diero, L.; Supply, P.; Comas, I.; Niemann, S.; Gagneux, S. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat. Genet., 2016, 48(12), 1535-1543.
[http://dx.doi.org/10.1038/ng.3704] [PMID: 27798628]
[56]
Martin, C.; Williams, A.; Hernandez-Pando, R.; Cardona, P.J.; Gormley, E.; Bordat, Y.; Soto, C.Y.; Clark, S.O.; Hatch, G.J.; Aguilar, D.; Ausina, V.; Gicquel, B. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine, 2006, 24(17), 3408-3419.
[http://dx.doi.org/10.1016/j.vaccine.2006.03.017] [PMID: 16564606]
[57]
Aguilo, N.; Gonzalo-Asensio, J.; Alvarez-Arguedas, S.; Marinova, D.; Gomez, A.B.; Uranga, S.; Spallek, R.; Singh, M.; Audran, R.; Spertini, F.; Martin, C. Reactogenicity to major tuberculosis antigens absent in BCG is linked to improved protection against Mycobacterium tuberculosis. Nat. Commun., 2017, 8, 16085.
[http://dx.doi.org/10.1038/ncomms16085] [PMID: 28706226]
[58]
Clark, S.; Lanni, F.; Marinova, D.; Rayner, E.; Martin, C.; Williams, A. Revaccination of guinea pigs with the live attenuated Mycobacterium tuberculosis vaccine MTBVAC improves BCG’s protection against tuberculosis. J. Infect. Dis., 2017, 216(5), 525-533.
[http://dx.doi.org/10.1093/infdis/jix030] [PMID: 28329234]
[59]
Sambandamurthy, V.K.; Derrick, S.C.; Jalapathy, K.V.; Chen, B.; Russell, R.G.; Morris, S.L.; Jacobs, W.R., Jr Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis. Infect. Immun., 2005, 73(2), 1196-1203.
[http://dx.doi.org/10.1128/IAI.73.2.1196-1203.2005] [PMID: 15664964]
[60]
Sambandamurthy, V.K.; Derrick, S.C.; Hsu, T.; Chen, B.; Larsen, M.H.; Jalapathy, K.V.; Chen, M.; Kim, J.; Porcelli, S.A.; Chan, J.; Morris, S.L.; Jacobs, W.R., Jr Mycobacterium tuberculosis DeltaRD1 DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine, 2006, 24(37-39), 6309-6320.
[http://dx.doi.org/10.1016/j.vaccine.2006.05.097] [PMID: 16860907]
[61]
Tang, J.; Yam, W.C.; Chen, Z. Mycobacterium tuberculosis infection and vaccine development. Tuberculosis (Edinb.), 2016, 98, 30-41.
[http://dx.doi.org/10.1016/j.tube.2016.02.005] [PMID: 27156616]
[62]
Andersen, P.; Kaufmann, S.H. Novel vaccination strategies against tuberculosis. Cold Spring Harb. Perspect. Med., 2014, 4(6)a018523
[http://dx.doi.org/10.1101/cshperspect.a018523] [PMID: 24890836]
[63]
Andersen, P.; Andersen, A.B.; Sørensen, A.L.; Nagai, S. Recall of long-lived immunity to Mycobacterium tuberculosis infection in mice. J. Immunol., 1995, 154(7), 3359-3372.
[PMID: 7897219]
[64]
van Dissel, J.T.; Arend, S.M.; Prins, C.; Bang, P.; Tingskov, P.N.; Lingnau, K.; Nouta, J.; Klein, M.R.; Rosenkrands, I.; Ottenhoff, T.H.; Kromann, I.; Doherty, T.M.; Andersen, P. Ag85B-ESAT-6 adjuvanted with IC31 promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naïve human volunteers. Vaccine, 2010, 28(20), 3571-3581.
[http://dx.doi.org/10.1016/j.vaccine.2010.02.094] [PMID: 20226890]
[65]
van Dissel, J.T.; Soonawala, D.; Joosten, S.A.; Prins, C.; Arend, S.M.; Bang, P.; Tingskov, P.N.; Lingnau, K.; Nouta, J.; Hoff, S.T.; Rosenkrands, I.; Kromann, I.; Ottenhoff, T.H.; Doherty, T.M.; Andersen, P. Ag85B-ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in volunteers with previous BCG vaccination or tuberculosis infection. Vaccine, 2011, 29(11), 2100-2109.
[http://dx.doi.org/10.1016/j.vaccine.2010.12.135] [PMID: 21256189]
[66]
Ottenhoff, T.H.; Doherty, T.M.; van Dissel, J.T.; Bang, P.; Lingnau, K.; Kromann, I.; Andersen, P. First in humans: a new molecularly defined vaccine shows excellent safety and strong induction of long-lived Mycobacterium tuberculosis-specific Th1-cell like responses. Hum. Vaccin., 2010, 6(12), 1007-1015.
[http://dx.doi.org/10.4161/hv.6.12.13143] [PMID: 21178394]
[67]
Gong, W.; Liang, Y.; Wu, X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum. Vaccin. Immunother., 2018, 14(7), 1697-1716.
[http://dx.doi.org/10.1080/21645515.2018.1458806] [PMID: 29601253]
[68]
Skeiky, Y.A.; Dietrich, J.; Lasco, T.M.; Stagliano, K.; Dheenadhayalan, V.; Goetz, M.A.; Cantarero, L.; Basaraba, R.J.; Bang, P.; Kromann, I.; McMclain, J.B.; Sadoff, J.C.; Andersen, P. Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime-boost regimen. Vaccine, 2010, 28(4), 1084-1093.
[http://dx.doi.org/10.1016/j.vaccine.2009.10.114] [PMID: 19896449]
[69]
Andersen, P.; Doherty, T.M.; Pai, M.; Weldingh, K. The prognosis of latent tuberculosis: can disease be predicted? Trends Mol. Med., 2007, 13(5), 175-182.
[http://dx.doi.org/10.1016/j.molmed.2007.03.004] [PMID: 17418641]
[70]
Norrby, M.; Vesikari, T.; Lindqvist, L.; Maeurer, M.; Ahmed, R.; Mahdavifar, S.; Bennett, S.; McClain, J.B.; Shepherd, B.M.; Li, D.; Hokey, D.A.; Kromann, I.; Hoff, S.T.; Andersen, P.; de Visser, A.W.; Joosten, S.A.; Ottenhoff, T.H.M.; Andersson, J.; Brighenti, S. Safety and immunogenicity of the novel H4:IC31 tuberculosis vaccine candidate in BCG-vaccinated adults: two phase I dose escalation trials. Vaccine, 2017, 35(12), 1652-1661.
[http://dx.doi.org/10.1016/j.vaccine.2017.01.055] [PMID: 28216183]
[71]
Von Eschen, K.; Morrison, R.; Braun, M.; Ofori-Anyinam, O.; De Kock, E.; Pavithran, P.; Koutsoukos, M.; Moris, P.; Cain, D.; Dubois, M-C.; Cohen, J.; Ballou, W.R. The candidate tuberculosis vaccine Mtb72F/AS02a: tolerability and immunogenicity in humans. Hum. Vaccin., 2009, 5(7), 475-482.
[http://dx.doi.org/10.4161/hv.8570] [PMID: 19587528]
[72]
Reed, S.G.; Coler, R.N.; Dalemans, W.; Tan, E.V.; DeLa Cruz, E.C.; Basaraba, R.J.; Orme, I.M.; Skeiky, Y.A.; Alderson, M.R.; Cowgill, K.D.; Prieels, J.P.; Abalos, R.M.; Dubois, M.C.; Cohen, J.; Mettens, P.; Lobet, Y. Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc. Natl. Acad. Sci. USA, 2009, 106(7), 2301-2306.
[http://dx.doi.org/10.1073/pnas.0712077106] [PMID: 19188599]
[73]
Tsenova, L.; Harbacheuski, R.; Moreira, A.L.; Ellison, E.; Dalemans, W.; Alderson, M.R.; Mathema, B.; Reed, S.G.; Skeiky, Y.A.; Kaplan, G. Evaluation of the Mtb72F polyprotein vaccine in a rabbit model of tuberculous meningitis. Infect. Immun., 2006, 74(4), 2392-2401.
[http://dx.doi.org/10.1128/IAI.74.4.2392-2401.2006] [PMID: 16552069]
[74]
Brandt, L.; Skeiky, Y.A.; Alderson, M.R.; Lobet, Y.; Dalemans, W.; Turner, O.C.; Basaraba, R.J.; Izzo, A.A.; Lasco, T.M.; Chapman, P.L.; Reed, S.G.; Orme, I.M. The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect. Immun., 2004, 72(11), 6622-6632.
[http://dx.doi.org/10.1128/IAI.72.11.6622-6632.2004] [PMID: 15501795]
[75]
Spertini, F.; Audran, R.; Lurati, F.; Ofori-Anyinam, O.; Zysset, F.; Vandepapelière, P.; Moris, P.; Demoitié, M.A.; Mettens, P.; Vinals, C.; Vastiau, I.; Jongert, E.; Cohen, J.; Ballou, W.R. The candidate tuberculosis vaccine Mtb72F/AS02 in PPD positive adults: a randomized controlled phase I/II study. Tuberculosis (Edinb.), 2013, 93(2), 179-188.
[http://dx.doi.org/10.1016/j.tube.2012.10.011] [PMID: 23219236]
[76]
Leroux-Roels, I.; Forgus, S.; De Boever, F.; Clement, F.; Demoitié, M.A.; Mettens, P.; Moris, P.; Ledent, E.; Leroux-Roels, G.; Ofori-Anyinam, O. M72 Study Group. Improved CD4+ T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine formulations: a randomized trial. Vaccine, 2013, 31(17), 2196-2206.
[http://dx.doi.org/10.1016/j.vaccine.2012.05.035] [PMID: 22643213]
[77]
Cohen, J.; Hughes, E.; Day, C.; de Kock, M.; Geldenhuys, H.; Gelderbloem, S.; Hawkridge, A.; Hussey, G.; Mahomed, H.; Makhethe, L. Induction and regulation of T cell immunity by the novel TB vaccine M72/AS01 in South African adults. Am. J. Respir. Crit. Care Med., 2013, 188(4), 492-502.
[http://dx.doi.org/10.1164/rccm.201208-1385oc]] [PMID: 23306546]
[78]
Van Der Meeren, O.; Hatherill, M.; Nduba, V.; Wilkinson, R.J.; Muyoyeta, M.; Van Brakel, E.; Ayles, H.M.; Henostroza, G.; Thienemann, F.; Scriba, T.J.; Diacon, A.; Blatner, G.L.; Demoitié, M.A.; Tameris, M.; Malahleha, M.; Innes, J.C.; Hellström, E.; Martinson, N.; Singh, T.; Akite, E.J.; Khatoon Azam, A.; Bollaerts, A.; Ginsberg, A.M.; Evans, T.G.; Gillard, P.; Tait, D.R. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N. Engl. J. Med., 2018, 379(17), 1621-1634.
[http://dx.doi.org/10.1056/NEJMoa1803484] [PMID: 30280651]
[79]
Kwon, B.E.; Ahn, J.H.; Min, S.; Kim, H.; Seo, J.; Yeo, S.G.; Ko, H.J. Development of new preventive and therapeutic vaccines for tuberculosis. Immune Netw., 2018, 18(2)e17
[http://dx.doi.org/10.4110/in.2018.18.e17] [PMID: 29732235]
[80]
Dye, C. Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nat. Rev. Microbiol., 2009, 7(1), 81-87.
[http://dx.doi.org/10.1038/nrmicro2048] [PMID: 19079354]
[81]
Coler, R.N.; Bertholet, S.; Pine, S.O.; Orr, M.T.; Reese, V.; Windish, H.P.; Davis, C.; Kahn, M.; Baldwin, S.L.; Reed, S.G. Therapeutic immunization against Mycobacterium tuberculosis is an effective adjunct to antibiotic treatment. J. Infect. Dis., 2013, 207(8), 1242-1252.
[http://dx.doi.org/10.1093/infdis/jis425] [PMID: 22891286]
[82]
Orme, I.M. Vaccine development for tuberculosis: current progress. Drugs, 2013, 73(10), 1015-1024.
[http://dx.doi.org/10.1007/s40265-013-0081-8] [PMID: 23794129]
[83]
Lin, P.L.; Dietrich, J.; Tan, E.; Abalos, R.M.; Burgos, J.; Bigbee, C.; Bigbee, M.; Milk, L.; Gideon, H.P.; Rodgers, M.; Cochran, C.; Guinn, K.M.; Sherman, D.R.; Klein, E.; Janssen, C.; Flynn, J.L.; Andersen, P. The multistage vaccine H56 boosts the effects of BCG to protect Cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J. Clin. Invest., 2012, 122(1), 303-314.
[http://dx.doi.org/10.1172/JCI46252] [PMID: 22133873]
[84]
Aagaard, C.; Hoang, T.; Dietrich, J.; Cardona, P.J.; Izzo, A.; Dolganov, G.; Schoolnik, G.K.; Cassidy, J.P.; Billeskov, R.; Andersen, P. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat. Med., 2011, 17(2), 189-194.
[http://dx.doi.org/10.1038/nm.2285] [PMID: 21258338]
[85]
Luabeya, A.K.K.; Kagina, B.M.; Tameris, M.D.; Geldenhuys, H.; Hoff, S.T.; Shi, Z.; Kromann, I.; Hatherill, M.; Mahomed, H.; Hanekom, W.A.; Andersen, P.; Scriba, T.J.; Schoeman, E.; Krohn, C.; Day, C.L.; Africa, H.; Makhethe, L.; Smit, E.; Brown, Y.; Suliman, S.; Hughes, E.J.; Bang, P.; Snowden, M.A.; McClain, B.; Hussey, G.D. H56-032 Trial Study Group. First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine, 2015, 33(33), 4130-4140.
[http://dx.doi.org/10.1016/j.vaccine.2015.06.051] [PMID: 26095509]
[86]
Draper, S.J.; Heeney, J.L. Viruses as vaccine vectors for infectious diseases and cancer. Nat. Rev. Microbiol., 2010, 8(1), 62-73.
[http://dx.doi.org/10.1038/nrmicro2240] [PMID: 19966816]
[87]
Abel, B.; Tameris, M.; Mansoor, N.; Gelderbloem, S.; Hughes, J.; Abrahams, D.; Makhethe, L.; Erasmus, M.; de Kock, M.; van der Merwe, L.; Hawkridge, A.; Veldsman, A.; Hatherill, M.; Schirru, G.; Pau, M.G.; Hendriks, J.; Weverling, G.J.; Goudsmit, J.; Sizemore, D.; McClain, J.B.; Goetz, M.; Gearhart, J.; Mahomed, H.; Hussey, G.D.; Sadoff, J.C.; Hanekom, W.A. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am. J. Respir. Crit. Care Med., 2010, 181(12), 1407-1417.
[http://dx.doi.org/10.1164/rccm.200910-1484OC] [PMID: 20167847]
[88]
McShane, H.; Pathan, A.A.; Sander, C.R.; Keating, S.M.; Gilbert, S.C.; Huygen, K.; Fletcher, H.A.; Hill, A.V. Recombinant modified vaccinia virus ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med., 2004, 10(11), 1240-1244.
[http://dx.doi.org/10.1038/nm1128] [PMID: 15502839]
[89]
Goonetilleke, N.P.; McShane, H.; Hannan, C.M.; Anderson, R.J.; Brookes, R.H.; Hill, A.V. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille calmette-guérin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus ankara. J. Immunol., 2003, 171(3), 1602-1609.
[http://dx.doi.org/10.4049/jimmunol.171.3.1602] [PMID: 12874255]
[90]
Beveridge, N.E.; Price, D.A.; Casazza, J.P.; Pathan, A.A.; Sander, C.R.; Asher, T.E.; Ambrozak, D.R.; Precopio, M.L.; Scheinberg, P.; Alder, N.C.; Roederer, M.; Koup, R.A.; Douek, D.C.; Hill, A.V.; McShane, H. Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur. J. Immunol., 2007, 37(11), 3089-3100.
[http://dx.doi.org/10.1002/eji.200737504] [PMID: 17948267]
[91]
Chondro, F. New tuberculosis vaccine to support tuberculosis elimination. Universa Medicina, 2018, 37(2), 85-87.
[http://dx.doi.org/10.18051/UnivMed.2018.v37.85-87]
[92]
Santosuosso, M.; McCormick, S.; Zhang, X.; Zganiacz, A.; Xing, Z. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect. Immun., 2006, 74(8), 4634-4643.
[http://dx.doi.org/10.1128/IAI.00517-06] [PMID: 16861651]
[93]
Smaill, F.; Jeyanathan, M.; Smieja, M.; Medina, M.F.; Thanthrige-Don, N.; Zganiacz, A.; Yin, C.; Heriazon, A.; Damjanovic, D.; Puri, L.; Hamid, J.; Xie, F.; Foley, R.; Bramson, J.; Gauldie, J.; Xing, Z. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci. Transl. Med., 2013, 5(205)205ra134
[http://dx.doi.org/10.1126/scitranslmed.3006843] [PMID: 24089406]
[94]
Méndez-Samperio, P. Global efforts in the development of vaccines for tuberculosis: requirements for improved vaccines against Mycobacterium tuberculosis. Scand. J. Immunol., 2016, 84(4), 204-210.
[http://dx.doi.org/10.1111/sji.12465] [PMID: 27454335]
[95]
Evans, T.G.; Schrager, L.; Thole, J. Status of vaccine research and development of vaccines for tuberculosis. Vaccine, 2016, 34(26), 2911-2914.
[http://dx.doi.org/10.1016/j.vaccine.2016.02.079] [PMID: 26973073]
[96]
Dockrell, H.M. Towards new TB vaccines: what are the challenges? Pathog. Dis., 2016, 74(4)ftw016
[http://dx.doi.org/10.1093/femspd/ftw016] [PMID: 26960944]
[97]
Khoshnood, S.; Heidary, M.; Haeili, M.; Drancourt, M.; Darban-Sarokhalil, D.; Nasiri, M.J.; Lohrasbi, V. Novel vaccine candidates against Mycobacterium tuberculosis. Int. J. Biol. Macromol., 2018. 120(Pt A), 180-188..
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.037] [PMID: 30098365]
[98]
Hawkridge, T.; Mahomed, H. Prospects for a new, safer and more effective TB vaccine. Paediatr. Respir. Rev., 2011, 12(1), 46-51.
[http://dx.doi.org/10.1016/j.prrv.2010.09.013] [PMID: 21172675]
[99]
Vilaplana, C.; Montané, E.; Pinto, S.; Barriocanal, A.M.; Domenech, G.; Torres, F.; Cardona, P.J.; Costa, J. Double-blind, randomized, placebo-controlled phase 1 clinical trial of the therapeutical antituberculous vaccine RUTI. Vaccine, 2010, 28(4), 1106-1116.
[http://dx.doi.org/10.1016/j.vaccine.2009.09.134] [PMID: 19853680]
[100]
Sharma, A.K.; Khuller, G.K. DNA vaccines: future strategies and relevance to intracellular pathogens. Immunol. Cell Biol., 2001, 79(6), 537-546.
[http://dx.doi.org/10.1046/j.1440-1711.2001.01044.x] [PMID: 11903613]
[101]
Triccas, J.A.; Sun, L.; Palendira, U.; Britton, W.J. Comparative effects of plasmid-encoded interleukin 12 and interleukin 18 on the protective efficacy of DNA vaccination against Mycobacterium tuberculosis. Immunol. Cell Biol., 2002, 80(4), 346-350.
[http://dx.doi.org/10.1046/j.1440-1711.2002.01087.x] [PMID: 12121223]
[102]
Montgomery, D.L.; Huygen, K.; Yawman, A.M.; Deck, R.R.; Dewitt, C.M.; Content, J.; Liu, M.A.; Ulmer, J.B. Induction of humoral and cellular immune responses by vaccination with M. tuberculosis antigen 85 DNA. Cell. Mol. Biol., 1997, 43(3), 285-292.
[PMID: 9193782]
[103]
Kamath, A.T.; Hanke, T.; Briscoe, H.; Britton, W.J. Co-immunization with DNA vaccines expressing granulocyte-macrophage colony-stimulating factor and mycobacterial secreted proteins enhances T-cell immunity, but not protective efficacy against Mycobacterium tuberculosis. Immunology, 1999, 96(4), 511-516.
[http://dx.doi.org/10.1046/j.1365-2567.1999.00703.x] [PMID: 10233735]
[104]
Yu, D.H.; Hu, X.D.; Cai, H. Efficient tuberculosis treatment in mice using chemotherapy and immunotherapy with the combined DNA vaccine encoding Ag85B, MPT-64 and MPT-83. Gene Ther., 2008, 15(9), 652-659.
[http://dx.doi.org/10.1038/gt.2008.13] [PMID: 18288210]
[105]
Chauhan, P.; Jain, R.; Dey, B.; Tyagi, A.K. Adjunctive immunotherapy with α-crystallin based DNA vaccination reduces tuberculosis chemotherapy period in chronically infected mice. Sci. Rep., 2013, 3, 1821.
[http://dx.doi.org/10.1038/srep01821] [PMID: 23660989]
[106]
Teimourpour, R.; Sadeghian, A.; Meshkat, Z.; Esmaelizad, M.; Sankian, M.; Jabbari, A-R. Construction of a DNA vaccine encoding Mtb32C and HBHA genes of Mycobacterium tuberculosis. Jundishapur J. Microbiol., 2015, 8(8)e21556
[http://dx.doi.org/10.5812/jjm.21556] [PMID: 26464766]
[107]
Teimourpour, R.; Peeridogaheh, H.; Teimourpour, A.; Arzanlou, M.; Meshkat, Z. A study on the immune response induced by a DNA vaccine encoding Mtb32C-HBHA antigen of Mycobacterium tuberculosis. Iran. J. Basic Med. Sci., 2017, 20(10), 1119-1124.
[PMID: 29147487]
[108]
Ahn, S.S.; Jeon, B.Y.; Kim, K.S.; Kwack, J.Y.; Lee, E.G.; Park, K.S.; Sung, Y.C.; Cho, S.N. Mtb32 is a promising tuberculosis antigen for DNA vaccination in pre- and post-exposure mouse models. Gene Ther., 2012, 19(5), 570-575.
[http://dx.doi.org/10.1038/gt.2011.140] [PMID: 21956689]
[109]
Liu, M.A.; Ulmer, J.B. Human clinical trials of plasmid DNA vaccines. Adv. Genet., 2005, 55, 25-40.
[http://dx.doi.org/10.1016/S0065-2660(05)55002-8] [PMID: 16291211]
[110]
Cardona, P-J. RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis (Edinb.), 2006, 86(3-4), 273-289.
[http://dx.doi.org/10.1016/j.tube.2006.01.024] [PMID: 16545981]
[111]
Nell, A.S.; D’lom, E.; Bouic, P.; Sabaté, M.; Bosser, R.; Picas, J.; Amat, M.; Churchyard, G.; Cardona, P.J. Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase II clinical trial in patients with latent tuberculosis infection. PLoS One, 2014, 9(2)e89612
[http://dx.doi.org/10.1371/journal.pone.0089612] [PMID: 24586912]
[112]
Skinner, M.A.; Prestidge, R.; Yuan, S.; Strabala, T.J.; Tan, P.L. The ability of heat-killed Mycobacterium vaccae to stimulate a cytotoxic T-cell response to an unrelated protein is associated with a 65 kilodalton heat-shock protein. Immunology, 2001, 102(2), 225-233.
[http://dx.doi.org/10.1046/j.1365-2567.2001.01174.x] [PMID: 11260328]
[113]
Hernandez-Pando, R.; Pavön, L.; Arriaga, K.; Orozco, H.; Madrid-Marina, V.; Rook, G. Pathogenesis of tuberculosis in mice exposed to low and high doses of an environmental mycobacterial saprophyte before infection. Infect. Immun., 1997, 65(8), 3317-3327.
[http://dx.doi.org/10.1128/IAI.65.8.3317-3327.1997] [PMID: 9234793]
[114]
Waddell, R.D.; Chintu, C.; Lein, A.D.; Zumla, A.; Karagas, M.R.; Baboo, K.S.; Habbema, J.D.F.; Tosteson, A.N.; Morin, P.; Tvaroha, S.; Arbeit, R.D.; Mwinga, A.; von Reyn, C.F. Safety and immunogenicity of a five-dose series of inactivated Mycobacterium vaccae vaccination for the prevention of HIV-associated tuberculosis. Clin. Infect. Dis., 2000, 30(Suppl. 3), S309-S315.
[http://dx.doi.org/10.1086/313880] [PMID: 10875806]
[115]
von Reyn, C.F.; Mtei, L.; Arbeit, R.D.; Waddell, R.; Cole, B.; Mackenzie, T.; Matee, M.; Bakari, M.; Tvaroha, S.; Adams, L.V.; Horsburgh, C.R.; Pallangyo, K. DarDar Study Group. Prevention of tuberculosis in bacille calmette-guérin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS, 2010, 24(5), 675-685.
[http://dx.doi.org/10.1097/QAD.0b013e3283350f1b] [PMID: 20118767]
[116]
Dennis, J.W.; Granovsky, M.; Warren, C.E. Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta, 1999, 1473(1), 21-34.
[http://dx.doi.org/10.1016/S0304-4165(99)00167-1] [PMID: 10580127]
[117]
Kato, K.; Ishiwa, A. The role of carbohydrates in infection strategies of enteric pathogens. Trop. Med. Health, 2015, 43(1), 41-52.
[http://dx.doi.org/10.2149/tmh.2014-25] [PMID: 25859152]
[118]
Weintraub, A. Immunology of bacterial polysaccharide antigens. Carbohydr. Res., 2003, 338(23), 2539-2547.
[http://dx.doi.org/10.1016/j.carres.2003.07.008] [PMID: 14670715]
[119]
Lockhart, S.P.; Hackell, J.G.; Fritzell, B. Pneumococcal conjugate vaccines: emerging clinical information and its implications. Expert Rev. Vaccines, 2006, 5(4), 553-564.
[http://dx.doi.org/10.1586/14760584.5.4.553] [PMID: 16989635]
[120]
Kelly, D.F.; Moxon, E.R.; Pollard, A.J. Haemophilus influenzae type B conjugate vaccines. Immunology, 2004, 113(2), 163-174.
[http://dx.doi.org/10.1111/j.1365-2567.2004.01971.x] [PMID: 15379976]
[121]
Finn, A. Bacterial polysaccharide-protein conjugate vaccines. Br. Med. Bull., 2004, 70(1), 1-14.
[http://dx.doi.org/10.1093/bmb/ldh021] [PMID: 15339854]
[122]
Dagan, R.; Poolman, J.; Siegrist, C.A. Glycoconjugate vaccines and immune interference: a review. Vaccine, 2010, 28(34), 5513-5523.
[http://dx.doi.org/10.1016/j.vaccine.2010.06.026] [PMID: 20600514]
[123]
Malito, E.; Bursulaya, B.; Chen, C.; Lo Surdo, P.; Picchianti, M.; Balducci, E.; Biancucci, M.; Brock, A.; Berti, F.; Bottomley, M.J.; Nissum, M.; Costantino, P.; Rappuoli, R.; Spraggon, G. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc. Natl. Acad. Sci. USA, 2012, 109(14), 5229-5234.
[http://dx.doi.org/10.1073/pnas.1201964109] [PMID: 22431623]
[124]
Angala, S.K.; Palčeková, Z.; Belardinelli, J.M.; Jackson, M. Covalent modifications of polysaccharides in mycobacteria. Nat. Chem. Biol., 2018, 14(3), 193-198.
[http://dx.doi.org/10.1038/nchembio.2571] [PMID: 29443974]
[125]
Brennan, P.J. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2003, 83(1-3), 91-97.
[http://dx.doi.org/10.1016/S1472-9792(02)00089-6] [PMID: 12758196]
[126]
Karakousis, P.C.; Bishai, W.R.; Dorman, S.E. Mycobacterium tuberculosis cell envelope lipids and the host immune response. Cell. Microbiol., 2004, 6(2), 105-116.
[http://dx.doi.org/10.1046/j.1462-5822.2003.00351.x] [PMID: 14706097]
[127]
Briken, V.; Porcelli, S.A.; Besra, G.S.; Kremer, L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol. Microbiol., 2004, 53(2), 391-403.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04183.x] [PMID: 15228522]
[128]
Hunter, S.W.; Gaylord, H.; Brennan, P.J. Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J. Biol. Chem., 1986, 261(26), 12345-12351.
[PMID: 3091602]
[129]
Mishra, A.K.; Driessen, N.N.; Appelmelk, B.J.; Besra, G.S. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol. Rev., 2011, 35(6), 1126-1157.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00276.x] [PMID: 21521247]
[130]
Moreno, C.; Taverne, J.; Mehlert, A.; Bate, C.A.; Brealey, R.J.; Meager, A.; Rook, G.A.; Playfair, J.H. Lipoarabinomannan from Mycobacterium tuberculosis induces the production of tumour necrosis factor from human and murine macrophages. Clin. Exp. Immunol., 1989, 76(2), 240-245.
[PMID: 2503277]
[131]
Hölemann, A.; Stocker, B.L.; Seeberger, P.H. Synthesis of a core arabinomannan oligosaccharide of Mycobacterium tuberculosis. J. Org. Chem., 2006, 71(21), 8071-8088.
[http://dx.doi.org/10.1021/jo061233x] [PMID: 17025296]
[132]
Fietta, A.; Francioli, C.; Gialdroni Grassi, G. Mycobacterial lipoarabinomannan affects human polymorphonuclear and mononuclear phagocyte functions differently. Haematologica, 2000, 85(1), 11-18.
[PMID: 10629585]
[133]
Kaplan, G.; Gandhi, R.R.; Weinstein, D.E.; Levis, W.R.; Patarroyo, M.E.; Brennan, P.J.; Cohn, Z.A. Mycobacterium leprae antigen-induced suppression of T cell proliferation in vitro. J. Immunol., 1987, 138(9), 3028-3034.
[PMID: 3106496]
[134]
Moreno, C.; Mehlert, A.; Lamb, J. The inhibitory effects of mycobacterial lipoarabinomannan and polysaccharides upon polyclonal and monoclonal human T cell proliferation. Clin. Exp. Immunol., 1988, 74(2), 206-210.
[PMID: 3147152]
[135]
Chan, J.; Fan, X.D.; Hunter, S.W.; Brennan, P.J.; Bloom, B.R. Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect. Immun., 1991, 59(5), 1755-1761.
[http://dx.doi.org/10.1128/IAI.59.5.1755-1761.1991] [PMID: 1850379]
[136]
Barnes, P.F.; Chatterjee, D.; Brennan, P.J.; Rea, T.H.; Modlin, R.L. Tumor necrosis factor production in patients with leprosy. Infect. Immun., 1992, 60(4), 1441-1446.
[http://dx.doi.org/10.1128/IAI.60.4.1441-1446.1992] [PMID: 1548069]
[137]
Minion, J.; Leung, E.; Talbot, E.; Dheda, K.; Pai, M.; Menzies, D. Diagnosing tuberculosis with urine lipoarabinomannan: systematic review and meta-analysis. Eur. Respir. J., 2011, 38(6), 1398-1405.
[http://dx.doi.org/10.1183/09031936.00025711] [PMID: 21700601]
[138]
Hamasur, B.; Källenius, G.; Svenson, S.B. Synthesis and immunologic characterisation of Mycobacterium tuberculosis lipoarabinomannan specific oligosaccharide-protein conjugates. Vaccine, 1999, 17(22), 2853-2861.
[http://dx.doi.org/10.1016/S0264-410X(99)00124-3] [PMID: 10438056]
[139]
Hamasur, B.; Haile, M.; Pawlowski, A.; Schröder, U.; Williams, A.; Hatch, G.; Hall, G.; Marsh, P.; Källenius, G.; Svenson, S.B. Mycobacterium tuberculosis arabinomannan-protein conjugates protect against tuberculosis. Vaccine, 2003, 21(25-26), 4081-4093.
[http://dx.doi.org/10.1016/S0264-410X(03)00274-3] [PMID: 12922145]
[140]
Haile, M.; Hamasur, B.; Jaxmar, T.; Gavier-Widen, D.; Chambers, M.A.; Sanchez, B.; Schröder, U.; Källenius, G.; Svenson, S.B.; Pawlowski, A. Nasal boost with adjuvanted heat-killed BCG or arabinomannan-protein conjugate improves primary BCG-induced protection in C57BL/6 mice. Tuberculosis (Edinb.), 2005, 85(1-2), 107-114.
[http://dx.doi.org/10.1016/j.tube.2004.09.013] [PMID: 15687034]
[141]
Kallert, S.; Zenk, S.F.; Walther, P.; Grieshober, M.; Weil, T.; Stenger, S. Liposomal delivery of lipoarabinomannan triggers Mycobacterium tuberculosis specific T-cells. Tuberculosis (Edinb.), 2015, 95(4), 452-462.
[http://dx.doi.org/10.1016/j.tube.2015.04.001] [PMID: 26043674]
[142]
Glatman-Freedman, A.; Casadevall, A.; Dai, Z.; Jacobs, W.R., Jr; Li, A.; Morris, S.L.; Navoa, J.A.D.; Piperdi, S.; Robbins, J.B.; Schneerson, R.; Schwebach, J.R.; Shapiro, M. Antigenic evidence of prevalence and diversity of Mycobacterium tuberculosis arabinomannan. J. Clin. Microbiol., 2004, 42(7), 3225-3231.
[http://dx.doi.org/10.1128/JCM.42.7.3225-3231.2004] [PMID: 15243086]
[143]
Prados-Rosales, R.; Carreño, L.; Cheng, T.; Blanc, C.; Weinrick, B.; Malek, A.; Lowary, T.L.; Baena, A.; Joe, M.; Bai, Y.; Kalscheuer, R.; Batista-Gonzalez, A.; Saavedra, N.A.; Sampedro, L.; Tomás, J.; Anguita, J.; Hung, S.C.; Tripathi, A.; Xu, J.; Glatman-Freedman, A.; Jacobs, W.R., Jr; Chan, J.; Porcelli, S.A.; Achkar, J.M.; Casadevall, A. Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. PLoS Pathog., 2017, 13(3)e1006250
[http://dx.doi.org/10.1371/journal.ppat.1006250] [PMID: 28278283]
[144]
McIntosh, J.D.; Brimble, M.A.; Brooks, A.E.S.; Dunbar, P.R.; Kowalczyk, R.; Tomabechi, Y.; Fairbanks, A.J. Convergent chemo-enzymatic synthesis of mannosylated glycopeptides; targeting of putative vaccine candidates to antigen presenting cells. Chem. Sci. (Camb.), 2015, 6(8), 4636-4642.
[http://dx.doi.org/10.1039/C5SC00952A] [PMID: 28717478]
[145]
Bavaro, T.; Tengattini, S.; Piubelli, L.; Mangione, F.; Bernardini, R.; Monzillo, V.; Calarota, S.; Marone, P.; Amicosante, M.; Pollegioni, L.; Temporini, C.; Terreni, M. Glycosylation of recombinant antigenic proteins from Mycobacterium tuberculosis: in silico prediction of protein epitopes and ex vivo biological evaluation of new semi-synthetic glycoconjugates. Molecules, 2017, 22(7), 1081.
[http://dx.doi.org/10.3390/molecules22071081] [PMID: 28661444]
[146]
Rinaldi, F.; Tengattini, S.; Piubelli, L.; Bernardini, R.; Mangione, F.; Bavaro, T.; Paone, G.; Mattei, M.; Pollegioni, L.; Filice, G. Rational design, preparation and characterization of recombinant Ag85B variants and their glycoconjugates with T-cell antigenic activity against Mycobacterium tuberculosis. RSC. Adv., 2018, 8(41), 23171-23180.
[http://dx.doi.org/10.1039/C8RA03535K]
[147]
Vliegenthart, J.F. Carbohydrate based vaccines. FEBS Lett., 2006, 580(12), 2945-2950.
[http://dx.doi.org/10.1016/j.febslet.2006.03.053] [PMID: 16630616]
[148]
Boltje, T.J.; Buskas, T.; Boons, G.J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem., 2009, 1(8), 611-622.
[http://dx.doi.org/10.1038/nchem.399] [PMID: 20161474]
[149]
Gao, J.; Liao, G.; Wang, L.; Guo, Z. Synthesis of a miniature lipoarabinomannan. Org. Lett., 2014, 16(3), 988-991.
[http://dx.doi.org/10.1021/ol4036903] [PMID: 24444032]
[150]
Ishiwata, A.; Ito, Y. Synthesis of docosasaccharide arabinan motif of mycobacterial cell wall. J. Am. Chem. Soc., 2011, 133(7), 2275-2291.
[http://dx.doi.org/10.1021/ja109932t] [PMID: 21287985]
[151]
Kandasamy, J.; Hurevich, M.; Seeberger, P.H. Automated solid phase synthesis of oligoarabinofuranosides. Chem. Commun. (Camb.), 2013, 49(40), 4453-4455.
[http://dx.doi.org/10.1039/c3cc00042g] [PMID: 23370381]
[152]
Ishiwata, A.; Akao, H.; Ito, Y. Stereoselective synthesis of a fragment of mycobacterial arabinan. Org. Lett., 2006, 8(24), 5525-5528.
[http://dx.doi.org/10.1021/ol062198j] [PMID: 17107063]
[153]
Bundle, D.R.; Tam, P-H.; Tran, H-A.; Paszkiewicz, E.; Cartmell, J.; Sadowska, J.M.; Sarkar, S.; Joe, M.; Kitov, P.I. Oligosaccharides and peptide displayed on an amphiphilic polymer enable solid phase assay of hapten specific antibodies. Bioconjug. Chem., 2014, 25(4), 685-697.
[http://dx.doi.org/10.1021/bc400486w] [PMID: 24601638]
[154]
Wang, L.; Feng, S.; Wang, S.; Li, H.; Guo, Z.; Gu, G. Synthesis and immunological comparison of differently linked lipoarabinomannan oligosaccharide-monophosphoryl lipid A conjugates as antituberculosis vaccines. J. Org. Chem., 2017, 82(23), 12085-12096.
[http://dx.doi.org/10.1021/acs.joc.7b01817] [PMID: 29112822]
[155]
Zhou, Z.; Mondal, M.; Liao, G.; Guo, Z. Synthesis and evaluation of monophosphoryl lipid A derivatives as fully synthetic self-adjuvanting glycoconjugate cancer vaccine carriers. Org. Biomol. Chem., 2014, 12(20), 3238-3245.
[http://dx.doi.org/10.1039/C4OB00390J] [PMID: 24728423]
[156]
Wattanasiri, C.; Paha, J.; Ponpuak, M.; Ruchirawat, S.; Boonyarattanakalin, S. Synthesis of synthetic mannan backbone polysaccharides found on the surface of Mycobacterium tuberculosis as a vaccine adjuvant and their immunological properties. Carbohydr. Polym., 2017, 175, 746-755.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.045] [PMID: 28917925]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 31
Year: 2020
Published on: 10 September, 2020
Page: [5095 - 5118]
Pages: 24
DOI: 10.2174/0929867326666181126112124
Price: $65

Article Metrics

PDF: 24
HTML: 1