In Situ Synthesis of Ruthenium Supported on Ginkgo Leaf-Derived Porous Carbon for H2 Generation from NH3BH3 Hydrolysis

Author(s): Nianpu Li, Chongyang Gao, Shujun Qiu, Hailiang Chu*, Yongjin Zou, Cuili Xiang, Huanzhi Zhang, Erhu Yan, Fen Xu, Lixian Sun*

Journal Name: Recent Patents on Materials Science
Continued as Current Materials Science

Volume 11 , Issue 2 , 2018


Abstract:

Background: Hydrogen is considered a clean energy carrier. Ammonia-borane (AB, NH3BH3) has been attracted considerable attention as a potential chemical hydrogen storage material.

Objective: To improve the catalytic activity for hydrogen production of AB hydrolysis, to develop a catalyst with high activity is urgently needed.

Method: The patents relating to the catalytic hydrolysis of AB for hydrogen production are reviewed. We successfully synthesized ginkgo leave-derived carbon by pyrolysis and chemical activation. Then, ruthenium particles were supported on this porous carbon (Ru/GC) by in situ reduction.

Results: The as-prepared Ru/GC catalysts for AB hydrolysis exhibit high activity (TOF = 921 molH2·molRu -1·min-1) and low activation energy (Ea = 23.86 kJ·mol-1). Moreover, fairly good recyclability with 58% of the initial catalytic activity is retained after five cycles.

Conclusion: The high catalytic performance and easy preparation demonstrate that Ru/GC is a highly efficient catalyst towards AB hydrolysis.

Keywords: Porous carbon, ruthenium, ammonia-borane, hydrolysis, hydrogen production, catalytic activity, stability.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 11
ISSUE: 2
Year: 2018
Published on: 21 January, 2019
Page: [65 - 70]
Pages: 6
DOI: 10.2174/1874464811666181120100316

Article Metrics

PDF: 59
HTML: 1