On the Mechanisms of Action of the Low Molecular Weight Fraction of Commercial Human Serum Albumin in Osteoarthritis

Author(s): David Bar-Or*, Gregory Thomas, Leonard T. Rael, Elizabeth Frederick, Melissa Hausburg, Raphael Bar-Or, Edward Brody

Journal Name: Current Rheumatology Reviews

Volume 15 , Issue 3 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

The low molecular weight fraction of commercial human serum albumin (LMWF5A) has been shown to successfully relieve pain and inflammation in severe osteoarthritis of the knee (OAK). LMWF5A contains at least three active components that could account for these antiinflammatory and analgesic effects.

We summarize in vitro experiments in bone marrow–derived mesenchymal stem cells, monocytic cell lines, chondrocytes, peripheral blood mononuclear cells, fibroblast-like synoviocytes, and endothelial cells on the biochemistry of anti-inflammatory changes induced by LMWF5A. We then look at four of the major pathways that cut across cell-type considerations to examine which biochemical reactions are affected by mTOR, COX-2, CD36, and AhR pathways. All three components show anti-inflammatory activities in at least some of the cell types.

The in vitro experiments show that the effects of LMWF5A in chondrocytes and bone marrow– derived stem cells in particular, coupled with recent data from previous clinical trials of single and multiple injections of LMWF5A into OAK patients demonstrated improvements in pain, function, and Patient Global Assessment (PGA), as well as high responder rates that could be attributed to the multiple mechanism of action (MOA) pathways are summarized here. In vitro and in vivo data are highly suggestive of LMWF5A being a disease-modifying drug for OAK.

Keywords: Inflammation, disease modification, CD36, kynurenine, aryl hydrocarbon receptor, cyclooxygenase 2.

[1]
Zimmermann GR, Lehár J, Keith CT. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 2007; 12(1-2): 34-42.
[http://dx.doi.org/10.1016/j.drudis.2006.11.008] [PMID: 17198971]
[2]
Bar-Or D, Salottolo KM, Loose H, et al. A randomized clinical trial to evaluate two doses of an intra-articular injection of LMWF-5A in adults with pain due to osteoarthritis of the knee. PLoS One 2014; 9(2)e87910
[http://dx.doi.org/10.1371/journal.pone.0087910] [PMID: 24498399]
[3]
Cole B, McGrath B, Salottolo K, Bar-Or D. LMWF-5A for the treatment of severe osteoarthritis of the knee: Integrated analysis of safety and efficacy. Orthopedics 2018; 41(1): e77-83.
[http://dx.doi.org/10.3928/01477447-20171114-05] [PMID: 29156068]
[4]
Salottolo K, Cole B, Bar-Or D. Intra-articular injection of the anti-inflammatory compound LMWF-5A in adults with severe osteoarthritis: a double-blind prospective randomized controlled multi-center safety and efficacy trial. Patient Saf Surg 2018; 12: 11.
[http://dx.doi.org/10.1186/s13037-018-0158-0] [PMID: 29910837]
[5]
Schwappach J, Schultz J, Salottolo K, Bar-Or D. Incidence of total knee replacement subsequent to intra-articular injection of the anti-inflammatory compound LMWF-5A versus saline: a long-term follow-up study to a randomized controlled trial. Patient Saf Surg 2018; 12: 14.
[http://dx.doi.org/10.1186/s13037-018-0162-4] [PMID: 29881459]
[6]
Yang F, Zhang Y, Liang H. Interactive association of drugs binding to human serum albumin. Int J Mol Sci 2014; 15(3): 3580-95.
[http://dx.doi.org/10.3390/ijms15033580] [PMID: 24583848]
[7]
Janeway CA. Clinical use of products of human plasma fractionation. JAMA 1944; 126(11): 674-80.
[http://dx.doi.org/10.1001/jama.1944.02850460004002] [PMID: 16695125]
[8]
Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ 1998; 317(7153): 235-40.
[http://dx.doi.org/10.1136/bmj.317.7153.235] [PMID: 9677209]
[9]
Vincent J-L, Russell JA, Jacob M, et al. Albumin administration in the acutely ill: what is new and where next? Crit Care 2014; 18(4): 231.
[http://dx.doi.org/10.1186/cc13991] [PMID: 25042164]
[10]
Anraku M, Tsurusaki Y, Watanabe H, Maruyama T, Kragh-Hansen U, Otagiri M. Stabilizing mechanisms in commercial albumin preparations: octanoate and N-acetyl-L-tryptophanate protect human serum albumin against heat and oxidative stress. Biochim Biophys Acta 2004; 1702(1): 9-17.
[http://dx.doi.org/10.1016/j.bbapap.2004.07.002] [PMID: 15450846]
[11]
Faroongsarng D, Kongprasertkit J. The role of caprylate ligand ion on the stabilization of human serum albumin. AAPS PharmSciTech 2014; 15(2): 465-71.
[http://dx.doi.org/10.1208/s12249-014-0076-0] [PMID: 24470225]
[12]
Bar-Or D, Slone DS, Mains CW, Rael LT. Dipeptidyl peptidase IV activity in commercial solutions of human serum albumin. Anal Biochem 2013; 441(1): 13-7.
[http://dx.doi.org/10.1016/j.ab.2013.06.002] [PMID: 23770236]
[13]
Bar-Or D, Rael LT, Brody EN. Use of saline as a placebo in intra-articular injections in osteoarthritis: potential contributions to nociceptive pain relief. Open Rheumatol J 2017; 11(1): 16-22.
[http://dx.doi.org/10.2174/1874312901711010016] [PMID: 28400868]
[14]
Altman RD, Devji T, Bhandari M, Fierlinger A, Niazi F, Christensen R. Clinical benefit of intra-articular saline as a comparator in clinical trials of knee osteoarthritis treatments: A systematic review and meta-analysis of randomized trials. Semin Arthritis Rheum 2016; 46(2): 151-9.
[http://dx.doi.org/10.1016/j.semarthrit.2016.04.003] [PMID: 27238876]
[15]
Mathieu PS, Loboa EG. Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways. Tissue Eng Part B Rev 2012; 18(6): 436-44.
[http://dx.doi.org/10.1089/ten.teb.2012.0014] [PMID: 22741572]
[16]
Bar-Or D, Thomas GW, Rael LT, Gersch ED, Rubinstein P, Brody E. Low molecular weight fraction of commercial human serum albumin induces morphologic and transcriptional changes of bone marrow-derived mesenchymal stem cells. Stem Cells Transl Med 2015; 4(8): 945-55.
[http://dx.doi.org/10.5966/sctm.2014-0293] [PMID: 26041739]
[17]
Wiza C, Nascimento EBM, Ouwens DM. Role of PRAS40 in Akt and mTOR signaling in health and disease. Am J Physiol Endocrinol Metab 2012; 302(12): E1453-60.
[http://dx.doi.org/10.1152/ajpendo.00660.2011] [PMID: 22354785]
[18]
Fuchs C, Rosner M, Dolznig H, Mikula M, Kramer N, Hengstschläger M. Tuberin and PRAS40 are anti-apoptotic gatekeepers during early human amniotic fluid stem-cell differentiation. Hum Mol Genet 2012; 21(5): 1049-61.
[http://dx.doi.org/10.1093/hmg/ddr535] [PMID: 22090422]
[19]
Cui G-H, Wang YY, Li C-J, Shi C-H, Wang W-S. Efficacy of mesenchymal stem cells in treating patients with osteoarthritis of the knee: a meta-analysis. Exp Ther Med 2016; 12(5): 3390-400.
[http://dx.doi.org/10.3892/etm.2016.3791] [PMID: 27882169]
[20]
Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010; 10(6): 427-39.
[http://dx.doi.org/10.1038/nri2779] [PMID: 20498669]
[21]
Wammers M, Schupp A-K, Bode JG, et al. Reprogramming of pro-inflammatory human macrophages to an anti-inflammatory phenotype by bile acids. Sci Rep 2018; 8(1): 255.
[http://dx.doi.org/10.1038/s41598-017-18305-x] [PMID: 29321478]
[22]
Stone TW, Forrest CM, Darlington LG. Kynurenine pathway inhibition as a therapeutic strategy for neuroprotection. FEBS J 2012; 279(8): 1386-97.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08487.x] [PMID: 22248239]
[23]
Stevens EA, Mezrich JD, Bradfield CA. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 2009; 127(3): 299-311.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03054.x] [PMID: 19538249]
[24]
Nguyen NT, Nakahama T, Le DH, Van Son L, Chu HH, Kishimoto T. Aryl hydrocarbon receptor and kynurenine: recent advances in autoimmune disease research. Front Immunol 2014; 5: 551.
[http://dx.doi.org/10.3389/fimmu.2014.00551] [PMID: 25400638]
[25]
Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 2010; 185(6): 3190-8.
[http://dx.doi.org/10.4049/jimmunol.0903670] [PMID: 20720200]
[26]
Kimura A, Naka T, Nakahama T, et al. Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. J Exp Med 2009; 206(9): 2027-35.
[http://dx.doi.org/10.1084/jem.20090560] [PMID: 19703987]
[27]
Vogel CFA, Khan EM, Leung PSC, et al. Cross-talk between aryl hydrocarbon receptor and the inflammatory response: a role for nuclear factor-κB. J Biol Chem 2014; 289(3): 1866-75.
[http://dx.doi.org/10.1074/jbc.M113.505578] [PMID: 24302727]
[28]
Kreitinger JM, Beamer CA, Shepherd DM. Environmental immunology: lessons learned from exposure to a select panel of immunotoxicants. J Immunol 2016; 196(8): 3217-25.
[http://dx.doi.org/10.4049/jimmunol.1502149] [PMID: 27044635]
[29]
van Helden SFG, van Leeuwen FN, Figdor CG. Human and murine model cell lines for dendritic cell biology evaluated. Immunol Lett 2008; 117(2): 191-7.
[http://dx.doi.org/10.1016/j.imlet.2008.02.003] [PMID: 18384885]
[30]
Rael LT, Bar-Or R, Banton KL, et al. The anti-inflammatory effect of LMWF5A and N-acetyl kynurenine on macrophages: Involvement of aryl hydrocarbon receptor in mechanism of action. Biochem Biophys Rep 2018; 15: 61-7.
[http://dx.doi.org/10.1016/j.bbrep.2018.06.006] [PMID: 30073204]
[31]
Michael JWP, Schlüter-Brust KU, Eysel P. The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee. Dtsch Arztebl Int 2010; 107(9): 152-62.
[http://dx.doi.org/10.3238/arztebl.2010.0152] [PMID: 20305774]
[32]
Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 2001; 3(2): 107-13.
[http://dx.doi.org/10.1186/ar148] [PMID: 11178118]
[33]
Tesche F, Miosge N. New aspects of the pathogenesis of osteoarthritis: the role of fibroblast-like chondrocytes in late stages of the disease. Histol Histopathol 2005; 20(1): 329-37.
[PMID: 15578449]
[34]
Zhong L, Huang X, Karperien M, Post JN. Correlation between gene expression and osteoarthritis progression in human. Int J Mol Sci 2016; 17(7): 1126.
[http://dx.doi.org/10.3390/ijms17071126] [PMID: 27428952]
[35]
Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982; 30(1): 215-24.
[http://dx.doi.org/10.1016/0092-8674(82)90027-7] [PMID: 7127471]
[36]
Nishimura R, Hata K, Takahata Y, Murakami T, Nakamura E, Yagi H. Regulation of cartilage development and diseases by transcription factors. J Bone Metab 2017; 24(3): 147-53.
[http://dx.doi.org/10.11005/jbm.2017.24.3.147] [PMID: 28955690]
[37]
Lefebvre V, Dvir-Ginzberg M. SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect Tissue Res 2017; 58(1): 2-14.
[http://dx.doi.org/10.1080/03008207.2016.1183667] [PMID: 27128146]
[38]
Hausburg MA, Frederick ED, McNair P, et al. Clinically relevant redifferentiation of fibroblast-like chondrocytes into functional chondrocytes by the low molecular weight fraction of human serum albumin. Clin Exp Rheumatol 2018; 36(5): 891-5.
[PMID: 30272545]
[39]
Bar-Or D, Thomas GW, Bar-Or R, et al. Commercial human albumin preparations for clinical use are immunosuppressive in vitro. Crit Care Med 2006; 34(6): 1707-12.
[http://dx.doi.org/10.1097/01.CCM.0000217923.53680.4C] [PMID: 16625113]
[40]
Shimonkevitz R, Thomas G, Slone DS, Craun M, Mains C, Bar-Or D. A diketopiperazine fragment of human serum albumin modulates T-lymphocyte cytokine production through rap1. J Trauma 2008; 64(1): 35-41.
[http://dx.doi.org/10.1097/TA.0b013e3181589ff9] [PMID: 18188096]
[41]
Bar-Or D, Rael LT, Thomas GW, Brody EN. Inflammatory pathways in knee osteoarthritis: potential targets for treatment. Curr Rheumatol Rev 2015; 11(1): 50-8.
[http://dx.doi.org/10.2174/1573397111666150522094131] [PMID: 26002457]
[42]
Fahmi H, Pelletier JP, Mineau F, Martel-Pelletier J. 15d-PGJ(2) is acting as a ‘dual agent’ on the regulation of COX-2 expression in human osteoarthritic chondrocytes. Osteoarthritis Cartilage 2002; 10(11): 845-8.
[http://dx.doi.org/10.1053/joca.2002.0835] [PMID: 12435328]
[43]
Kawahito Y, Kondo M, Tsubouchi Y, et al. 15-deoxy-delta(12,14)-PGJ(2) induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. J Clin Invest 2000; 106(2): 189-97.
[http://dx.doi.org/10.1172/JCI9652] [PMID: 10903334]
[44]
Silva Quinteiro M, Henrique Napimoga M, Gomes Macedo C, et al. 15-deoxy-Δ12,14-prostaglandin J2 reduces albumin-induced arthritis in temporomandibular joint of rats. Eur J Pharmacol 2014; 740: 58-65.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.002] [PMID: 25016088]
[45]
Thomas GW, Rael LT, Hausburg M, et al. The low molecular weight fraction of human serum albumin upregulates production of 15d-PGJ2 in peripheral blood mononuclear cells. Biochem Biophys Res Commun 2016; 473(4): 1328-33.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.072] [PMID: 27095392]
[46]
Nair A, Kanda V, Bush-Joseph C, et al. Synovial fluid from patients with early osteoarthritis modulates fibroblast-like synoviocyte responses to toll-like receptor 4 and toll-like receptor 2 ligands via soluble CD14. Arthritis Rheum 2012; 64(7): 2268-77.
[http://dx.doi.org/10.1002/art.34495] [PMID: 22492243]
[47]
Wang CT, Lin YT, Chiang BL, Lin YH, Hou SM. High molecular weight hyaluronic acid down-regulates the gene expression of osteoarthritis-associated cytokines and enzymes in fibroblast-like synoviocytes from patients with early osteoarthritis. Osteoarthritis Cartilage 2006; 14(12): 1237-47.
[http://dx.doi.org//10.1016/j.joca.2006.05.009] [PMID: 16806998]
[48]
Frederick ED, Hausburg MA, Thomas GW, Rael LT, Brody E, Bar-Or D. The low molecular weight fraction of human serum albumin upregulates COX2, prostaglandin E2, and prostaglandin D2 under inflammatory conditions in osteoarthritic knee synovial fibroblasts. Biochem Biophys Rep 2016; 8: 68-74.
[http://dx.doi.org/10.1016/j.bbrep.2016.08.015] [PMID: 28955943]
[49]
Rusca N, Monticelli S. MiR-146a in immunity and disease. Mol Biol Int 2011.2011437301
[http://dx.doi.org/10.4061/2011/437301] [PMID: 22091404]
[50]
Wendlandt EB, Graff JW, Gioannini TL, McCaffrey AP, Wilson ME. The role of microRNAs miR-200b and miR-200c in TLR4 signaling and NF-κB activation. Innate Immun 2012; 18(6): 846-55.
[http://dx.doi.org/10.1177/1753425912443903] [PMID: 22522429]
[51]
Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY. Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Rev Mol Med 2009.11e19
[http://dx.doi.org/http://dx.doi.org/10.1017/S1462399409001112] [PMID: 19563700]
[52]
Petrache I, Birukova A, Ramirez SI, Garcia JGN, Verin AD. The role of the microtubules in tumor necrosis factor-α-induced endothelial cell permeability. Am J Respir Cell Mol Biol 2003; 28(5): 574-81.
[http://dx.doi.org/10.1165/rcmb.2002-0075OC] [PMID: 12707013]
[53]
Vandenbroucke E, Mehta D, Minshall R, Malik AB. Regulation of endothelial junctional permeability. Ann N Y Acad Sci 2008; 1123(1): 134-45.
[http://dx.doi.org/10.1196/annals.1420.016] [PMID: 18375586]
[54]
Thomas GW, Rael LT, Hausburg M, Frederick ED, Brody E, Bar-Or D. The low molecular weight fraction of commercial human serum albumin induces acetylation of α-tubulin and reduces transcytosis in retinal endothelial cells. Biochem Biophys Res Commun 2016; 478(4): 1780-5.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.026] [PMID: 27613088]
[55]
Verin AD, Birukova A, Wang P, et al. Microtubule disassembly increases endothelial cell barrier dysfunction: role of MLC phosphorylation. Am J Physiol Lung Cell Mol Physiol 2001; 281(3): L565-74.
[http://dx.doi.org/10.1152/ajplung.2001.281.3.L565] [PMID: 11504682]
[56]
Cullere X, Shaw SK, Andersson L, Hirahashi J, Luscinskas FW, Mayadas TN. Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood 2005; 105(5): 1950-5.
[http://dx.doi.org/10.1182/blood-2004-05-1987] [PMID: 15374886]
[57]
Sehrawat S, Cullere X, Patel S, Italiano J Jr, Mayadas TN. Role of Epac1, an exchange factor for Rap GTPases, in endothelial microtubule dynamics and barrier function. Mol Biol Cell 2008; 19(3): 1261-70.
[http://dx.doi.org/10.1091/mbc.e06-10-0972] [PMID: 18172027]
[58]
Phornphutkul C, Wu K-Y, Auyeung V, Chen Q, Gruppuso PA. mTOR signaling contributes to chondrocyte differentiation. Dev Dyn 2008; 237(3): 702-12.
[http://dx.doi.org/10.1002/dvdy.21464] [PMID: 18265001]
[59]
Xiang X, Zhao J, Xu G, Li Y, Zhang W. mTOR and the differentiation of mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 2011; 43(7): 501-10.
[http://dx.doi.org/10.1093/abbs/gmr041] [PMID: 21642276]
[60]
Xue G, Hemmings BA. PKB/Akt-dependent regulation of cell motility. J Natl Cancer Inst 2013; 105(6): 393-404.
[http://dx.doi.org/10.1093/jnci/djs648] [PMID: 23355761]
[61]
Gilroy DW, Colville-Nash PR, McMaster S, Sawatzky DA, Willoughby DA, Lawrence T. Inducible cyclooxygenase-derived 15-deoxy(Delta)12-14PGJ2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis. FASEB J 2003; 17(15): 2269-71.
[http://dx.doi.org/10.1096/fj.02-1162fje] [PMID: 14563690]
[62]
Gilroy DW, Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ, Willoughby DA. Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 1999; 5(6): 698-701.
[http://dx.doi.org/10.1038/9550] [PMID: 10371510]
[63]
Notoya K, Jovanovic DV, Reboul P, Martel-Pelletier J, Mineau F, Pelletier JP. The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2. J Immunol 2000; 165(6): 3402-10.
[http://dx.doi.org/10.4049/jimmunol.165.6.3402] [PMID: 10975859]
[64]
Jones EA, English A, Henshaw K, et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 2004; 50(3): 817-27.
[http://dx.doi.org/10.1002/art.20203] [PMID: 15022324]
[65]
Newson J, Motwani MP, Kendall AC, et al. Inflammatory resolution triggers a prolonged phase of immune suppression through COX-1/mPGES-1-derived prostaglandin E 2. Cell Rep 2017; 20(13): 3162-75.
[http://dx.doi.org/10.1016/j.celrep.2017.08.098] [PMID: 28954232]
[66]
Luan B, Yoon Y-S, Le Lay J, Kaestner KH, Hedrick S, Montminy M. CREB pathway links PGE2 signaling with macrophage polarization. Proc Natl Acad Sci USA 2015; 112(51): 15642-7.
[http://dx.doi.org/10.1073/pnas.1519644112] [PMID: 26644581]
[67]
Bystrom J, Evans I, Newson J, et al. Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood 2008; 112(10): 4117-27.
[http://dx.doi.org/10.1182/blood-2007-12-129767] [PMID: 18779392]
[68]
Lu X, Han J, Xu X, et al. PGE2 promotes the migration of mesenchymal stem cells through the activation of FAK and ERK1/2 pathway. Stem Cells Int 2017.20178178643
[http://dx.doi.org/10.1155/2017/8178643] [PMID: 28740516]
[69]
Wang Y, Lai S, Tang J, et al. Prostaglandin E2 promotes human CD34+ cells homing through EP2 and EP4 in vitro. Mol Med Rep 2017; 16(1): 639-46.
[http://dx.doi.org/10.3892/mmr.2017.6649] [PMID: 28560401]
[70]
Frolov A, Yang L, Dong H, Hammock BD, Crofford LJ. Anti-inflammatory properties of prostaglandin E2: deletion of microsomal prostaglandin E synthase-1 exacerbates non-immune inflammatory arthritis in mice. Prostaglandins Leukot Essent Fatty Acids 2013; 89(5): 351-8.
[http://dx.doi.org/10.1016/j.plefa.2013.08.003] [PMID: 24055573]
[71]
Vladimirovna IL, Sosunova E, Nikolaev A, Nenasheva T. Mesenchymal stem cells and myeloid derived suppressor cells: common traits in immune regulation. J Immunol Res 2016.20167121580
[http://dx.doi.org/10.1155/2016/7121580] [PMID: 27529074]
[72]
Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010; 140(6): 900-17.
[http://dx.doi.org/10.1016/j.cell.2010.02.034] [PMID: 20303879]
[73]
Tabas I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res 2010; 107(7): 839-50.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.224766] [PMID: 20884885]
[74]
Kuda O, Jenkins CM, Skinner JR, et al. CD36 protein is involved in store-operated calcium flux, phospholipase A2 activation, and production of prostaglandin E2. J Biol Chem 2011; 286(20): 17785-95.
[http://dx.doi.org/10.1074/jbc.M111.232975] [PMID: 21454644]
[75]
Ståhlberg N, Rico-Bautista E, Fisher RM, et al. Female-predominant expression of fatty acid translocase/CD36 in rat and human liver. Endocrinology 2004; 145(4): 1972-9.
[http://dx.doi.org/10.1210/en.2003-0874] [PMID: 14684613]
[76]
Chuang P-C, Lin Y-J, Wu M-H, Wing L-YC, Shoji Y, Tsai S-J. Inhibition of CD36-dependent phagocytosis by prostaglandin E2 contributes to the development of endometriosis. Am J Pathol 2010; 176(2): 850-60.
[http://dx.doi.org/10.2353/ajpath.2010.090551] [PMID: 20035060]
[77]
Ruderman EM. Overview of safety of non-biologic and biologic DMARDs. Rheumatol 2012; 51(Suppl. 6): vi37-43.
[http://dx.doi.org/10.1093/rheumatology/kes283]
[78]
Losina E, Daigle ME, Suter LG, et al. Disease-modifying drugs for knee osteoarthritis: can they be cost-effective? Osteoarthritis Cartilage 2013; 21(5): 655-67.
[http://dx.doi.org/10.1016/j.joca.2013.01.016] [PMID: 23380251]
[79]
European Medicines A. Guideline on clinical investigation of medicinal products used in the treatment of osteoarthritis. 1999.
[80]
FDA US. Guidance for Industry Clinical Development Programs for Drugs, Devices, and Biological Products Intended for the Treatment of Osteoarthritis (OA). In: 1999; pp. 800-99.
[81]
Barr AJ, Conaghan PG. Disease-modifying osteoarthritis drugs (DMOADs): what are they and what can we expect from them? - MedicographiaMedicographia. Medicographia 2013; 35: 189-96.
[82]
Schwappach J, Dryden SM, Salottolo KM, Bar-Or D. Preliminary trial of intra-articular LMWF-5A for osteoarthritis of the knee. Orthopedics 2017; 40(1): e49-53.
[http://dx.doi.org/10.3928/01477447-20160926-02] [PMID: 27684085]
[83]
Ukachukwu V, Duncan R, Belcher J, et al. Clinical significance of medial versus lateral compartment patellofemoral osteoarthritis: cross-sectional analyses in an adult population with knee pain. Arthritis Care Res (Hoboken) 2017; 69(7): 943-51.
[http://dx.doi.org/10.1002/acr.23110] [PMID: 27696767]
[84]
Weidow J, Mars I, Kärrholm J. Medial and lateral osteoarthritis of the knee is related to variations of hip and pelvic anatomy. Osteoarthritis Cartilage 2005; 13(6): 471-7.
[http://dx.doi.org/10.1016/j.joca.2005.01.009] [PMID: 15922181]
[85]
Salottolo K, Stahl E. Minimal clinically important improvement response in patients with severe osteoarthritis of the knee: Short report from a survey of clinicians. J Orthop 2018; 15(2): 424-5.
[http://dx.doi.org/10.1016/j.jor.2018.03.034] [PMID: 29881169]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 3
Year: 2019
Published on: 30 July, 2019
Page: [189 - 200]
Pages: 12
DOI: 10.2174/1573397114666181119121519

Article Metrics

PDF: 33
HTML: 7
EPUB: 1
PRC: 1