Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Label Free Ultrasmall Fluoromagnetic Ferrite-clusters for Targeted Cancer Imaging and Drug Delivery

Author(s): Viswanathan Haribabu, Palani Sharmiladevi, Najim Akhtar, Abubacker Sulaiman Farook, Koyeli Girigoswami and Agnishwar Girigoswami*

Volume 16, Issue 3, 2019

Page: [233 - 241] Pages: 9

DOI: 10.2174/1567201816666181119112410

Price: $65

Abstract

Objective: The label free ultrasmall fluorescent ferrite clusters have been engineered in a controlled fashion which was stabilized by serum protein and functionalized by folic acid for the application of targeted multimodal optical and Magnetic Resonance (MR) cancer imaging.

Methods: The ultra-small manganese ferrite nanoclusters (PMNCs) with a diameter of 4 nm have a commendable effect on the longitudinal (T1) and transverse (T2) relaxation in MR imaging that was evident from the phantom and animal MRI.

Results: The calculated longitudinal molar relaxivity of nanoclusters was found to be 6.9 ± 0.10 mM-1 S-1 which was exactly 2.22 times better than the conventional Gd-DOTA and their 4.01 ratio of the transverse (r2) and longitudinal (r1) relaxivities made them a potential candidate for both T1 and T2 contrast agents in MRI. In addition, the fluorescence-based small animal imaging showed folic acid driven accumulated fluorescent signal at the tumour site to conclude the capacity of PMNCs for targeted fluorescence imaging of cancer diagnosis.

Conclusion: The cytotoxicity assay and histopathology studies were the evidence for their safe biodistribution in animal systems. Furthermore, the protein encapsulated clusters have the ability to deliver the anticancer drug Methotrexate (MTX) to the cancer tissues with a sustained manner. Therefore, one can conclude the remarkable efficacy of architect nanoclusters for theragnosis.

Keywords: Multimodal imaging, ferrite clusters, magneto-fluorescent, MRI, fluorescence imaging, theragnosis.

Graphical Abstract
[1]
Sharma, P.; Kumar Mehra, N.; Jain, K.; Jain, N. Biomedical applications of carbon nanotubes: A critical review. Curr. Drug Deliv., 2016, 13(6), 796-817.
[2]
Taymouri, S.; Taheri, A. Use of nanotechnology in diagnosis and treatment of hepatic fibrosis: A review. Curr. Drug Deliv., 2016, 13(5), 662-672.
[3]
Li, B.L.; Setyawati, M.I.; Chen, L.; Xie, J.; Ariga, K.; Lim, C-T.; Garaj, S.; Leong, D.T. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(18), 15286-15296.
[4]
Bhattacharyya, K.; Mukherjee, S. Fluorescent metal nano-clusters as next generation fluorescent probes for cell imaging and drug delivery. Bull. Chem. Soc. Jpn., 2017, 91(3), 447-454.
[5]
Heydari, R.; Rashidipour, M. Green synthesis of silver nanoparticles using extract of oak fruit hull (Jaft): Synthesis and in vitro cytotoxic effect on MCF-7 cells. Int. J. Breast Cancer, 2015, 2015.
[6]
Bhavesh, R.; Lechuga-Vieco, A.V.; Ruiz-Cabello, J.; Herranz, F. T1-MRI fluorescent iron oxide nanoparticles by microwave assisted synthesis. Nanomaterials, 2015, 5(4), 1880-1890.
[7]
Kukreja, A.; Lim, E-K.; Kang, B.; Choi, Y.; Lee, T.; Suh, J-S.; Huh, Y-M.; Haam, S. One-pot synthesis of magnetic nanoclusters enabling atherosclerosis-targeted magnetic resonance imaging. Int. J. Nanomedicine, 2014, 9, 2489-2498.
[8]
Haribabu, V.; Farook, A.S.; Goswami, N.; Murugesan, R.; Girigoswami, A. Optimized Mn‐doped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI. J. Biomed. Mater. Res. B Appl. Biomater., 2016, 104(4), 817-824.
[9]
Dumont, M.F.; Yadavilli, S.; Sze, R.W.; Nazarian, J.; Fernandes, R. Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors. Int. J. Nanomedicine, 2014, 9, 2581.
[10]
Sun, J.; Teng, Z-G.; Tian, Y.; Wang, J-D.; Guo, Y.; Kim, D-H.; Larson, A.C.; Lu, G-M. Targeted fluorescent magnetic nanoparticles for imaging of human breast cancer. Int. J. Clin. Exp. Med., 2014, 7(12), 4747.
[11]
Zhang, Y.; Zhang, B.; Liu, F.; Luo, J.; Bai, J. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles. Int. J. Nanomedicine, 2014, 9, 33.
[12]
Yildirimer, L.; Thanh, N.T.; Loizidou, M.; Seifalian, A.M. Toxicology and clinical potential of nanoparticles. Nano Today, 2011, 6(6), 585-607.
[13]
Amsaveni, G.; Farook, A.S.; Haribabu, V.; Murugesan, R.; Girigoswami, A. Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Adv. Sci. Eng. Med., 2013, 5(12), 1340-1348.
[14]
Kavya, J.; Amsaveni, G.; Nagalakshmi, M.; Girigoswami, K.; Murugesan, R.; Girigoswami, A. Silver nanoparticles induced lowering of BCl2/Bax causes dalton’s lymphoma tumour cell death in mice. J. Bionanosci., 2013, 7(3), 276-281.
[15]
Demillo, V.G.; Liao, M.; Zhu, X.; Redelman, D.; Publicover, N.G.; Hunter, K.W. Fabrication of MnFe2O4–CuInS2/ZnS magnetofluorescent nanocomposites and their characterization. Colloids Surf. A Physicochem. Eng. Asp., 2015, 464, 134-142.
[16]
Metkar, S.K.; Girigoswami, A.; Murugesan, R.; Girigoswami, K. Lumbrokinase for degradation and reduction of amyloid fibrils associated with amyloidosis. J. Appl. Biomed., 2017, 15(2), 96-104.
[17]
Sharmiladevi, P.; Haribabu, V.; Girigoswami, K.; Farook, A.S.; Girigoswami, A. Effect of Mesoporous Nano Water Reservoir on MR Relaxivity. Sci. Rep., 2017, 7(1), 11179.
[18]
Peng, X-H.; Wang, Y.; Huang, D.; Wang, Y.; Shin, H.J.; Chen, Z.; Spewak, M.B.; Mao, H.; Wang, X.; Wang, Y. Targeted delivery of cisplatin to lung cancer using ScFvEGFR-heparin-cisplatin nanoparticles. ACS Nano, 2011, 5(12), 9480-9493.
[19]
Zhang, X-D.; Wu, D.; Shen, X.; Liu, P-X.; Yang, N.; Zhao, B.; Zhang, H.; Sun, Y-M.; Zhang, L-A.; Fan, F-Y. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int. J. Nanomedicine, 2011, 6, 2071.
[20]
Yang, L.; Kuang, H.; Zhang, W.; Aguilar, Z.P.; Wei, H.; Xu, H. Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci. Rep., 2017, 7(1), 3303.
[21]
Zipare, K.; Dhumal, J.; Bandgar, S.; Mathe, V.; Shahane, G. Superparamagnetic manganese ferrite nanoparticles: Synthesis and magnetic properties. J. Nanosci. Nanotechnol., 2015, 1(3), 178-182.
[22]
Sen, S.; Konar, S.; Pathak, A.; Dasgupta, S.; DasGupta, S. Effect of functionalized magnetic MnFe2O4 nanoparticles on fibrillation of human serum albumin. J. Phys. Chem. B, 2014, 118(40), 11667-11676.
[23]
Bellusci, M.; La Barbera, A.; Seralessandri, L.; Padella, F.; Piozzi, A.; Varsano, F. Preparation of albumin–ferrite superparamagnetic nanoparticles using reverse micelles. Polym. Int., 2009, 58(10), 1142-1147.
[24]
Sun, G.; Berezin, M.Y.; Fan, J.; Lee, H.; Ma, J.; Zhang, K.; Wooley, K.L.; Achilefu, S. Bright fluorescent nanoparticles for developing potential optical imaging contrast agents. Nanoscale, 2010, 2(4), 548-558.
[25]
Huang, J.; Wang, L.; Lin, R.; Wang, A.Y.; Yang, L.; Kuang, M.; Qian, W.; Mao, H. Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting. ACS Appl. Mater. Interfaces, 2013, 5(11), 4632-4639.
[26]
Li, Z.; Wang, S.X.; Sun, Q.; Zhao, H.L.; Lei, H.; Lan, M.B.; Cheng, Z.X.; Wang, X.L.; Dou, S.X. Ultrasmall manganese ferrite nanoparticles as positive contrast agent for magnetic resonance imaging. Adv. Healthc. Mater., 2013, 2(7), 958-964.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy