Development of Topical Nanocarriers for Skin Cancer Treatment Using Quality by Design Approach

Author(s): Erzsébet Csányi*, Mónika Bakonyi, Anita Kovács, Mária Budai-Szűcs, Ildikó Csóka, Szilvia Berkó

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 35 , 2019


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: One of the most compelling medical challenges of this century is the treatment of cancer and among them, skin cancer is the most common type. Thus, current treatments need to be renewed continuously to handle this challenge.

Objective: This review presents considerations which can be employed during the development of nanosized formulations dedicated to the topical treatment of skin cancer. We aimed to collect and organize literature data on the treatment options for skin cancer in order to determine the required quality attributes of an effective dermal anticancer formulation.

Method: With the consideration of the Quality by Design (QbD) approach related to the development of new pharmaceutical formulations, a cost-saving process ensuring a high-quality product taking into account patient expectations, industrial and regulatory aspects can be achieved. Furthermore, this concept is highly recommended by regulatory agencies.

Results: Our work discusses the current therapies, active agents, drug carrier systems, and evaluation methods in connection with the treatment of skin cancer and outlines Critical Quality Attributes which need to be considered during the development of a nanosized dermal anticancer formulation.

Conclusion: The first part of this review summarizes the most important topical treatment therapies for skin cancer and highlights the future therapeutic perspectives, focusing on the benefits of nanotechnology and dermal administration. The second part outlines the critical points of nanosized dermal anticancer formulation development in the view of QbD approach. Our research emphasizes the application of QbD method for a rationalized and more effective anticancer formulation development process.

Keywords: Anticancer, skin cancer, nanopharmaceutics, nanoparticles, dermal, Quality by Design (QbD).

[1]
Taveira, S.F.; Lopez, R.F.V. Topical Administration of Anticancer Drugs for Skin Cancer Treatment. Skin Cancers - Risk Factors, Prevention and Therapy; Porta, C.A.L., Ed.; In Tech, 2011, pp. 248-272.
[2]
Haque, T.; Rahman, K.M.; Thurston, D.E.; Hadgraft, J.; Lane, M.E. Topical therapies for skin cancer and actinic keratosis. Eur. J. Pharm. Sci., 2015, 77, 279-289.
[http://dx.doi.org/10.1016/j.ejps.2015.06.013] [PMID: 26091570]
[3]
Martinez, J.C.; Otley, C.C. The management of melanoma and nonmelanoma skin cancer: a review for the primary care physician. Mayo Clin. Proc., 2001, 76(12), 1253-1265.
[http://dx.doi.org/10.4065/76.12.1253] [PMID: 11761506]
[4]
Chummun, S.; McLean, N.R. Management of malignant skin cancers. Surgery, 2017, 35(9), 519-524.
[http://dx.doi.org/10.1016/j.mpsur.2017.06.013]
[5]
Simões, M.C.F.; Sousa, J.J.S.; Pais, A.A.C.C. Skin cancer and new treatment perspectives: a review. Cancer Lett., 2015, 357(1), 8-42.
[http://dx.doi.org/10.1016/j.canlet.2014.11.001] [PMID: 25444899]
[6]
Maverakis, E.; Cornelius, L.A.; Bowen, G.M.; Phan, T.; Patel, F.B.; Fitzmaurice, S.; He, Y.; Burrall, B.; Duong, C.; Kloxin, A.M.; Sultani, H.; Wilken, R.; Martinez, S.R.; Patel, F. Metastatic melanoma - a review of current and future treatment options. Acta Derm. Venereol., 2015, 95(5), 516-524.
[http://dx.doi.org/10.2340/00015555-2035] [PMID: 25520039]
[7]
Orthaber, K.; Pristovnik, M.; Skok, K.; Peric, B.; Maver, U. Skin cancer and its treatment: novel treatment approaches with emphasis on nanotechnology. J. Nanomater., 2017.20172606271
[http://dx.doi.org/10.1155/2017/2606271]
[8]
Berciano-Guerrero, M.A.; Montesa-Pino, A.; Castaneda-Penalvo, G.; Munoz-Fernandez, L.; Rodriguez-Flores, J. Nanoparticles in melanoma. Curr. Med. Chem., 2014, 21(32), 3701-3716.
[http://dx.doi.org/10.2174/0929867321666140716092512] [PMID: 25039783]
[9]
Labala, S.; Jose, A.; Chawla, S.R.; Khan, M.S.; Bhatnagar, S.; Kulkarni, O.P.; Venuganti, V.V.K. Effective melanoma cancer suppression by iontophoretic co-delivery of STAT3 siRNA and imatinib using gold nanoparticles. Int. J. Pharm., 2017, 525(2), 407-417.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.087] [PMID: 28373100]
[10]
Siu, K.S.; Chen, D.; Zheng, X.; Zhang, X.; Johnston, N.; Liu, Y.; Yuan, K.; Koropatnick, J.; Gillies, E.R.; Min, W.P. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials, 2014, 35(10), 3435-3442.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.079] [PMID: 24424208]
[11]
Singh, S.; Zafar, A.; Khan, S.; Naseem, I. Towards therapeutic advances in melanoma management: an overview. Life Sci., 2017, 174, 50-58.
[http://dx.doi.org/10.1016/j.lfs.2017.02.011] [PMID: 28238718]
[12]
Gracia-Cazaña, T.; Salazar, N.; Zamarrón, A.; Mascaraque, M.; Lucena, S.R.; Juarranz, Á. Resistance of nonmelanoma skin cancer to nonsurgical treatments. Part ii: photodynamic therapy, vismodegib, cetuximab, intralesional methotrexate, and radiotherapy. Actas Dermosifiliogr., 2016, 107(9), 740-750.
[http://dx.doi.org/10.1016/j.adengl.2016.08.017] [PMID: 27436804]
[13]
Xie, J.; Bartels, C.M.; Barton, S.W.; Gu, D. Targeting hedgehog signaling in cancer: research and clinical developments. OncoTargets Ther., 2013, 6, 1425-1435.
[http://dx.doi.org/10.2147/OTT.S34678] [PMID: 24143114]
[14]
Berking, C.; Hauschild, A.; Kölbl, O.; Mast, G.; Gutzmer, R. Basal cell carcinoma-treatments for the commonest skin cancer. Dtsch. Arztebl. Int., 2014, 111(22), 389-395.
[PMID: 24980564]
[15]
Dianzani, C.; Zara, G.P.; Maina, G.; Pettazzoni, P.; Pizzimenti, S.; Rossi, F.; Gigliotti, C.L.; Ciamporcero, E.S.; Daga, M.; Barrera, G. Drug delivery nanoparticles in skin cancers. BioMed Res. Int., 2014, •••2014895986
[http://dx.doi.org/10.1155/2014/895986] [PMID: 25101298]
[16]
Baroli, B. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J. Pharm. Sci., 2010, 99(1), 21-50.
[http://dx.doi.org/10.1002/jps.21817] [PMID: 19670463]
[17]
Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; Wurm, E.M.; Yoong, C.; Robertson, T.A.; Soyer, H.P.; Roberts, M.S. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev., 2011, 63(6), 470-491.
[http://dx.doi.org/10.1016/j.addr.2011.01.012] [PMID: 21315122]
[18]
Bhise, K.; Kashaw, S.K.; Sau, S.; Iyer, A.K. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: quality by design (QbD) approach. Int. J. Pharm., 2017, 526(1-2), 506-515.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.078] [PMID: 28502895]
[19]
Brys, A.K.; Gowda, R.; Loriaux, D.B.; Robertson, G.P.; Mosca, P.J. Nanotechnology-based strategies for combating toxicity and resistance in melanoma therapy. Biotechnol. Adv., 2016, 34(5), 565-577.
[http://dx.doi.org/10.1016/j.biotechadv.2016.01.004] [PMID: 26826558]
[20]
Bombelli, F.B.; Webster, C.A.; Moncrieff, M.; Sherwood, V. The scope of nanoparticle therapies for future metastatic melanoma treatment. Lancet Oncol., 2014, 15(1), e22-e32.
[http://dx.doi.org/10.1016/S1470-2045(13)70333-4] [PMID: 24384491]
[21]
Bharali, D.J.; Khalil, M.; Gurbuz, M.; Simone, T.M.; Mousa, S.A. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int. J. Nanomedicine, 2009, 4, 1-7.
[PMID: 19421366]
[22]
Ali, I. Nano anti-cancer drugs: pros and cons and future perspectives. Curr. Cancer Drug Targets, 2011, 11(2), 131-134.
[http://dx.doi.org/10.2174/156800911794328457] [PMID: 21062238]
[23]
Hosoda, J.; Unezaki, S.; Maruyama, K.; Tsuchiya, S.; Iwatsuru, M. Antitumor activity of doxorubicin encapsulated in poly(ethylene glycol)-coated liposomes. Biol. Pharm. Bull., 1995, 18(9), 1234-1237.
[http://dx.doi.org/10.1248/bpb.18.1234] [PMID: 8845812]
[24]
Lasic, D.D.; Vallner, J.J.; Working, P.K. Sterically stabilized liposomes in cancer therapy and gene delivery. Curr. Opin. Mol. Ther., 1999, 1(2), 177-185.
[PMID: 11715941]
[25]
Krieger, M.L.; Eckstein, N.; Schneider, V.; Koch, M.; Royer, H.D.; Jaehde, U.; Bendas, G. Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. Int. J. Pharm., 2010, 389(1-2), 10-17.
[http://dx.doi.org/10.1016/j.ijpharm.2009.12.061] [PMID: 20060458]
[26]
Abu Lila, A.S.; Doi, Y.; Nakamura, K.; Ishida, T.; Kiwada, H. Sequential administration with oxaliplatin-containing PEG-coated cationic liposomes promotes a significant delivery of subsequent dose into murine solid tumor. J. Control. Release, 2010, 142(2), 167-173.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.020] [PMID: 19861140]
[27]
Watanabe, M.; Kawano, K.; Toma, K.; Hattori, Y.; Maitani, Y. In vivo antitumor activity of camptothecin incorporated in liposomes formulated with an artificial lipid and human serum albumin. J. Control. Release, 2008, 127(3), 231-238.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.005] [PMID: 18384903]
[28]
Manconi, M.; Sinico, C.; Valenti, D.; Lai, F.; Fadda, A.M. Niosomes as carriers for tretinoin. III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int. J. Pharm., 2006, 311(1-2), 11-19.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.045] [PMID: 16439071]
[29]
Paolino, D.; Cosco, D.; Muzzalupo, R.; Trapasso, E.; Picci, N.; Fresta, M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int. J. Pharm., 2008, 353(1-2), 233-242.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.037] [PMID: 18191509]
[30]
Rastogi, R.; Anand, S.; Koul, V. Flexible polymerosomes--an alternative vehicle for topical delivery. Colloids Surf. B Biointerfaces, 2009, 72(1), 161-166.
[http://dx.doi.org/10.1016/j.colsurfb.2009.03.022] [PMID: 19403279]
[31]
Deda, D.K.; Uchoa, A.F.; Caritá, E.; Baptista, M.S.; Toma, H.E.; Araki, K. A new micro/nanoencapsulated porphyrin formulation for PDT treatment. Int. J. Pharm., 2009, 376(1-2), 76-83.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.024] [PMID: 19409465]
[32]
Teskac, K.; Kristl, J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int. J. Pharm., 2010, 390(1), 61-69.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.011] [PMID: 19833178]
[33]
Marquele-Oliveira, F.; Santana, D.C.; Taveira, S.F.; Vermeulen, D.M.; de Oliveira, A.R.; da Silva, R.S.; Lopez, R.F. Development of nitrosyl ruthenium complex-loaded lipid carriers for topical administration: improvement in skin stability and in nitric oxide release by visible light irradiation. J. Pharm. Biomed. Anal., 2010, 53(4), 843-851.
[http://dx.doi.org/10.1016/j.jpba.2010.06.007] [PMID: 20634015]
[34]
Mussi, S.V.; Silva, R.C.; Oliveira, M.C.; Lucci, C.M.; Azevedo, R.B.; Ferreira, L.A. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Eur. J. Pharm. Sci., 2013, 48(1-2), 282-290.
[http://dx.doi.org/10.1016/j.ejps.2012.10.025] [PMID: 23178339]
[35]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Li, Y.; Wu, X.Y. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2007, 59(6), 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[36]
Selvamuthukumar, S.; Velmurugan, R. Nanostructured lipid carriers: a potential drug carrier for cancer chemotherapy. Lipids Health Dis., 2012, 11, 159.
[http://dx.doi.org/10.1186/1476-511X-11-159] [PMID: 23167765]
[37]
Shi, L.; Wang, X.; Zhao, F.; Luan, H.; Tu, Q.; Huang, Z.; Wang, H.; Wang, H. In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles. Int. J. Nanomedicine, 2013, 8, 2669-2676.
[http://dx.doi.org/10.2147/IJN.S45821] [PMID: 23926429]
[38]
Oh, E.K.; Jin, S.E.; Kim, J.K.; Park, J.S.; Park, Y.; Kim, C.K. Retained topical delivery of 5-aminolevulinic acid using cationic ultradeformable liposomes for photodynamic therapy. Eur. J. Pharm. Sci., 2011, 44(1-2), 149-157.
[http://dx.doi.org/10.1016/j.ejps.2011.07.003] [PMID: 21782942]
[39]
Pierre, M.B.; Tedesco, A.C.; Marchetti, J.M.; Bentley, M.V. Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study. BMC Dermatol., 2001, 1, 5.
[http://dx.doi.org/10.1186/1471-5945-1-5] [PMID: 11545679]
[40]
Hadjikirova, M.; Troyanova, P.; Simeonova, M. Nanoparticles as drug carrier system of 5-fluorouracil in local treatment of patients with superficial basal cell carcinoma. J. BUON, 2005, 10(4), 517-521.
[PMID: 17357210]
[41]
Amasya, G.; Badilli, U.; Aksu, B.; Tarimci, N. Quality by design case study 1: Design of 5-fluorouracil loaded lipid nanoparticles by the w/o/w double emulsion - solvent evaporation method. Eur. J. Pharm. Sci., 2016, 84, 92-102.
[http://dx.doi.org/10.1016/j.ejps.2016.01.003] [PMID: 26780593]
[42]
Jain, S.K.; Chaurasiya, A.; Gupta, Y.; Jain, A.; Dagur, P.; Joshi, B.; Katoch, V.M. Development and characterization of 5-FU bearing ferritin appended solid lipid nanoparticles for tumour targeting. J. Microencapsul., 2008, 25(5), 289-297.
[http://dx.doi.org/10.1080/02652040701799598] [PMID: 18608808]
[43]
Alvi, I.A.; Madan, J.; Kaushik, D.; Sardana, S.; Pandey, R.S.; Ali, A. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: preparation, characterization, in-vitro release, and cytotoxicity analysis. Anticancer Drugs, 2011, 22(8), 774-782.
[http://dx.doi.org/10.1097/CAD.0b013e328346c7d6] [PMID: 21799471]
[44]
Misak, H.; Zacharias, N.; Song, Z.; Hwang, S.; Man, K.P.; Asmatulu, R.; Yang, S.Y. Skin cancer treatment by albumin/5-Fu loaded magnetic nanocomposite spheres in a mouse model. J. Biotechnol., 2013, 164(1), 130-136.
[http://dx.doi.org/10.1016/j.jbiotec.2013.01.003] [PMID: 23395619]
[45]
Das, S.; Das, J.; Samadder, A.; Paul, A.; Khuda-Bukhsh, A.R. Efficacy of PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: mitochondria mediated apoptotic signalling cascades. Food Chem. Toxicol., 2013, 62, 670-680.
[http://dx.doi.org/10.1016/j.fct.2013.09.037] [PMID: 24120900]
[46]
Mangalathillam, S.; Rejinold, N.S.; Nair, A.; Lakshmanan, V.K.; Nair, S.V.; Jayakumar, R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale, 2012, 4(1), 239-250.
[http://dx.doi.org/10.1039/C1NR11271F] [PMID: 22080352]
[47]
Taveira, S.F.; Araújo, L.M.; de Santana, D.C.; Nomizo, A.; de Freitas, L.A.; Lopez, R.F. Development of cationic solid lipid nanoparticles with factorial design-based studies for topical administration of doxorubicin. J. Biomed. Nanotechnol., 2012, 8(2), 219-228.
[http://dx.doi.org/10.1166/jbn.2012.1383] [PMID: 22515073]
[48]
Taveira, S.F.; De Santana, D.C.; Araújo, L.M.; Marquele-Oliveira, F.; Nomizo, A.; Lopez, R.F. Effect of iontophoresis on topical delivery of doxorubicin-loaded solid lipid nanoparticles. J. Biomed. Nanotechnol., 2014, 10(7), 1382-1390.
[http://dx.doi.org/10.1166/jbn.2014.1834] [PMID: 24804558]
[49]
Huber, L.A.; Pereira, T.A.; Ramos, D.N.; Rezende, L.C.; Emery, F.S.; Sobral, L.M.; Leopoldino, A.M.; Lopez, R.F. Topical skin cancer therapy using doxorubicin-loaded cationic lipid nanoparticles and lontophoresis. J. Biomed. Nanotechnol., 2015, 11(11), 1975-1988.
[http://dx.doi.org/10.1166/jbn.2015.2139] [PMID: 26554156]
[50]
Labala, S.; Mandapalli, P.K.; Kurumaddali, A.; Venuganti, V.V. Layer-by-layer polymer coated gold nanoparticles for topical delivery of imatinib mesylate to treat melanoma. Mol. Pharm., 2015, 12(3), 878-888.
[http://dx.doi.org/10.1021/mp5007163] [PMID: 25587849]
[51]
Guo, T.; Zhang, Y.; Zhao, J.; Zhu, C.; Feng, N. Nanostructured lipid carriers for percutaneous administration of alkaloids isolated from Aconitum sinomontanum. J. Nanobiotechnology, 2015, 13, 47.
[http://dx.doi.org/10.1186/s12951-015-0107-3] [PMID: 26156035]
[52]
Yu, X.; Du, L.; Li, Y.; Fu, G.; Jin, Y. Improved anti-melanoma effect of a transdermal mitoxantrone ethosome gel. Biomed. Pharmacother., 2015, 73, 6-11.
[http://dx.doi.org/10.1016/j.biopha.2015.05.002] [PMID: 26211575]
[53]
Bharadwaj, R.; Das, P.J.; Pal, P.; Mazumder, B. Topical delivery of paclitaxel for treatment of skin cancer. Drug Dev. Ind. Pharm., 2016, 42(9), 1482-1494.
[http://dx.doi.org/10.3109/03639045.2016.1151028] [PMID: 26850463]
[54]
Chen, H.; Chang, X.; Du, D.; Liu, W.; Liu, J.; Weng, T.; Yang, Y.; Xu, H.; Yang, X. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J. Control. Release, 2006, 110(2), 296-306.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.052] [PMID: 16325954]
[55]
Zhao, J.; Piao, X.; Shi, X.; Si, A.; Zhang, Y.; Feng, N. Podophyllotoxin-loaded nanostructured lipid carriers for skin targeting: in vitro and in vivo studies. Molecules, 2016, 21(11)E1549
[http://dx.doi.org/10.3390/molecules21111549] [PMID: 27869698]
[56]
Sahu, S.; Saraf, S.; Kaur, C.D.; Saraf, S. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak. J. Biol. Sci., 2013, 16(13), 601-609.
[http://dx.doi.org/10.3923/pjbs.2013.601.609] [PMID: 24505982]
[57]
Chen-yu, G.; Chun-fen, Y.; Qi-lu, L.; Qi, T.; Yan-wei, X.; Wei-na, L.; Guang-xi, Z. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int. J. Pharm., 2012, 430(1-2), 292-298.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.042] [PMID: 22486962]
[58]
Gokce, E.H.; Korkmaz, E.; Dellera, E.; Sandri, G.; Bonferoni, M.C.; Ozer, O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int. J. Nanomedicine, 2012, 7, 1841-1850.
[http://dx.doi.org/10.2147/IJN.S29710] [PMID: 22605933]
[59]
Singh, P.; Singh, M.; Kanoujia, J.; Arya, M.; Saraf, S.K.; Saraf, S.A. Process optimization and photostability of silymarin nanostructured lipid carriers: effect on UV-irradiated rat skin and SK-MEL 2 cell line. Drug Deliv. Transl. Res., 2016, 6(5), 597-609.
[http://dx.doi.org/10.1007/s13346-016-0317-8] [PMID: 27431400]
[60]
Tran, M.A.; Gowda, R.; Sharma, A.; Park, E.J.; Adair, J.; Kester, M.; Smith, N.B.; Robertson, G.P. Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res., 2008, 68(18), 7638-7649.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6614] [PMID: 18794153]
[61]
Mandawgade, S.D.; Patravale, V.B. Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int. J. Pharm., 2008, 363(1-2), 132-138.
[http://dx.doi.org/10.1016/j.ijpharm.2008.06.028] [PMID: 18657601]
[62]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
[63]
Pallagi, E.; Ambrus, R.; Szabó-Révész, P.; Csóka, I. Adaptation of the quality by design concept in early pharmaceutical development of an intranasal nanosized formulation. Int. J. Pharm., 2015, 491(1-2), 384-392.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.018] [PMID: 26134895]
[64]
Chang, R.K.; Raw, A.; Lionberger, R.; Yu, L. Generic development of topical dermatologic products, Part II: quality by design for topical semisolid products. AAPS J., 2013, 15(3), 674-683.
[http://dx.doi.org/10.1208/s12248-013-9472-8] [PMID: 23572241]
[65]
ICH Guideline Pharmaceutical Development Q8(R2) Current Step 4 version dated August 2009. Available at: http://www.ich.org/products/guidelines/quality/article/qualityguidelines [Accessed: August 15, 2017];
[66]
ICH Guideline Pharmaceutical Development Q9. Quality Risk Management Guidance for Industry Dated June. Available at: www.fda.gov/downloads/Drugs/ [Accessed: August 15, 2017];
[67]
Antony, J.; Kellershohn, K.; Mohr-Andrä, M.; Kebig, A.; Prilla, S.; Muth, M.; Heller, E.; Disingrini, T.; Dallanoce, C.; Bertoni, S.; Schrobang, J.; Tränkle, C.; Kostenis, E.; Christopoulos, A.; Höltje, H.D.; Barocelli, E.; De Amici, M.; Holzgrabe, U.; Mohr, K. Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J., 2009, 23(2), 442-450.
[http://dx.doi.org/10.1096/fj.08-114751] [PMID: 18842964]
[68]
Wisse, E.; Braet, F.; Luo, D.; De Zanger, R.; Jans, D.; Crabbé, E.; Vermoesen, A. Structure and function of sinusoidal lining cells in the liver. Toxicol. Pathol., 1996, 24(1), 100-111.
[http://dx.doi.org/10.1177/019262339602400114] [PMID: 8839287]
[69]
Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomedicine, 2012, 7, 5577-5591.
[http://dx.doi.org/10.2147/IJN.S36111] [PMID: 23144561]
[70]
Wu, X.; Landfester, K.; Musyanovych, A.; Guy, R.H. Disposition of charged nanoparticles after their topical application to the skin. Skin Pharmacol. Physiol., 2010, 23(3), 117-123.
[http://dx.doi.org/10.1159/000270381] [PMID: 20051712]
[71]
Kovács, A.; Berkó, S.; Csányi, E.; Csóka, I. Development of nanostructured lipid carriers containing salicyclic acid for dermal use based on the quality by design method. Eur. J. Pharm. Sci., 2017, 99, 246-257.
[http://dx.doi.org/10.1016/j.ejps.2016.12.020] [PMID: 28012940]
[72]
Sütő, B.; Berkó, S.; Kozma, G.; Kukovecz, Á.; Budai-Szűcs, M.; Erős, G.; Kemény, L.; Sztojkov-Ivanov, A.; Gáspár, R.; Csányi, E. Development of ibuprofen-loaded nanostructured lipid carrier-based gels: characterization and investigation of in vitro and in vivo penetration through the skin. Int. J. Nanomedicine, 2016, 11, 1201-1212.
[PMID: 27099487]
[73]
Yu, L.X.; Amidon, G.; Khan, M.A.; Hoag, S.W.; Polli, J.; Raju, G.K.; Woodcock, J. Understanding pharmaceutical quality by design. AAPS J., 2014, 16(4), 771-783.
[http://dx.doi.org/10.1208/s12248-014-9598-3] [PMID: 24854893]
[74]
Patel, G.M.; Shelat, P.K.; Lalwani, A.N. QbD based development of proliposome of lopinavir for improved oral bioavailability. Eur. J. Pharm. Sci., 2016.
[PMID: 27586019]
[75]
Xu, X.; Khan, M.A.; Burgess, D.J. A quality by design (QbD) case study on liposomes containing hydrophilic API: II. Screening of critical variables, and establishment of design space at laboratory scale. Int. J. Pharm., 2012, 423(2), 543-553.
[http://dx.doi.org/10.1016/j.ijpharm.2011.11.036] [PMID: 22155413]
[76]
Shaikh, M.V.; Kala, M.; Nivsarkar, M. Formulation and optimization of doxorubicin loaded polymeric nanoparticles using Box-Behnken design: ex-vivo stability and in-vitro activity. Eur. J. Pharm. Sci., 2017, 100, 262-272.
[http://dx.doi.org/10.1016/j.ejps.2017.01.026] [PMID: 28126560]
[77]
Vardhan, H.; Mittal, P.; Adena, S.K.R.; Upadhyay, M.; Mishra, B. Development of long-circulating docetaxel loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles: optimization, pharmacokinetic, cytotoxicity and in vivo assessments. Int. J. Biol. Macromol., 2017, 103, 791-801.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.125] [PMID: 28536023]
[78]
Raina, H.; Kaur, S.; Jindal, A.B. Development of efavirenz loaded solid lipid nanoparticles: Risk assessment, quality-by-design (QbD) based optimisation and physicochemical characterisation. J. Drug Deliv. Sci. Technol., 2017, 39, 180-191.
[http://dx.doi.org/10.1016/j.jddst.2017.02.013]
[79]
Ribeiro, L.N.M.; Breitkreitz, M.C.; Guilherme, V.A.; da Silva, G.H.R.; Couto, V.M.; Castro, S.R.; de Paula, B.O.; Machado, D.; de Paula, E. Natural lipids-based NLC containing lidocaine: from pre-formulation to in vivo studies. Eur. J. Pharm. Sci., 2017, 106, 102-112.
[http://dx.doi.org/10.1016/j.ejps.2017.05.060] [PMID: 28558981]
[80]
Garg, N.K.; Sharma, G.; Singh, B.; Nirbhavane, P.; Tyagi, R.K.; Shukla, R.; Katare, O.P. Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): an improved dermatokinetic profile for inflammatory disorder(s). Int. J. Pharm., 2017, 517(1-2), 413-431.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.010] [PMID: 27956192]
[81]
Shah, B.; Khunt, D.; Bhatt, H.; Misra, M.; Padh, H. Intranasal delivery of venlafaxine loaded nanostructured lipid carrier: risk assessment and QbD based optimization. J. Drug Deliv. Sci. Technol., 2016, 33, 37-50.
[http://dx.doi.org/10.1016/j.jddst.2016.03.008]
[82]
Li, J.; Qiao, Y.; Wu, Z. Nanosystem trends in drug delivery using quality-by-design concept. J. Control. Release, 2017, 256, 9-18.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.019] [PMID: 28414149]
[83]
Guideline, I.C.H. ICH Guideline S9. Nonclinical Evaluation for Anticancer Pharmaceuticals 2010. Available at: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S9/Step4/S9_Step4_Guideline.pdf [Accessed: August 15, 2017].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 35
Year: 2019
Page: [6440 - 6458]
Pages: 19
DOI: 10.2174/0929867325666181116143713
Price: $65

Article Metrics

PDF: 36
HTML: 6