Advancement in Nanotheranostics for Effective Skin Cancer Therapy: State of the Art

Author(s): Md. Habban Akhter*, Mohamed Jawed Ahsan, Mahfoozur Rahman, Siraj Anwar, Md. Rizwanullah

Journal Name: Current Nanomedicine
Formerly Recent Patents on Nanomedicine

Volume 10 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The skin cancer has become a leading concern worldwide as a result of high mortality rate. The treatment modality involves radiation therapy, chemotherapy or surgery. More often combination therapy of chemotherapeutic agents gives better solution over single chemotherapeutic agent. The Globocon report suggested that high incidence and mortality rate in skin cancer is growing day-to-day. This type of cancer is more prevalent in that area where a person is highly exposed to sunlight. The nanotechnology-based therapy is nowadays drawing attention and becoming a more important issue to be discussed. The nanotherapy of skin cancer is dealt with various approaches and strategies. The strategic based approaches imply nanoparticles targeting carcinoma cells, functionalized nanoparticles for specific targeting to cancer cells, receptor-mediated active targeting as nanoshells, nanostrutured lipid carriers, liposome, ethosome, bilosome, polymeric nanoparticle, nanosphere, dendrimers, carbon nanotubes, quantum dots, solid lipid nanoparticles and fullerenes which are highly efficient in specific killing of cancer cells. The passive targeting of chemotherapeutic agents is also helpful in dealing with carcinoma due to enhanced permeability and retention effect (EPR).

The article outlines nano-based therapy currently focused globally, and the outcomes of the therapy as well.

Keywords: Nanotheranostics, skin cancer, nanotherapy, retention effect, carcinoma cells, nanotherapy.

[1]
Institut Jules Bordet. The History of Cancer. Accessed at www.bordet.be/en/presentation/history/can-cer/cancer1.htm on April 20, 2016.
[2]
Harris CC. p53 tumor suppressor gene: at the crossroads of molecular carcinogenesis, molecular epidemiology, and cancer risk assessment. Environ Health Perspect 1996; 104(3)(Suppl. 3): 435-9.
[PMID: 8781359]
[3]
Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 1993; 329(18): 1318-27.
[http://dx.doi.org/10.1056/NEJM199310283291807] [PMID: 8413413]
[4]
Ultraviolet (UV) radiation and skin cancer. www. who.int/uv/faq/skincancer/en/index1.html
[5]
Petersen B, Wiegell SR, Wulf HC. Light protection of the skin after photodynamic therapy reduces inflammation: an unblinded randomized controlled study. Br J Dermatol 2014; 171(1): 175-80.
[http://dx.doi.org/10.1111/bjd.12882] [PMID: 24506809]
[6]
Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 2001; 47(2-3): 165-96.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[7]
Rabb O. Über die wirkung fluoreszierender stoffe auf infusoren. Z Biol 1900; 39: 524-6.
[8]
Tappeiner H, Jesionek A. Therapeutische versuche mit fluoreszierenden stoffen. Munch Med Wochenschr 1903; 47: 2042-4.
[9]
Mroz P, Hashmi JT, Huang Y-Y, Lange N, Hamblin MR. Stimulation of anti-tumor immunity by photodynamic therapy. Expert Rev Clin Immunol 2011; 7(1): 75-91.
[http://dx.doi.org/10.1586/eci.10.81] [PMID: 21162652]
[10]
Kharkwal GB, Sharma SK, Huang Y-Y, Dai T, Hamblin MR. Photodynamic therapy for infections: clinical applications. Lasers Surg Med 2011; 43(7): 755-67.
[http://dx.doi.org/10.1002/lsm.21080] [PMID: 22057503]
[11]
Allison RR, Moghissi K. Photodynamic therapy (pdt): Pdt mechanisms. Clin Endosc 2013; 46(1): 24-9.
[http://dx.doi.org/10.5946/ce.2013.46.1.24] [PMID: 23422955]
[12]
Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol 2015; 6: 219.
[http://dx.doi.org/10.3389/fphar.2015.00219] [PMID: 26483690]
[13]
Tran TN. Cutaneous drug delivery: an update. J Investig Dermatol Symp Proc 2013; 16(1): S67-9.
[http://dx.doi.org/10.1038/jidsymp.2013.28] [PMID: 24326566]
[14]
Simoes MCF, Sousa JJS, Pais AACC. Skin cancer and new treatment perspectives: a review. Cancer Lett 2014; 357(1): 8-42.
[http://dx.doi.org/doi]
[15]
Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL. Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 2010; 1(1): 109-31.
[http://dx.doi.org/10.4155/tde.10.16] [PMID: 21132122]
[16]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[17]
Kanapathipillai M, Brock A, Ingber DE. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv Drug Deliv Rev 2014; 79-80(79-80): 107-18.
[http://dx.doi.org/10.1016/j.addr.2014.05.005] [PMID: 24819216]
[18]
Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 2010; 197(197): 3-53.
[http://dx.doi.org/10.1007/978-3-642-00477-3_1] [PMID: 20217525]
[19]
Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008; 60(15): 1615-26.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489]
[20]
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70(1-2): 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[21]
Laupland KB. Fever in the critically ill medical patient. Crit Care Med 2009; 37(7)(Suppl.): S273-8.
[http://dx.doi.org/10.1097/CCM.0b013e3181aa6117] [PMID: 19535958]
[22]
Jordan A, Scholz R, Wust P, Fahling H, Felix R. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 1999; 201: 413-9.
[http://dx.doi.org/10.1016/S0304-8853(99)00088-8]
[23]
Johannsen M, Gneveckow U, Eckelt L, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. J Hyperthermia 2001; 21(7): 637-47.
[http://dx.doi.org/10.1080/02656730500158360]
[25]
Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 2010; 62(11): 1064-79.
[http://dx.doi.org/10.1016/j.addr.2010.07.009] [PMID: 20691229]
[26]
Punjabi A, Wu X, Tokatli-Apollon A, et al. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. ACS Nano 2014; 8(10): 10621-30.
[http://dx.doi.org/10.1021/nn505051d] [PMID: 25291544]
[27]
Mamaeva V, Rosenholm JM, Bate-Eya LT, et al. Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Mol Ther 2011; 19(8): 1538-46.
[http://dx.doi.org/10.1038/mt.2011.105] [PMID: 21629222]
[28]
Liberman A, Mendez N, Trogler WC, Kummel AC. Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 2014; 69(2-3): 132-58.
[http://dx.doi.org/10.1016/j.surfrep.2014.07.001] [PMID: 25364083]
[29]
Deng Z, Zhen Z, Hu X, Wu S, Xu Z, Chu PK. Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 2011; 32(21): 4976-86.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.050] [PMID: 21486679]
[30]
Cao AN, Ye ZM, Cai ZW, et al. A facile method to encapsulate proteins in silica nanoparticles: encapsulated green fluorescent protein as a robust fluorescence probe. Angew Chem Int Ed 2010; 49: 3022-5.
[http://dx.doi.org/10.1002/anie.200906883]
[31]
Bale SS, Kwon SJ, Shah DA, Banerjee A, Dordick JS, Kane RS. Nanoparticle-mediated cytoplasmic delivery of proteins to target cellular machinery. ACS Nano 2010; 4(3): 1493-500.
[http://dx.doi.org/10.1021/nn901586e] [PMID: 20201555]
[32]
Dwivedi N, Arunagirinathan MA, Sharma S, Bellare J. Silica-Coated Liposomes for Insulin Delivery. Nanomater 2010; Article ID 652048.
[PMID: 652048]
[33]
Lin C-H, Cheng SH, Liao WN, et al. Mesoporous silica nanoparticles for the improved anticancer efficacy of cis-platin. Int J Pharm 2012; 429(1-2): 138-47.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.026] [PMID: 22465413]
[34]
Luo D, Han E, Belcheva N, Saltzman WM. A self-assembled, modular DNA delivery system mediated by silica nanoparticles. J Control Release 2004; 95(2): 333-41.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.019] [PMID: 14980781]
[35]
Tang L, Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today 2013; 8(3): 290-312.
[http://dx.doi.org/10.1016/j.nantod.2013.04.007] [PMID: 23997809]
[36]
Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 2007; 59(6): 522-30.
[http://dx.doi.org/10.1016/j.addr.2007.04.012] [PMID: 17602783]
[37]
Souto EB, Almeida AJ, Muller RH. Lipid nanoparticles (SLN, NLC) for cutaneous drug delivery: structure, protection and skin effects. J Biomed Nanotechnol 2007; 3(4): 317-31.
[http://dx.doi.org/10.1166/jbn.2007.049] [PMID: 20055078]
[38]
Shanks TR, Sarathchandran C. Nanostructured Polymer Blends. 1st ed. Oxford, UK: Elsevier 2013.
[39]
Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010; 62(1): 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[40]
Lemière J, Carvalho K, Sykes C. Cell-sized liposomes that mimic cell motility and the cell cortex. Methods Cell Biol 2015; 128: 271-85.
[http://dx.doi.org/10.1016/bs.mcb.2015.01.013] [PMID: 25997352]
[41]
Deepthi V, Kavitha A. Liposomal drug delivery system: a review. RGUHS J Pharm Sci 2014; 4: 47-56.
[http://dx.doi.org/10.5530/rjps.2014.2.3]
[42]
Mouritsen OG. Lipids, curvature, and nano-medicine. Eur J Lipid Sci Technol 2011; 113(10): 1174-87.
[http://dx.doi.org/10.1002/ejlt.201100050] [PMID: 22164124]
[43]
Bibi S, Lattmann E, Mohammed AR, Perrie Y. Trigger release liposome systems: local and remote controlled delivery? J Microencapsul 2012; 29(3): 262-76.
[http://dx.doi.org/10.3109/02652048.2011.646330] [PMID: 22208705]
[44]
Machado LCG, Anne S, Kluppel MLW. Liposomes applied in pharmacology: a review. Estudos de Biologia 2007; 29(67): 215-24.
[45]
Maulucci G, De Spirito M, Arcovito G, Boffi F, Castellano AC, Briganti G. Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophys J 2005; 88(5): 3545-50.
[http://dx.doi.org/10.1529/biophysj.104.048876] [PMID: 15695632]
[46]
Lapinski MM, Castro-Forero A, Greiner AJ, Ofoli RY, Blanchard GJ. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir 2007; 23(23): 11677-83.
[http://dx.doi.org/10.1021/la7020963] [PMID: 17939695]
[47]
Muthu MS, Feng SS. Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Expert Opin Drug Deliv 2013; 10(2): 151-5.
[http://dx.doi.org/10.1517/17425247.2013.729576] [PMID: 23061654]
[48]
Tran MA, Watts RJ, Robertson GP. Use of liposomes as drug delivery vehicles for treatment of melanoma. Pigment Cell Melanoma Res 2009; 22(4): 388-99.
[http://dx.doi.org/10.1111/j.1755-148X.2009.00581.x] [PMID: 19493316]
[49]
Gosk S, Moos T, Gottstein C, Bendas G. VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim Biophys Acta 2008; 1778(4): 854-63.
[http://dx.doi.org/10.1016/j.bbamem.2007.12.021] [PMID: 18211818]
[50]
Jain SK, Puri R, Mahajan M, Yadav S, Pathak CM, Ganesh N. Nanovesicular carrier-based formulation for skin cancer targeting: evaluation of cytotoxicity, intracellular uptake, and preclinical anticancer activity. J Drug Target 2015; 23(3): 244-56.
[http://dx.doi.org/10.3109/1061186X.2014.981192] [PMID: 25417933]
[51]
Van Slooten ML, Boerman O, Romøren K, Kedar E, Crommelin DJ, Storm G. Liposomes as sustained release system for human interferon-gamma: biopharmaceutical aspects. Biochim Biophys Acta 2001; 1530(2-3): 134-45.
[http://dx.doi.org/10.1016/S1388-1981(00)00174-8] [PMID: 11239816]
[52]
Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics 2013; 5(4): 542-69.
[http://dx.doi.org/10.3390/pharmaceutics5040542] [PMID: 24300562]
[53]
Lee JS, Ankone M, Pieters E, Schiffelers RM, Hennink WE, Feijen J. Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumor-bearing mice: comparison with stealth liposomes. J Control Release 2011; 155(2): 282-8.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.028] [PMID: 21820023]
[54]
Sakurai Y, Kajimoto K, Harashima H. Anti-angiogenic nanotherapy via active targeting systems to tumors and adipose tissue vasculature. Biomater Sci 2015; 3(9): 1253-65.
[http://dx.doi.org/10.1039/C5BM00113G] [PMID: 26261854]
[55]
Darwhekar G, Kumar Jain D, Choudhary A. Elastic liposomes for delivery of neomycin sulphate in deep skin infection. Asian J Pharm Sci 2012; 7: 230-40.
[56]
Duangjita S, Opanasopitb P, Rojanaratac T, et al. Effect of edge activator on characteristic and in vitro skin permeation of meloxicam loaded in elastic liposomes. Adv Mat Res 2011; 194-196: 537-40.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.194-196.537]
[57]
Touitou E, Alkabes M, Dayan Eliaz M. Ethosomes: novel vesicular carriers for enhanced skin delivery. Pharm Res 1997; 14: S305-6.
[58]
Xu DH, Zhang Q, Feng X, Xu X, Liang WQ. Synergistic effects of ethosomes and chemical enhancers on enhancement of naloxone permeation through human skin. Pharmazie 2007; 62(4): 316-8.
[PMID: 17484292]
[59]
Semalty A, Semalty M, Rawat BS, Singh D, Rawat MS. Pharmacosomes: the lipid-based new drug delivery system. Expert Opin Drug Deliv 2009; 6(6): 599-612.
[http://dx.doi.org/10.1517/17425240902967607] [PMID: 19519287]
[60]
Shivhare R, Pathak A, Shrivastava N, et al. An update review on novel advanced ocular drug delivery system. World J Pharm Pharm Sci 2013; 1: 545-68.
[61]
Kamalesh M, Diraj DB, Kiran B, et al. Formulation and evaluation of pharmacosomes of ketoprofen. IAJPR 2014; 4: 1363-8.
[62]
Chatap VK, Patil PL, Patil SD. In-vitro, ex-vivo characterization of furosemide bounded pharmacosomes for improvement of solubility and permeability. Adv Pharmacol Pharm 2014; 2: 67-76.
[63]
Pierre MBR, Tedesco AC, Marchetti JM, Bentley MVL. Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study. BMC Dermatol 2001; 1: 5.
[http://dx.doi.org/10.1186/1471-5945-1-5] [PMID: 11545679]
[64]
Chen Y, Wu Q, Zhang Z, Yuan L, Liu X, Zhou L. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules 2012; 17(5): 5972-87.
[http://dx.doi.org/10.3390/molecules17055972] [PMID: 22609787]
[65]
Liu D, Hu H, Lin Z, et al. Quercetin deformable liposome: preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo. J Photochem Photobiol B 2013; 127: 8-17.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.07.014] [PMID: 23933244]
[66]
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 2016; 23(9): 3319-29.
[http://dx.doi.org/10.1080/10717544.2016.1177136] [PMID: 27145899]
[67]
Nasir A. Nanovehicle: Topical Transportation of the future 2010; 18(5)http://www.the-dermatologist. com/content/nanovehicles-topical-transportation-future
[68]
Fang JY, Fang CL, Liu CH, Su YH. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 2008; 70(2): 633-40.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.008] [PMID: 18577447]
[69]
Gao Y, Xie J, Chen H, et al. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol Adv 2014; 32(4): 761-77.
[http://dx.doi.org/10.1016/j.biotechadv.2013.10.013] [PMID: 24211475]
[70]
Bernsen MR, Tang JW, Everse LA, Koten JW, Otter WD. Interleukin 2 (IL-2) therapy: potential advantages of locoregional versus systemic administration. Cancer Treat Rev 1999; 25(2): 73-82.
[http://dx.doi.org/10.1053/ctrv.1998.0115] [PMID: 10395833]
[71]
Bos GW, Jacobs JJL, Koten JW, et al. In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy. Eur J Pharm Sci 2004; 21(4): 561-7.
[http://dx.doi.org/10.1016/j.ejps.2003.12.007] [PMID: 14998588]
[72]
Bae KH, Lee JY, Lee SH, Park TG, Nam YS. Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging. Adv Healthc Mater 2013; 2(4): 576-84.
[http://dx.doi.org/10.1002/adhm.201200338] [PMID: 23184673]
[73]
Targeted therapy for melanoma skin cancer. American cancer society www.cancer.org
[74]
Zebisch A, Troppmair J. Back to the roots: the remarkable RAF oncogene story. Cell Mol Life Sci 2006; 63(11): 1314-30.
[http://dx.doi.org/10.1007/s00018-006-6005-y] [PMID: 16649144]
[75]
Chen J, Liu H, Zhao C, et al. One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery. Biomaterials 2014; 35(18): 4986-95.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.032] [PMID: 24656608]
[76]
Li C, Wang X, Chen F, et al. The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials 2013; 34(15): 3882-90.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.001] [PMID: 23465487]
[77]
Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 2012; 25(1): 15-34.
[http://dx.doi.org/10.1021/tx200339h] [PMID: 21954945]
[78]
Hu Y, Wang K, Zhang Q, Li F, Wu T, Niu L. Decorated graphene sheets for label-free DNA impedance biosensing. Biomaterials 2012; 33(4): 1097-106.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.045] [PMID: 22061487]
[79]
DJung HS, Kong WH, Sung DK. et al. Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano 2014; 8(1): 260-8.
[http://dx.doi.org/10.1021/nn405383a] [PMID: 24383990]
[80]
Developing small tool with a big impact on cancer. NCI alliance with a nanotechnology in cancer www.cancer.gov
[82]
Liang Z, Li X, Xie Y, Liu S. ‘Smart’ gold nanoshells for combined cancer chemotherapy and hyperthermia. Biomed Mater 2014; 9(2): 025012.
[http://dx.doi.org/10.1088/1748-6041/9/2/025012] [PMID: 24525482]
[83]
Pondman KM, Bunt ND, Maijenburg AW, et al. Magnetic drug delivery with FePd nanowires. J Magn Magn Mater 2015; 380: 299-306.
[http://dx.doi.org/10.1016/j.jmmm.2014.10.101]
[84]
Peng F, Su Y, Wei X, et al. Silicon- nanowire-based nanocarriers with ultrahigh drug- loading capacity for in vitro and in vivo cancer therapy. Angew Chem Int Ed Engl 2013; 52(5): 1457-61.
[85]
[86]
Telfer NR, Colver GB, Morton CA. British Association of Dermatologists. Guidelines for the management of basal cell carcinoma. Br J Dermatol 2008; 159(1): 35-48.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08666.x] [PMID: 18593385]
[87]
Kimyai-Asadi A, Katz T, Goldberg LH, et al. Margin involvement after the excision of melanoma in situ: the need for complete enface examination of the surgical margins. Dermatol Surg 2007; 33(12): 1434-9.
[http://dx.doi.org/10.1097/00042728-200712000-00004] [PMID: 18076608]
[88]
Eric L, Vitruk P. Super Pulse 10.6 µm CO2 laser-assisted, closed flap treatment of peri-implantitis. Implant Practice 2015; 8(4): 30-4.
[89]
Bowen GM, White GL Jr, Gerwels JW. Mohs micrographic surgery. Am Fam Physician 2005; 72(5): 845-8.
[PMID: 16156344]
[90]
National Cancer Institute. Photodynamic Therapy for Cancer www.cancer.gov/cancertopics/factsheet/Therapy/photodynamic2015
[91]
Radiation therapy side effects and ways to manage them. National Cancer Institute 1996.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 2
Year: 2020
Page: [90 - 104]
Pages: 15
DOI: 10.2174/2468187308666181116130949
Price: $65

Article Metrics

PDF: 15