Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Effect of Intestinal Flora Clearance on Liver Proteomics in Mice

Author(s): Zhenghu Jia, Hui Liu, Mei Song, Chengmao Yang, Yapu Zhao, Xiaoli Wu, Zhenzhou Wu and Liqing Zhao*

Volume 16, Issue 3, 2019

Page: [199 - 209] Pages: 11

DOI: 10.2174/1570164616666181115102046

Price: $65

Abstract

Background: Intestinal flora dynamically affects the host's systemic immune system. Liver is one of the organs that may be affected by intestinal microbiota.

Materials and Methods: In this study, we aimed to identify proteome level differences between liver tissue from mice cleared intestinal flora and control using tandem mass spectrometry (LC-MS/MS) and label free quantification. Additionally, protein-protein interactions were mapped by STRING, and also, the enrichment of inflammation-related signaling pathways and biological processes was identified using GO and IPA network system. RT-PCR and Western blot were used for validation of the proteomics findings.

Results: Our study demonstrated that mice with cleared intestinal flora exhibited decreased sensitivity to Concanavalin A induced acute hepatitis. 324 Proteins in liver were differently expressed after intestinal flora clearance for one week while 210 proteins were differently expressed after intestinal flora clearance for two weeks. Furthermore, five of the identified proteins were validated by western blotting and further investigated by semi-quantitative RT-PCR.

Conclusion: Our results showed that intestinal flora clearance in mice could reduce sensitivity to Concanavalin A induced liver injury and influence the expression of proteins in liver, which provides a clue for studying the relationship between gut bacteria and Concanavalin A induced hepatitis.

Keywords: Intestinal flora, proteomics, Concanavalin A induced liver injury, hepatitis, injury, formic acid.

Graphical Abstract
[1]
Chen, J.; Wei, Y.; He, J.; Cui, G.; Zhu, Y.; Lu, C.; Ding, Y.; Xue, R.; Bai, L.; Uede, T. Natural killer T cells play a necessary role in modulating of immune-mediated liver injury by gut microbiota. Sci. Rep., 2014, 4, 7259-7259.
[2]
Tiegs, G.; Hentschel, J.; Wendel, A.A. T cell-dependent experimental liver injury in mice inducible by concanavalin A. J. Clin. Invest., 1992, 90(1), 196-203.
[3]
Noth, R.; Lange-Grumfeld, J.; Stüber, E.; Kruse, M.L.; Ellrichmann, M.; Häsler, R.; Hampe, J.; Bewig, B.; Rosenstiel, P.; Schreiber, S. Increased intestinal permeability and tight junction disruption by altered expression and localization of occludin in a murine graft versus host disease model. BMC Gastroenterol., 2011, 11(1), 109-109.
[4]
De, M.S.; Rychlicki, C.; Agostinelli, L.; Saccomanno, S.; Candelaresi, C.; Trozzi, L.; Mingarelli, E.; Facinelli, B.; Magi, G.; Palmieri, C. Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology, 2014, 59(5), 1738-1749.
[5]
Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Gou, Y.K.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA, 2004, 101(44), 15718-15723.
[6]
Cryan, J.F.; O’Mahony, S.M. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol. Motil., 2011, 23(3), 187-192.
[7]
Round, J.L.; O’Connell, R.M.; Mazmanian, S.K. Coordination of tolerogenic immune responses by the commensal microbiota. J. Autoimmun., 2010, 34(3), J220-J225.
[8]
Celaj, S.; Gleeson, M.W.; Deng, J.; O’Toole, G.A.; Hampton, T.H.; Toft, M.F.; Morrison, H.G.; Sogin, M.L.; Putra, J.; Suriawinata, A.A. The microbiota regulates susceptibility to Fas-mediated acute hepatic injury. Lab. Invest., 2014, 94(9), 938-949.
[9]
Schnabl, B.; Brenner, D.A. Interactions between the intestinal microbiome and liver diseases. Gastroenterology, 2014, 146(6), 1513-1524.
[10]
Wu, X.; Sun, R.; Chen, Y.; Zheng, X.; Bai, L.; Lian, Z.; Wei, H.; Tian, Z. Oral ampicillin inhibits liver regeneration by breaking hepatic innate immune tolerance normally maintained by gut commensal bacteria. Hepatology, 2015, 62(1), 253-264.
[11]
Antunes, L.C.; Han, J.; Ferreira, R.B.; Lolić, P.; Borchers, C.H.; Finlay, B.B. Effect of antibiotic treatment on the intestinal metabolome. Antimicrob. Agents Chemother., 2011, 55(4), 1494-1503.
[12]
Antonopoulos, D.A.; Huse, S.M.; Morrison, H.G.; Schmidt, T.M.; Sogin, M.L.; Young, V.B. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Gut Microbes, 2010, 77(4), 2367-2375.
[13]
Szklarczyk, D.; Franceschini, A.; Kuhn, M.; Simonovic, M.; Roth, A.; Minguez, P.; Doerks, T.; Stark, M.; Muller, J.; Bork, P. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res., 2011, 39(Database issue), 561-568.
[14]
Thomas, P.D.; Kejariwal, A.; Campbell, M.J.; Mi, H.; Diemer, K.; Guo, N.; Ladunga, I.; Ulitskylazareva, B.; Muruganujan, A.; Rabkin, S. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res., 2003, 31(1), 334-341.
[15]
Sviridov, D.; Louise Pyle, A.; Fidge, N. Identification of a sequence of apolipoprotein A-I associated with the efflux of intracellular cholesterol to human serum and apolipoprotein A-I containing particles†. Biochemistry, 1996, 35(1), 189.
[16]
Luk, J.M.; Lam, C.T.; Siu, A.F.; Lam, B.Y.; Ng, I.O.; Hu, M.Y.; Che, C.M.; Fan, S.T. Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics, 2006, 6(3), 1049-1057.
[17]
Sunden, S.L.; Renduchintala, M.S.; Park, E.I.; Miklasz, S.D.; Garrow, T.A. Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch. Biochem. Biophys., 1997, 345(1), 171-174.
[18]
Renes, J.; Mariman, E. Application of proteomics technology in adipocyte biology. Mol. BioSys., 2013, 9(6), 1076-1091.
[19]
Ivanov, I.I. Frutos, Rde, L.; Manel, N.; Yoshinaga, K.; Rifkin, D.B.; Sartor, R.B.; Finlay, B.B.; Littman, D.R. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe, 2008, 4(4), 337-349.
[20]
Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G.; Yamasaki, S.; Saito, T.; Ohba, Y. Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 2011, 331(6015), 337-341.
[21]
Fuhrer, A.; Sprenger, N.; Kurakevich, E.; Borsig, L.; Chassard, C.; Hennet, T. Milk sialyllactose influences colitis in mice through selective intestinal bacterial colonization. J. Exp. Med., 2010, 207(13), 2843.
[22]
Berer, K.; Mues, M.; Koutrolos, M.; Rasbi, Z.A.; Boziki, M.; Johner, C.; Wekerle, H.; Krishnamoorthy, G. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature, 2011, 479(7374), 538.
[23]
Mouzaki, M.; Comelli, E.M.; Arendt, B.M.; Bonengel, J.; Fung, S.K.; Fischer, S.E.; Mcgilvray, I.D.; Allard, J.P. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology, 2013, 58(1), 120-127.
[24]
Sandler, N.G.; Koh, C.; Roque, A.; Eccleston, J.L.; Siegel, R.B.; Demino, M.; Kleiner, D.E.; Deeks, S.G.; Liang, T.J.; Heller, T. Host response to translocated microbial products predicts outcomes of patients with HBV or HCV infection. Gastroenterol., 2011, 141(4), 1220-1230.e3.
[25]
French, S.W. Mechanisms of alcoholic liver injury. Can. J. Gastroenterol., 2000, 14(4), 327-332.
[26]
Dong, Z.; Wei, H.; Sun, R.; Tian, Z. The roles of innate immune cells in liver injury and regeneration. Cell. Mol. Immunol., 2007, 4(4), 241-252.
[27]
Li, Y.T.; Li, W.; Yu, C.; Chen, Y.B.; Wang, H.Y.; Wu, Z.W.; Li, L.J. Effects of gut microflora on hepatic damage after acute liver injury in rats. J. Trauma, 2010, 68(1), 76.
[28]
Zhang, Z.; Zhai, H.; Geng, J.; Yu, R.; Ren, H.; Fan, H.; Shi, P. Large-scale survey of gut microbiota associated with MHE via 16S rRNA-based pyrosequencing. Am. J. Gastroenterol., 2013, 108(10), 1601-1611.
[29]
Workman, P.; Burrows, F.; Neckers, L.; Rosen, N. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. N. Y. Acad. Sci., 2007, 1113(1), 202-216.
[30]
Li, G.; Cai, M.; Fu, D.; Chen, K.; Sun, M.; Cai, Z.; Cheng, B. Heat shock protein 90B1 plays an oncogenic role and is a target of microRNA-223 in human osteosarcoma. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol., 2012, 30(6), 1481-1490.
[31]
Cawthorn, T.R.; Moreno, J.C.; Dharsee, M.; Tran-Thanh, D.; Ackloo, S.; Zhu, P.H.; Sardana, G.; Chen, J.; Kupchak, P.; Jacks, L.M. Proteomic analyses reveal high expression of decorin and endoplasmin (HSP90B1) are associated with breast cancer metastasis and decreased survival. PLoS One, 2012, 7(2), e30992.
[32]
Zhu, X.D.; Li, C.L.; Lang, Z.W.; Gao, G.F. Significant correlation between expression level of HSP gp96 and progression of hepatitis B virus induced diseases. World J. Gastroenterol., 2004, 10(8), 1141-1145.
[33]
Mckeever, M.P.; Weir, D.G.; Molloy, A.; Scott, J.M. Betaine-homocysteine methyltransferase: organ distribution in man, pig and rat and subcellular distribution in the rat. Clin. Sci. , 1991, 81(4), 551-556.
[34]
Pellanda, H. Betaine homocysteine methyltransferase (BHMT)-dependent remethylation pathway in human healthy and tumoral liver. Clin. Chem. Lab. Med., 2013, 51(3), 617-621.
[35]
Antoine, D.J.; Dear, J.W.; Starkey, L.P.; Vivien, P.; Judy, C.; Moyra, M.; Thanacoody, R.H.; Gray, A.J.; Webb, D.J.; Moggs, J.G. Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology, 2013, 58(2), 777-787.
[36]
Ma, H.; Ning, J.; Jin, X.; Mao, C.; Bu, X.; Wang, M.; Liu, H.; Wang, K.; Lausted, C.; Hood, L. Betaine Homocysteine Methyltransferase (BHMT) as a specific and sensitive blood marker for acute liver injury. Biomarkers, 2014, 19(7), 578-584.
[37]
Shinohara, M.; Ji, C.N. Differences in betaine-homocysteine methyltransferase expression, endoplasmic reticulum stress response, and liver injury between alcohol-fed mice and rats. Hepatology, 2010, 51(3), 796-805.
[38]
Norton, P.A.; Gong, Q.; Mehta, A.S.; Lu, X.; Block, T.M. Hepatitis B virus-mediated changes of apolipoprotein mRNA abundance in cultured hepatoma cells. J. Virol., 2003, 77(9), 5503-5506.
[39]
Wang, P.; Mai, C.; Wei, Y.L.; Zhao, J.J.; Hu, Y.M.; Zeng, Z.L.; Yang, J.; Lu, W.H.; Xu, R.H.; Huang, P. Decreased expression of the mitochondrial metabolic enzyme aconitase (ACO2) is associated with poor prognosis in gastric cancer. Med. Oncol., 2013, 30(2), 1-9.
[40]
Edgar, A.J.; Polak, J.M. Molecular cloning of the human and murine 2-amino-3-ketobutyrate coenzyme A ligase cDNAs. FEBS J., 2010, 267(6), 1805-1812.
[41]
Fujii, H. Nuclear translocation of 2-amino-3-ketobutyrate coenzyme a ligase by cold and osmotic stress. Cell Stress Chaperones, 2007, 12(2), 186-191.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy