The Unprecedented Role of Gold Nanomaterial in Diabetes Management

Author(s): Simpal Kumari*, Vipan Kumar Kamboj, Diksha Rajpoot, Anil Kumar Teotia, Prabhakar Kumar Verma, Gyanendra Nath Singh

Journal Name: Recent Patents on Drug Delivery & Formulation

Volume 13 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Gold nanoparticles possess unique mechanical, chemical, photo-optical and biological properties and have been an interesting field of research on life sciences. The research studies produced new nanodevices and nanotechnology-based biosensing, diagnostics therapeutics, and targeted drug delivery systems. In this review, the unique potential aspects of gold nanoparticles/ nanoformulations/ or devices related to diabetes management have been discussed together with the recent patent on the gold nanoparticles developed for diabetes management. The first part of this review will focus on recent strategies for the treatment of hyperglycemia and its management with the help of gold nanoparticles and the second part of the review focused on recent patents on gold nanoparticles useful in the diabetes management. Gold nanoparticles have proved themselves useful in diabetes therapeutics and diagnostics. Due to the high surface area, and low toxicity, gold nanoparticles have become a unique aspect of the delivery approach. The main issues that need to be covered are the biopharmaceutics, biocompatibility, and potential clinical applications.

Keywords: Gold nanoparticles, diabetes, nanomedicine, nanodevices, gene delivery, patents.

[1]
American Diabetes Association. Standards of medical care in diabetes- 2014. Diabetes Care 2014; 37: S14-80.
[http://dx.doi.org/10.2337/dc14-S014] [PMID: 24357209]
[2]
Maiti R, Jana D, Das UK, Ghosh D. Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats. J Ethnopharmacol 2004; 92(1): 85-91.
[http://dx.doi.org/10.1016/j.jep.2004.02.002] [PMID: 15099853]
[3]
Dabelea D. The accelerating epidemic of childhood diabetes. Lancet 2009; 373(9680): 1999-2000.
[http://dx.doi.org/10.1016/S0140-6736(09)60874-6] [PMID: 19481250]
[4]
Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011; 94: 311-21.
[5]
Tiwari P. Recent trends in therapeutic approaches for diabetes management: A comprehensive update. J Diabetes Res 2015; 2015 340838
[http://dx.doi.org/10.1155/2015/340838] [PMID: 26273667]
[6]
McKinlay J, Marceau L. US public health and the 21st century: Diabetes mellitus. Lancet 2000; 356(9231): 757-61.
[http://dx.doi.org/10.1016/S0140-6736(00)02641-6] [PMID: 11085708]
[7]
Chaudhury A, Duvoor C, Dendi VS, et al. Clinical review of antidiabetic drugs: Implication for type 2 diabetes mellitus management. Front Endocrinol 2017; 8(6): 1-12.
[http://dx.doi.org/10.3389/fendo.2017.00006]
[8]
Rezaei-kelishadi M, Nuri M, Erfani Z, Palizban A, Parandin R. Control, Management and treatment of diabetes using modern drug delivery systems and special properties of nanoparticles. J Biol Todays World 2014; 3(9): 206-11.
[9]
Woldu MA, Lenjisa JL. Nanoparticles and the new era in diabetes management. Int J Basic Clin Pharmacol 2014; 2: 277-84.
[http://dx.doi.org/10.5455/2319-2003.ijbcp20140405]
[10]
Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: An immense hope for diabetics. Drug Deliv 2016; 23(7): 2371-90.
[PMID: 25544604]
[11]
Kamboj VK, Verma PK. Palmitic acid-pluronic F127-palmitic acid penta-block copolymer as a novel nanocarrier for oral delivery of glipizide. Turkish J Pharm Sci 2019; 16(3): 1-21.
[http://dx.doi.org/10.4274/tjps.20082]
[12]
DiSanto RM, Subramanian V, Gu Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(4): 548-64.
[http://dx.doi.org/10.1002/wnan.1329] [PMID: 25641955]
[13]
Si S, Pal A, Mohanta J, Satapathy SS. Gold nanostructure materials in diabetes management. J Phys D Appl Phys 2017; 50(13) 134003
[http://dx.doi.org/10.1088/1361-6463/aa5e21]
[14]
Chen PC, Mwakwari SC, Oyelere AK. Gold nanoparticles: From nanomedicine to nanosensing. Nanotechnol Sci Appl 2008; 1: 45-65.
[http://dx.doi.org/10.2147/NSA.S3707] [PMID: 24198460]
[15]
Choi JY. Anti-cancer drug targeting cancer cells using gold nanoparticle and a method for manufacturing the same. KR1020100040065 (2010).
[16]
Praveen N, Thoniyot P, Olivo M. A nanoprobe comprising gold colloid nanoparticles for multimodality optical imaging of cancer and targeted drug delivery for cancer. SG189034 (2013)
[17]
Brandau W, Fischler M, Jahnen-Dechent W, Leifert A, Neuss-Stein S, Pan Y. Treatment of diseases with nanoparticles having a size-dependent cytotoxicity. US20080241258 (2008).
[18]
Legname GA, Krol S, Sousa MFC. F.C. Gold nanoparticles coated with polyelectrolytes and albumin. US20110262546 (2011).
[19]
Aras, O., Fleiter, T., Jeudy, J., Daniel, M.C. Gold nanoparticle imaging agents and uses thereof. US20110110858 (2011).
[20]
Vinhas R, Cordeiro M, Carlos FF, et al. Gold nanoparticle-based theranostics: Disease diagnostics and treatment using a single nanomaterial. Nanobiosen Dis Diagnos 2015; 4: 11-23.
[21]
Edrees HM, Elbehiry A, Elmosaad YM. Hypoglycemic and anti-inflammatory effect of gold nanoparticles in streptozotocin-induced type 1 diabetes in experimental rats. Int J Diabetes Res 2017; 1: 16-23.
[22]
Opris R, Tatomir C, Olteanu D, et al. The effect of Sambucus nigra L. extract and phytosinthesized gold nanoparticles on diabetic rats. Colloids Surf B Biointerfaces 2017; 150: 192-200.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.033] [PMID: 27914256]
[23]
Sathish KSR, Bhaskara RKV. Postprandial anti-hyperglycemic activity of marine Streptomyces coelicoflavus SRBVIT13 mediated gold nanoparticles in streptozotocin induced diabetic male albino Wister rats. IET Nanobiotechnol 2016; 10(5): 308-14.
[http://dx.doi.org/10.1049/iet-nbt.2015.0094] [PMID: 27676379]
[24]
Chockalingam S, Thada R, Dhandapani RK, Panchamoorthy R. Biogenesis, characterization, and the effect of vicenin-gold nanoparticles on glucose utilization in 3T3-L1 adipocytes: A bioinformatic approach to illuminate its interaction with PTP 1B and AMPK. Biotechnol Prog 2015; 31(4): 1096-106.
[http://dx.doi.org/10.1002/btpr.2112] [PMID: 26014104]
[25]
Barathmanikanth S, Kalishwaralal K, Sriram M, et al. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnology 2010; 8: 16.
[http://dx.doi.org/10.1186/1477-3155-8-16] [PMID: 20630072]
[26]
Karthick V, Kumar VG, Dhas TS, Singaravelu G, Sadiq AM, Govindaraju K. Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats-an in vivo approach. Colloids Surf B Biointerfaces 2014; 122: 505-11.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.022] [PMID: 25092583]
[27]
Shilo M, Berenstein P, Dreifuss T, et al. Insulin-coated gold nanoparticles as a new concept for personalized and adjustable glucose regulation. Nanoscale 2015; 7(48): 20489-96.
[http://dx.doi.org/10.1039/C5NR04881H] [PMID: 26583784]
[28]
Kumar VG, Gokavarapu SD, Rajeswari A, et al. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids Surf B Biointerfaces 2011; 87(1): 159-63.
[http://dx.doi.org/10.1016/j.colsurfb.2011.05.016] [PMID: 21640563]
[29]
Venkatachalam M, Govindaraju K, Mohamed SA, Tamilselvan S, Ganesh KV, Singaravelu G. Functionalization of gold nanoparticles as antidiabetic nanomaterial. Spectrochim Acta A Mol Biomol Spectrosc 2013; 116: 331-8.
[http://dx.doi.org/10.1016/j.saa.2013.07.038] [PMID: 23973575]
[30]
El-Naggar ME, Shaheen TI, Fouda MM, Hebeish AA. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles. Carbohydr Polym 2016; 136: 1128-36.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.003] [PMID: 26572455]
[31]
Shaheen TI, El-Naggar ME, Hussein JS, et al. Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomed Pharmacother 2016; 83: 865-75.
[http://dx.doi.org/10.1016/j.biopha.2016.07.052] [PMID: 27505864]
[32]
Devadasu VR, Alshammari TM, Aljofan M. Current advances in the utilization of nanotechnology for the diagnosis and treatment of diabetes. Int J Diabetes Dev Ctries 2018; 38: 11.
[http://dx.doi.org/10.1007/s13410-017-0558-1]
[33]
Zhang J, Hodge W, Hutnick C, Wang X. Noninvasive diagnostic devices for diabetes through measuring tear glucose. J Diabetes Sci Technol 2011; 5(1): 166-72.
[http://dx.doi.org/10.1177/193229681100500123] [PMID: 21303640]
[34]
Cash KJ, Clark HA. Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 2010; 16(12): 584-93.
[http://dx.doi.org/10.1016/j.molmed.2010.08.002] [PMID: 20869318]
[35]
Chirra HD, Biswal D, Hilt Z. Drug delivery nanoparticles formulation and characterization. USA: Informa Healthcare USA Inc. 2009; pp. 92-116.
[36]
Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 2009; 38(6): 1759-82.
[http://dx.doi.org/10.1039/b806051g] [PMID: 19587967]
[37]
Langer R, Tirrell DA. Designing materials for biology and medicine. Nature 2004; 428(6982): 487-92.
[http://dx.doi.org/10.1038/nature02388] [PMID: 15057821]
[38]
Nair PA, Sreenivasan K. Non enzymatic colorimetric detection of glucose using cyanophenyl boronic acid included β-cyclodextrin stabilized gold nanoparticles. Anal Methods 2016; 8: 2082-7.
[http://dx.doi.org/10.1039/C5AY02716K]
[39]
Xing RQ, Xu L, Zhu YS, et al. Three-dimensional ordered SnO2 inverse opals for superior formaldehyde gas-sensing performance. Sens Actuators B Chem 2013; 30(188): 235-41.
[http://dx.doi.org/10.1016/j.snb.2013.07.024]
[40]
Righettoni M, Tricoli A, Pratsinis SE. Si: WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal Chem 2010; 82(9): 3581-7.
[http://dx.doi.org/10.1021/ac902695n] [PMID: 20380475]
[41]
Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breathe volatile cancer markers. Chem Soc Rev 2014; 43(5): 1423-49.
[http://dx.doi.org/10.1039/C3CS60329F] [PMID: 24305596]
[42]
Xing R, Li Q, Xia L, et al. Au-modified three-dimensional In2O3 inverse opals: Synthesis and improved performance for acetone sensing toward diagnosis of diabetes. Nanoscale 2015; 7(30): 13051-60.
[http://dx.doi.org/10.1039/C5NR02709H] [PMID: 26172336]
[43]
Zhang W, Du Y, Wang ML. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase. Sens Biosensing Res 2015; 4: 96-102.
[http://dx.doi.org/10.1016/j.sbsr.2015.04.006]
[44]
Wangoo N, Swami A, Kaur S, Bansal K, Sharma RK. Development of a colloidal gold-based nanobioprobe for the detection of glycated albumin. Bionanoscience 2016; 6: 132-8.
[http://dx.doi.org/10.1007/s12668-016-0203-3]
[45]
Roohk HV, Zaidi AR. A review of glycated albumin as an intermediate glycation index for controlling diabetes. J Diabetes Sci Technol 2008; 2(6): 1114-21.
[http://dx.doi.org/10.1177/193229680800200620] [PMID: 19885300]
[46]
Sako T, Mori A, Lee P, et al. Diagnostic significance of serum glycated albumin in diabetic dogs. J Vet Diagn Invest 2008; 20(5): 634-8.
[http://dx.doi.org/10.1177/104063870802000517] [PMID: 18776099]
[47]
Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006; 22(1): 32-41.
[http://dx.doi.org/10.1021/la0513353] [PMID: 16378396]
[48]
Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 2010; 25(5): 1070-4.
[http://dx.doi.org/10.1016/j.bios.2009.09.024] [PMID: 19883999]
[49]
Zeng X, Li X, Xing L, et al. Electrodeposition of chitosan-ionic liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing. Biosens Bioelectron 2009; 24(9): 2898-903.
[http://dx.doi.org/10.1016/j.bios.2009.02.027] [PMID: 19321335]
[50]
Luo XL, Xu JJ, Du Y, Chen HY. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. Anal Biochem 2004; 334(2): 284-9.
[http://dx.doi.org/10.1016/j.ab.2004.07.005] [PMID: 15494135]
[51]
Wu BY, Hou SH, Yin F, et al. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens Bioelectron 2007; 22(6): 838-44.
[http://dx.doi.org/10.1016/j.bios.2006.03.009] [PMID: 16675215]
[52]
Wang H, Wang X, Zhang X, et al. A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens Bioelectron 2009; 25(1): 142-6.
[http://dx.doi.org/10.1016/j.bios.2009.06.022] [PMID: 19595586]
[53]
Wang Y, Wei WZ, Liu XY, Zeng XD. Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique. Mater Sci Eng C 2009; 29: 50-4.
[http://dx.doi.org/10.1016/j.msec.2008.05.005]
[54]
Rink JS, McMahon KM, Chen X, Mirkin CA, Thaxton CS, Kaufman DB. Transfection of pancreatic islets using polyvalent DNA-functionalized gold nanoparticles. Surgery 2010; 148(2): 335-45.
[http://dx.doi.org/10.1016/j.surg.2010.05.013] [PMID: 20633730]
[55]
Vega RA, Wang Y, Harvat T, et al. Modified gold nanoparticle vectors: A biocompatible intracellular delivery system for pancreatic islet cell transplantation. Surgery 2010; 148(4): 858-65.
[http://dx.doi.org/10.1016/j.surg.2010.07.036] [PMID: 20800254]
[56]
Arifin DR, Long CM, Gilad AA, et al. Trimodal gadolinium-gold microcapsules containing pancreatic islet cells restore normoglycemia in diabetic mice and can be tracked by using US, CT, and positive-contrast MR imaging. Radiology 2011; 260(3): 790-8.
[http://dx.doi.org/10.1148/radiol.11101608] [PMID: 21734156]
[57]
Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2(1): 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[58]
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[59]
Joshi HM, Bhumkar DR, Joshi K, Pokharkar V, Sastry M. Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir 2006; 22(1): 300-5.
[http://dx.doi.org/10.1021/la051982u] [PMID: 16378435]
[60]
Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 2007; 24(8): 1415-26.
[http://dx.doi.org/10.1007/s11095-007-9257-9] [PMID: 17380266]
[61]
Cho HJ, Oh J, Choo MK, Ha JI, Park Y, Maeng HJ. Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. Int J Biol Macromol 2014; 63: 15-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.10.026] [PMID: 24444886]
[62]
Ehsan O, Qadir MI, Malik SA, Abbasi WS, Ahmad B. Efficacy of nanogold-insulin as a hypoglycemic agent. J Chem Soc Pak 2012; 34: 365-70.
[63]
Ferreira GK, Cardoso E, Vuolo FS, et al. Gold nanoparticles alter parameters of oxidative stress and energy metabolism in organs of adult rats. Biochem Cell Biol 2015; 93(6): 548-57.
[http://dx.doi.org/10.1139/bcb-2015-0030] [PMID: 26583437]
[64]
Sengani M, Devirajeswari R. Identification of potential antioxidant indices by biogenic gold nanoparticles in hyperglycemic Wistar rats. Environ Toxicol Pharmacol 2017; 50: 11-9.
[http://dx.doi.org/10.1016/j.etap.2017.01.007] [PMID: 28110133]
[65]
Selim ME, Abd-Elhakim YM, Al-Ayadhi LY. Pancreatic response to gold nanoparticles includes decrease of oxidative stress and inflammation in autistic diabetic model. Cell Physiol Biochem 2015; 35(2): 586-600.
[http://dx.doi.org/10.1159/000369721] [PMID: 25612738]
[66]
Negahdary M, Chelongar R, Zadeh SK, Ajdary M. The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition. Adv Biomed Res 2015; 4: 69.
[http://dx.doi.org/10.4103/2277-9175.153893] [PMID: 25878994]
[67]
Rademacher T, Williams P. Nanoparticle-insulin and insulin analogue compositions. WO2015114341 (2015).
[68]
Chou PT, Liu CL, Chien YC. Insulin-gold nanocluster, pharmaceutical composition for reducing blood glucose comprising the same, and method for detecting adipose cells in tissue by using the same. US8580731 (2013).
[69]
Constantin-Teodosiu D, Fahmi AW, Adams G. Insulin stabilized nanoparticles. WO2010116185 (2010).
[70]
Williams P, Rademacher T. Permeation enhanced active-carrying nanoparticles. WO2014122444 (2014).
[71]
Zhang W, Wang ML. Saliva glucose monitoring system. US9244035 (2016).
[72]
Kawde ANMA, Aziz MA. Cathodized gold nanoparticle graphite pencil electrode and method for glucose detection. US20150090601 (2015).
[73]
Rademacher, T., Williams, P., Bachmann, C., Barrientos, A.G., Dominguez, E.T., Menoyo, J.C. Peptide-carrying nanoparticles. US8568781 (2013).
[74]
Rademacher T, Williams P, Bachmann C, Barrientos AG, Dominguez ET, Menoyo JC. Nanoparticle peptide compositions. US9114082 (2013)
[75]
Rademacher T, Williams P. Nanoparticle peptide compositions. US9114082 (2015)


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 3
Year: 2019
Page: [219 - 227]
Pages: 9
DOI: 10.2174/1871526518666181114165352
Price: $58

Article Metrics

PDF: 23
HTML: 3
EPUB: 1
PRC: 1