Use of Hemoglobin for Delivering Exogenous Carbon Monoxide in Medicinal Applications

Author(s): Kazuaki Taguchi*, Toru Maruyama, Masaki Otagiri

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 18 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Carbon Monoxide (CO), at low concentrations, can have a variety of positive effects on the body including anti-apoptosis, anti-inflammatory, anti-oxidative and anti-proliferative effects. Although CO has great potential for use as a potent medical bioactive gas, for it to exist in the body in stable form, it must be associated with a carrier. Hemoglobin (Hb) represents a promising material for use as a CO carrier because most of the total CO in the body is stored associated with Hb in red blood cells (RBC). Attempts have been made to develop an Hb-based CO carrying system using RBC and Hb-based artificial oxygen carriers. Some of these have been reported to be safe and to have therapeutic value as a CO donor in preclinical and clinical studies. In the present review, we overview the potential of RBC and Hb-based artificial oxygen carriers as CO carriers based on the currently available literature evidence for their use in pharmaceutical therapy against intractable disorders.

Keywords: Hemoglobin, carbon monoxide, red blood cell, hemoglobin-based oxygen carriers, anti-proliferative effects, anti-apoptosis.

[1]
Weaver, L.K. Clinical practice. Carbon monoxide poisoning. N. Engl. J. Med., 2009, 360(12), 1217-1225.
[http://dx.doi.org/10.1056/NEJMcp0808891] [PMID: 19297574]
[2]
Ng, P.C.Y.; Long, B.; Koyfman, A. Clinical chameleons: an emergency medicine focused review of carbon monoxide poisoning. Intern. Emerg. Med., 2018, 13(2), 223-229.
[http://dx.doi.org/10.1007/s11739-018-1798-x] [PMID: 29435715]
[3]
Rose, J.J.; Wang, L.; Xu, Q.; McTiernan, C.F.; Shiva, S.; Tejero, J.; Gladwin, M.T. Carbon monoxide poisoning: Pathogenesis, management, and future directions of therapy. Am. J. Respir. Crit. Care Med., 2017, 195(5), 596-606.
[http://dx.doi.org/10.1164/rccm.201606-1275CI] [PMID: 27753502]
[4]
Wu, L.; Wang, R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol. Rev., 2005, 57(4), 585-630.
[http://dx.doi.org/10.1124/pr.57.4.3] [PMID: 16382109]
[5]
Coburn, R.F. The carbon monoxide body stores. Ann. N. Y. Acad. Sci., 1970, 174(1), 11-22.
[http://dx.doi.org/10.1111/j.1749-6632.1970.tb49768.x] [PMID: 4943970]
[6]
Coburn, R.F.; Williams, W.J.; Forster, R.E. Effect of erythrocyte destruction on carbon monoxide production in man. J. Clin. Invest., 1964, 43, 1098-1103.
[http://dx.doi.org/10.1172/JCI104994] [PMID: 14171787]
[7]
Rattan, S.; Chakder, S. Inhibitory effect of CO on internal anal sphincter: heme oxygenase inhibitor inhibits NANC relaxation. Am. J. Physiol., 1993, 265(4 Pt 1), G799-G804.
[PMID: 8238364]
[8]
Verma, A.; Hirsch, D.J.; Glatt, C.E.; Ronnett, G.V.; Snyder, S.H. Carbon monoxide: a putative neural messenger. Science, 1993, 259(5093), 381-384.
[http://dx.doi.org/10.1126/science.7678352] [PMID: 7678352]
[9]
Motterlini, R.; Otterbein, L.E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov., 2010, 9(9), 728-743.
[http://dx.doi.org/10.1038/nrd3228] [PMID: 20811383]
[10]
Naito, Y.; Uchiyama, K.; Takagi, T.; Yoshikawa, T. Therapeutic potential of carbon monoxide (CO) for intestinal inflammation. Curr. Med. Chem., 2012, 19(1), 70-76.
[http://dx.doi.org/10.2174/092986712803413935] [PMID: 22300078]
[11]
Stupfel, M.; Bouley, G. Physiological and biochemical effects on rats and mice exposed to small concentrations of carbon monoxide for long periods. Ann. N. Y. Acad. Sci., 1970, 174(1), 342-368.
[http://dx.doi.org/10.1111/j.1749-6632.1970.tb49799.x] [PMID: 5289610]
[12]
Otterbein, L.E.; Choi, A.M. Heme oxygenase: colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol., 2000, 279(6), L1029-L1037.
[http://dx.doi.org/10.1152/ajplung.2000.279.6.L1029] [PMID: 11076792]
[13]
Motterlini, R.; Clark, J.E.; Foresti, R.; Sarathchandra, P.; Mann, B.E.; Green, C.J. Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ. Res., 2002, 90(2), E17-E24.
[http://dx.doi.org/10.1161/hh0202.104530] [PMID: 11834719]
[14]
Ji, X.; Damera, K.; Zheng, Y.; Yu, B.; Otterbein, L.E.; Wang, B. Toward carbon monoxide-based therapeutics: Critical drug delivery and developability issues. J. Pharm. Sci., 2016, 105(2), 406-416.
[http://dx.doi.org/10.1016/j.xphs.2015.10.018] [PMID: 26869408]
[15]
Yan, B-Z.; Yang, B-S.; Li, H.; Zhang, Y-F.; Pei, F-H.; Zhu, A-C.; Wang, X-R.; Liu, B-R. The therapeutic effect of CORM-3 on acute liver failure induced by lipopolysaccharide/D-galactosamine in mice. HBPD INT, 2016, 15(1), 73-80.
[http://dx.doi.org/10.1016/S1499-3872(15)60044-3] [PMID: 26818546]
[16]
Ohtsuka, T.; Kaseda, K.; Shigenobu, T.; Hato, T.; Kamiyama, I.; Goto, T.; Kohno, M.; Shimoda, M. Carbon monoxide-releasing molecule attenuates allograft airway rejection. Transpl. Int., 2014, 27(7), 741-747.
[http://dx.doi.org/10.1111/tri.12314] [PMID: 24628975]
[17]
Clark, J.E.; Naughton, P.; Shurey, S.; Green, C.J.; Johnson, T.R.; Mann, B.E.; Foresti, R.; Motterlini, R. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ. Res., 2003, 93(2), e2-e8.
[http://dx.doi.org/10.1161/01.RES.0000084381.86567.08] [PMID: 12842916]
[18]
Zhang, S.; Zheng, S.; Wang, X.; Shi, Q.; Wang, X.; Yuan, S.; Wang, G.; Ji, Z. Carbon monoxide-releasing molecule-2 reduces intestinal epithelial tight-junction damage and mortality in septic rats. PLoS One, 2015, 10(12)e0145988
[http://dx.doi.org/10.1371/journal.pone.0145988] [PMID: 26720630]
[19]
Ferrándiz, M.L.; Maicas, N.; Garcia-Arnandis, I.; Terencio, M.C.; Motterlini, R.; Devesa, I.; Joosten, L.A.B.; van den Berg, W.B.; Alcaraz, M.J. Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation and erosion in murine collagen-induced arthritis. Ann. Rheum. Dis., 2008, 67(9), 1211-1217.
[http://dx.doi.org/10.1136/ard.2007.082412] [PMID: 18063671]
[20]
Abeyrathna, N.; Washington, K.; Bashur, C.; Liao, Y. Nonmetallic carbon monoxide releasing molecules (CORMs). Org. Biomol. Chem., 2017, 15(41), 8692-8699.
[http://dx.doi.org/10.1039/C7OB01674C] [PMID: 28948260]
[21]
Ling, K.; Men, F.; Wang, W-C.; Zhou, Y-Q.; Zhang, H-W.; Ye, D-W. Carbon monoxide and its controlled release: Therapeutic application, detection, and development of Carbon Monoxide Releasing Molecules (CORMs). J. Med. Chem., 2018, 61(7), 2611-2635.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01153] [PMID: 28876065]
[22]
Wang, D.; Viennois, E.; Ji, K.; Damera, K.; Draganov, A.; Zheng, Y.; Dai, C.; Merlin, D.; Wang, B. A click-and-release approach to CO prodrugs. Chem. Commun. (Camb.), 2014, 50(100), 15890-15893.
[http://dx.doi.org/10.1039/C4CC07748B] [PMID: 25376496]
[23]
Ji, X.; De La Cruz, L.K.C.; Pan, Z.; Chittavong, V.; Wang, B. pH-Sensitive metal-free carbon monoxide prodrugs with tunable and predictable release rates. Chem. Commun. (Camb.), 2017, 53(69), 9628-9631.
[http://dx.doi.org/10.1039/C7CC04866A] [PMID: 28809970]
[24]
Ji, X.; Ji, K.; Chittavong, V.; Yu, B.; Pan, Z.; Wang, B. An esterase-activated click and release approach to metal-free CO-prodrugs. Chem. Commun. (Camb.), 2017, 53(59), 8296-8299.
[http://dx.doi.org/10.1039/C7CC03832A] [PMID: 28685779]
[25]
Pan, Z.; Chittavong, V.; Li, W.; Zhang, J.; Ji, K.; Zhu, M.; Ji, X.; Wang, B.; Organic, C.O. Organic CO prodrugs: Structure-CO-release rate relationship studies. Chemistry, 2017, 23(41), 9838-9845.
[http://dx.doi.org/10.1002/chem.201700936] [PMID: 28544290]
[26]
Kueh, J.T.B.; Stanley, N.J.; Hewitt, R.J.; Woods, L.M.; Larsen, L.; Harrison, J.C.; Rennison, D.; Brimble, M.A.; Sammut, I.A.; Larsen, D.S. Norborn-2-en-7-ones as physiologically-triggered carbon monoxide-releasing prodrugs. Chem. Sci. (Camb.), 2017, 8(8), 5454-5459.
[http://dx.doi.org/10.1039/C7SC01647F] [PMID: 28970925]
[27]
Wollborn, J.; Hermann, C.; Goebel, U.; Merget, B.; Wunder, C.; Maier, S.; Schäfer, T.; Heuler, D.; Müller-Buschbaum, K.; Buerkle, H.; Meinel, L.; Schick, M.A.; Steiger, C. Overcoming safety challenges in CO therapy - Extracorporeal CO delivery under precise feedback control of systemic carboxyhemoglobin levels. J. Control. Release, 2018, 279, 336-344.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.017] [PMID: 29655987]
[28]
Steiger, C.; Uchiyama, K.; Takagi, T.; Mizushima, K.; Higashimura, Y.; Gutmann, M.; Hermann, C.; Botov, S.; Schmalz, H-G.; Naito, Y.; Meinel, L. Prevention of colitis by controlled oral drug delivery of carbon monoxide. J. Control. Release, 2016, 239, 128-136.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.030] [PMID: 27578097]
[29]
Rochette, L.; Cottin, Y.; Zeller, M.; Vergely, C. Carbon monoxide: mechanisms of action and potential clinical implications. Pharmacol. Ther., 2013, 137(2), 133-152.
[http://dx.doi.org/10.1016/j.pharmthera.2012.09.007] [PMID: 23026155]
[30]
Gullotta, F.; di Masi, A.; Ascenzi, P. Carbon monoxide: an unusual drug. IUBMB Life, 2012, 64(5), 378-386.
[http://dx.doi.org/10.1002/iub.1015] [PMID: 22431507]
[31]
Steiger, C.; Hermann, C.; Meinel, L. Localized delivery of carbon monoxide. Eur. J. Pharm. Biopharm., 2017, 118, 3-12.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.002] [PMID: 27836646]
[32]
Thom, S.R. Carbon monoxide transport and actions in blood and tissues. Compr. Physiol., 2011, 1(1), 421-446.
[http://dx.doi.org/10.1002/cphy.c091005] [PMID: 23737180]
[33]
Knauert, M.; Vangala, S.; Haslip, M.; Lee, P.J. Therapeutic applications of carbon monoxide. Oxid. Med. Cell. Longev., 2013, 2013360815
[http://dx.doi.org/10.1155/2013/360815] [PMID: 24648866]
[34]
Omaye, S.T. Metabolic modulation of carbon monoxide toxicity. Toxicology, 2002, 180(2), 139-150.
[http://dx.doi.org/10.1016/S0300-483X(02)00387-6] [PMID: 12324190]
[35]
Ogaki, S.; Taguchi, K.; Maeda, H.; Watanabe, H.; Ishima, Y.; Otagiri, M.; Maruyama, T. Kupffer cell inactivation by carbon monoxide bound to red blood cells preserves hepatic cytochrome P450 via anti-oxidant and anti-inflammatory effects exerted through the HMGB1/TLR-4 pathway during resuscitation from hemorrhagic shock. Biochem. Pharmacol., 2015, 97(3), 310-319.
[http://dx.doi.org/10.1016/j.bcp.2015.07.035] [PMID: 26232728]
[36]
Taguchi, K.; Yamasaki, K.; Seo, H.; Otagiri, M. Potential use of biological proteins for liver failure therapy. Pharmaceutics, 2015, 7(3), 255-274.
[http://dx.doi.org/10.3390/pharmaceutics7030255] [PMID: 26404356]
[37]
Abuchowski, A. SANGUINATE (PEGylated Carboxyhemoglobin Bovine): Mechanism of action and clinical update. Artif. Organs, 2017, 41(4), 346-350.
[http://dx.doi.org/10.1111/aor.12934] [PMID: 28397407]
[38]
Taguchi, K.; Yamasaki, K.; Sakai, H.; Maruyama, T.; Otagiri, M. The use of hemoglobin vesicles for delivering medicinal gas for the treatment of intractable disorders. J. Pharm. Sci., 2017, 106(9), 2392-2400.
[http://dx.doi.org/10.1016/j.xphs.2017.04.006] [PMID: 28414143]
[39]
Coburn, R.F. Endogenous carbon monoxide production and body CO stores. Acta Med. Scand. Suppl., 1967, 472, 269-282.
[http://dx.doi.org/10.1111/j.0954-6820.1967.tb12633.x] [PMID: 5231568]
[40]
Coburn, R.F.; Forster, R.E.; Kane, P.B. Considerations of the physiological variables that determine the blood carboxyhemoglobin concentration in man. J. Clin. Invest., 1965, 44(11), 1899-1910.
[http://dx.doi.org/10.1172/JCI105296] [PMID: 5845666]
[41]
Edwards, M.; Cooper, J.S. Hyperbaric Treatment Of Thermal Burns Article, 2018. Available at: . https://www. statpearls.com/kb/viewarticle/23152/ (Acccessed Date: 28 June,2018)
[42]
Gandhi, J.; Seyam, O.; Smith, N.L.; Joshi, G.; Vatsia, S.; Khan, S.A. Clinical utility of hyperbaric oxygen therapy in genitourinary medicine. Med. Gas Res., 2018, 8(1), 29-33.
[http://dx.doi.org/10.4103/2045-9912.229601] [PMID: 29770194]
[43]
Patel, N.P.; Huang, J.H. Hyperbaric oxygen therapy of spinal cord injury. Med. Gas Res., 2017, 7(2), 133-143.
[http://dx.doi.org/10.4103/2045-9912.208520] [PMID: 28744367]
[44]
Hanley, M.E.; Cooper, J.S. Hyperbaric, central retinal artery occlusion, 2018. Available at: . https://www.statpearls.com/ kb/viewarticle/31601/ (Accessed Date: 28 June, 2018)
[45]
Gentile, M.A. Inhaled medical gases: more to breathe than oxygen. Respir. Care, 2011, 56(9), 1341-1357.
[http://dx.doi.org/10.4187/respcare.01442] [PMID: 21944684]
[46]
Tsui, T-Y.; Obed, A.; Siu, Y-T.; Yet, S-F.; Prantl, L.; Schlitt, H.J.; Fan, S-T. Carbon monoxide inhalation rescues mice from fulminant hepatitis through improving hepatic energy metabolism. Shock, 2007, 27(2), 165-171.
[http://dx.doi.org/10.1097/01.shk.0000239781.71516.61] [PMID: 17224791]
[47]
Hegazi, R.A.F.; Rao, K.N.; Mayle, A.; Sepulveda, A.R.; Otterbein, L.E.; Plevy, S.E. Carbon monoxide ameliorates chronic murine colitis through a heme oxygenase 1-dependent pathway. J. Exp. Med., 2005, 202(12), 1703-1713.
[http://dx.doi.org/10.1084/jem.20051047] [PMID: 16365149]
[48]
Abe, T.; Yazawa, K.; Fujino, M.; Imamura, R.; Hatayama, N.; Kakuta, Y.; Tsutahara, K.; Okumi, M.; Ichimaru, N.; Kaimori, J.Y.; Isaka, Y.; Seki, K.; Takahara, S.; Li, X-K.; Nonomura, N. High-pressure carbon monoxide preserves rat kidney grafts from apoptosis and inflammation. Lab. Invest., 2017, 97(4), 468-477.
[http://dx.doi.org/10.1038/labinvest.2016.157] [PMID: 28194034]
[49]
Nakahira, K.; Choi, A.M.K. Carbon monoxide in the treatment of sepsis. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 309(12), L1387-L1393.
[http://dx.doi.org/10.1152/ajplung.00311.2015] [PMID: 26498251]
[50]
Sahara, H.; Sekijima, M.; Ariyoshi, Y.; Kawai, A.; Miura, K.; Waki, S.; Nathan, L.; Tomita, Y.; Iwanaga, T.; Nakano, K.; Matsunari, H.; Date, H.; Nagashima, H.; Shimizu, A.; Yamada, K. Effects of carbon monoxide on early dysfunction and microangiopathy following GalT-KO porcine pulmonary xenotransplantation in cynomolgus monkeys. Xenotransplantation, 2018, 25(1)e12359
[http://dx.doi.org/10.1111/xen.12359] [PMID: 29067747]
[51]
Fredenburgh, L.E.; Kraft, B.D.; Hess, D.R.; Harris, R.S.; Wolf, M.A.; Suliman, H.B.; Roggli, V.L.; Davies, J.D.; Winkler, T.; Stenzler, A.; Baron, R.M.; Thompson, B.T.; Choi, A.M.K.; Welty-Wolf, K.E.; Piantadosi, C.A. Effects of inhaled CO administration on acute lung injury in baboons with pneumococcal pneumonia. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 309(8), L834-L846.
[http://dx.doi.org/10.1152/ajplung.00240.2015] [PMID: 26320156]
[52]
Stewart, R.D.; Peterson, J.E.; Baretta, E.D.; Bachand, R.T.; Hosko, M.J.; Herrmann, A.A. Experimental human exposure to carbon monoxide. Arch. Environ. Health, 1970, 21(2), 154-164.
[http://dx.doi.org/10.1080/00039896.1970.10667214] [PMID: 5430001]
[53]
Bathoorn, E.; Slebos, D-J.; Postma, D.S.; Koeter, G.H.; van Oosterhout, A.J.M.; van der Toorn, M.; Boezen, H.M.; Kerstjens, H.A.M. Anti-inflammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur. Respir. J., 2007, 30(6), 1131-1137.
[http://dx.doi.org/10.1183/09031936.00163206] [PMID: 17715164]
[54]
Chapman, J.T.; Otterbein, L.E.; Elias, J.A.; Choi, A.M. Carbon monoxide attenuates aeroallergen-induced inflammation in mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2001, 281(1), L209-L216.
[http://dx.doi.org/10.1152/ajplung.2001.281.1.L209] [PMID: 11404264]
[55]
Zhou, Z.; Song, R.; Fattman, C.L.; Greenhill, S.; Alber, S.; Oury, T.D.; Choi, A.M.K.; Morse, D. Carbon monoxide suppresses bleomycin-induced lung fibrosis. Am. J. Pathol., 2005, 166(1), 27-37.
[http://dx.doi.org/10.1016/S0002-9440(10)62229-8] [PMID: 15631997]
[56]
Rosas, I.O.; Goldberg, H.J.; Collard, H.R.; El-Chemaly, S.; Flaherty, K.; Hunninghake, G.M.; Lasky, J.A.; Lederer, D.J.; Machado, R.; Martinez, F.J.; Maurer, R.; Teller, D.; Noth, I.; Peters, E.; Raghu, G.; Garcia, J.G.N.; Choi, A.M.K. A Phase II clinical trial of low-dose inhaled carbon monoxide in idiopathic pulmonary fibrosis. Chest, 2018, 153(1), 94-104.
[http://dx.doi.org/10.1016/j.chest.2017.09.052] [PMID: 29100885]
[57]
Rosas, I.O.; Richards, T.J.; Konishi, K.; Zhang, Y.; Gibson, K.; Lokshin, A.E.; Lindell, K.O.; Cisneros, J.; Macdonald, S.D.; Pardo, A.; Sciurba, F.; Dauber, J.; Selman, M.; Gochuico, B.R.; Kaminski, N. MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med., 2008, 5(4)e93
[http://dx.doi.org/10.1371/journal.pmed.0050093] [PMID: 18447576]
[58]
Allan, P.F.; Bloom, B.B.; Wanek, S. Reversal of hemorrhagic shock-associated hepatic ischemia-reperfusion injury with N-acetylcysteine. Mil. Med., 2011, 176(3), 332-335.
[http://dx.doi.org/10.7205/MILMED-D-10-00272] [PMID: 21456363]
[59]
Cabrales, P.; Tsai, A.G.; Intaglietta, M. Hemorrhagic shock resuscitation with carbon monoxide saturated blood. Resuscitation, 2007, 72(2), 306-318.
[http://dx.doi.org/10.1016/j.resuscitation.2006.06.021] [PMID: 17092627]
[60]
Sakai, H.; Horinouchi, H.; Tsuchida, E.; Kobayashi, K. Hemoglobin vesicles and red blood cells as carriers of carbon monoxide prior to oxygen for resuscitation after hemorrhagic shock in a rat model. Shock, 2009, 31(5), 507-514.
[http://dx.doi.org/10.1097/SHK.0b013e318188f83d] [PMID: 18827742]
[61]
Liu, H.; Yu, S.; Peng, Y.; Chang, X.; Yu, X. The protective effects of carboxyhemoglobin during the resuscitation from hemorrhagic shock in rats. Oncotarget, 2017, 8(48), 83619-83625.
[http://dx.doi.org/10.18632/oncotarget.18768] [PMID: 29137368]
[62]
Ogaki, S.; Taguchi, K.; Watanabe, H.; Ishima, Y.; Otagiri, M.; Maruyama, T. Carbon monoxide-bound red blood cell resuscitation ameliorates hepatic injury induced by massive hemorrhage and red blood cell resuscitation via hepatic cytochrome P450 protection in hemorrhagic shock rats. J. Pharm. Sci., 2014, 103(7), 2199-2206.
[http://dx.doi.org/10.1002/jps.24029] [PMID: 24890462]
[63]
Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology, 2011, 283(2-3), 65-87.
[http://dx.doi.org/10.1016/j.tox.2011.03.001] [PMID: 21414382]
[64]
Ogaki, S.; Taguchi, K.; Watanabe, H.; Otagiri, M.; Maruyama, T. Carbon monoxide-bound red blood cells protect red blood cell transfusion-induced hepatic cytochrome P450 impairment in hemorrhagic-shock rats. Drug Metab. Dispos., 2013, 41(1), 141-148.
[http://dx.doi.org/10.1124/dmd.112.048744] [PMID: 23077106]
[65]
Keipert, P.E. Hemoglobin-Based Oxygen Carrier (HBOC) development in trauma: Previous regulatory challenges, lessons learned, and a path forward. Adv. Exp. Med. Biol., 2017, 977, 343-350.
[http://dx.doi.org/10.1007/978-3-319-55231-6_45] [PMID: 28685464]
[66]
Sakai, H.; Sou, K.; Horinouchi, H.; Kobayashi, K.; Tsuchida, E. Review of hemoglobin-vesicles as artificial oxygen carriers. Artif. Organs, 2009, 33(2), 139-145.
[http://dx.doi.org/10.1111/j.1525-1594.2008.00698.x] [PMID: 19178458]
[67]
Alayash, A.I. Hemoglobin-based blood substitutes and the treatment of sickle cell disease: More harm than help? Biomolecules, 2017, 7(1), 2.
[http://dx.doi.org/10.3390/biom7010002] [PMID: 28054978]
[68]
Seixas, F.A.; de Azevedo, W.F., Jr; Colombo, M.F. Crystallization and x-ray diffraction data analysis of human deoxyhaemoglobin A(0) fully stripped of any anions. Acta Crystallogr. D Biol. Crystallogr., 1999, 55(Pt 11), 1914-1916.
[http://dx.doi.org/10.1107/S0907444999009750] [PMID: 10531493]
[69]
Smarra, A.L.; Fadel, V.; Dellamano, M.; Olivieri, J.R.; de Azevedo, W.F., Jr; Bonilla-Rodriguez, G.O. Crystallization, preliminary X-ray diffraction analysis and Patterson search of oxyhaemoglobin I from the wolf (Chrysocyon brachiurus). Acta Crystallogr. D Biol. Crystallogr., 1999, 55(Pt 9), 1618-1619.
[http://dx.doi.org/10.1107/S0907444999009725] [PMID: 10489466]
[70]
Fadel, V.; Honda, R.T.; Dellamano, M.; Smarra, A.L.; Delatorre, P.; Olivieri, J.R.; Bonilla-Rodriguez, G.O.; de Azevedo, W.F., Jr Purification, crystallization and preliminary x-ray diffraction analysis of carboxyhaemoglobin-II from the fish Piaractus mesopotamicus (pacu). Acta Crystallogr. D Biol. Crystallogr., 2000, 56(Pt 3), 366-367.
[http://dx.doi.org/10.1107/S0907444900000585] [PMID: 10713529]
[71]
Smarra, A.L.; de Azevedo, W.F., Jr; Fadel, V.; Delatorre, P.; Dellamano, M.; Colombo, M.F.; Bonilla-Rodriguez, G.O. Purification, crystallization and preliminary X-ray analysis of haemoglobin I from the armoured catfish Liposarcus anisitsi. Acta Crystallogr. D Biol. Crystallogr., 2000, 56(Pt 4), 495-497.
[http://dx.doi.org/10.1107/S0907444900001724] [PMID: 10739931]
[72]
Taguchi, K.; Yamasaki, K.; Maruyama, T.; Otagiri, M. Comparison of the pharmacokinetic properties of hemoglobin-based oxygen carriers. J. Funct. Biomater., 2017, 8(1), 11.
[http://dx.doi.org/10.3390/jfb8010011] [PMID: 28335469]
[73]
Olofsson, C.; Ahl, T.; Johansson, T.; Larsson, S.; Nellgård, P.; Ponzer, S.; Fagrell, B.; Przybelski, R.; Keipert, P.; Winslow, N.; Winslow, R.M. A multicenter clinical study of the safety and activity of maleimide-polyethylene glycol-modified Hemoglobin (Hemospan) in patients undergoing major orthopedic surgery. Anesthesiology, 2006, 105(6), 1153-1163.
[http://dx.doi.org/10.1097/00000542-200612000-00015] [PMID: 17122578]
[74]
Björkholm, M.; Fagrell, B.; Przybelski, R.; Winslow, N.; Young, M.; Winslow, R.M. A phase I single blind clinical trial of a new oxygen transport agent (MP4), human hemoglobin modified with maleimide-activated polyethylene glycol. Haematologica, 2005, 90(4), 505-515.
[PMID: 15820947]
[75]
Natanson, C.; Kern, S.J.; Lurie, P.; Banks, S.M.; Wolfe, S.M. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA, 2008, 299(19), 2304-2312.
[http://dx.doi.org/10.1001/jama.299.19.jrv80007] [PMID: 18443023]
[76]
Vandegriff, K.D.; Young, M.A.; Lohman, J.; Bellelli, A.; Samaja, M.; Malavalli, A.; Winslow, R.M. CO-MP4, a polyethylene glycol-conjugated haemoglobin derivative and carbon monoxide carrier that reduces myocardial infarct size in rats. Br. J. Pharmacol., 2008, 154(8), 1649-1661.
[http://dx.doi.org/10.1038/bjp.2008.219] [PMID: 18536756]
[77]
Belcher, J.D.; Young, M.; Chen, C.; Nguyen, J.; Burhop, K.; Tran, P.; Vercellotti, G.M. MP4CO, a pegylated hemoglobin saturated with carbon monoxide, is a modulator of HO-1, inflammation, and vaso-occlusion in transgenic sickle mice. Blood, 2013, 122(15), 2757-2764.
[http://dx.doi.org/10.1182/blood-2013-02-486282] [PMID: 23908468]
[78]
Beutler, E. The effect of carbon monoxide on red cell life span in sickle cell disease. Blood, 1975, 46(2), 253-259.
[http://dx.doi.org/10.1182/blood.V46.2.253.253] [PMID: 237591]
[79]
Belcher, J.D.; Mahaseth, H.; Welch, T.E.; Otterbein, L.E.; Hebbel, R.P.; Vercellotti, G.M. Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice. J. Clin. Invest., 2006, 116(3), 808-816.
[http://dx.doi.org/10.1172/JCI26857] [PMID: 16485041]
[80]
Keipert, P.E. Clinical Evaluation of MP4CO: A Phase 1b escalating-dose, safety and tolerability study in stable adult patients with sickle cell disease. Adv. Exp. Med. Biol., 2016, 923, 23-29.
[http://dx.doi.org/10.1007/978-3-319-38810-6_3] [PMID: 27526120]
[81]
Misra, H.; Kazo, F.; Newmark, J.A. Toxicology and safety determination for a novel therapeutic dual carbon monoxide and oxygen delivery agent. J. Clin. Toxicol., 2014, 4(4)1000206
[http://dx.doi.org/10.4172/2161-0495.1000206]
[82]
Mullah, S.H.; Abutarboush, R.; Moon-Massat, P.F.; Saha, B.K.; Haque, A.; Walker, P.B.; Auker, C.R.; Arnaud, F.G.; McCarron, R.M.; Scultetus, A.H. Sanguinate’s effect on pial arterioles in healthy rats and cerebral oxygen tension after controlled cortical impact. Microvasc. Res., 2016, 107, 83-90.
[http://dx.doi.org/10.1016/j.mvr.2016.06.001] [PMID: 27287870]
[83]
Zhang, J.; Cao, S.; Kwansa, H.; Crafa, D.; Kibler, K.K.; Koehler, R.C. Transfusion of hemoglobin-based oxygen carriers in the carboxy state is beneficial during transient focal cerebral ischemia. J. Appl. Physiol., 2012, 113(11), 1709-1717.
[http://dx.doi.org/10.1152/japplphysiol.01079.2012] [PMID: 23042910]
[84]
Klaus, J.A.; Kibler, K.K.; Abuchowski, A.; Koehler, R.C. Early treatment of transient focal cerebral ischemia with bovine PEGylated carboxy hemoglobin transfusion. Artif. Cells Blood Substit. Immobil. Biotechnol., 2010, 38(5), 223-229.
[http://dx.doi.org/10.3109/10731199.2010.488635] [PMID: 20486873]
[85]
Cipolla, M.J.; Linfante, I.; Abuchowski, A.; Jubin, R.; Chan, S-L. Pharmacologically increasing collateral perfusion during acute stroke using a carboxyhemoglobin gas transfer agent (Sanguinate™) in spontaneously hypertensive rats. J. Cereb. Blood Flow Metab., 2018, 38(5), 755-766.
[http://dx.doi.org/10.1177/0271678X17705567] [PMID: 28436705]
[86]
Ananthakrishnan, R.; Li, Q.; O’Shea, K.M.; Quadri, N.; Wang, L.; Abuchowski, A.; Schmidt, A.M.; Ramasamy, R. Carbon monoxide form of PEGylated hemoglobin protects myocardium against ischemia/reperfusion injury in diabetic and normal mice. Artif. Cells Nanomed. Biotechnol., 2013, 41(6), 428-436.
[http://dx.doi.org/10.3109/21691401.2012.762370] [PMID: 23342967]
[87]
Nugent, W.H.; Cestero, R.F.; Ward, K.; Jubin, R.; Abuchowski, A.; Song, B.K. Effects of Sanguinate® on systemic and microcirculatory variables in a model of prolonged hemorrhagic shock. Shock, 2019, 52(1 Suppl 1), 108-115.
[http://dx.doi.org/10.1097/SHK.0000000000001082] [PMID: 29252939]
[88]
Misra, H.; Lickliter, J.; Kazo, F.; Abuchowski, A. PEGylated carboxyhemoglobin bovine (SANGUINATE): results of a phase I clinical trial. Artif. Organs, 2014, 38(8), 702-707.
[http://dx.doi.org/10.1111/aor.12341] [PMID: 25113835]
[89]
Misra, H.; Bainbridge, J.; Berryman, J.; Abuchowski, A.; Galvez, K.M.; Uribe, L.F.; Hernandez, A.L.; Sosa, N.R. A Phase Ib open label, randomized, safety study of SANGUINATE™ in patients with sickle cell anemia. Rev. Bras. Hematol. Hemoter., 2017, 39(1), 20-27.
[http://dx.doi.org/10.1016/j.bjhh.2016.08.004] [PMID: 28270341]
[90]
Abu Jawdeh, B.G.; Woodle, E.S.; Leino, A.D.; Brailey, P.; Tremblay, S.; Dorst, T.; Abdallah, M.H.; Govil, A.; Byczkowski, D.; Misra, H.; Abuchowski, A.; Alloway, R.R. A phase Ib, open-label, single arm study to assess the safety, pharmacokinetics, and impact on humoral sensitization of SANGUINATE infusion in patients with end-stage renal disease. Clin. Transplant., 2018, 32(1)e13155
[http://dx.doi.org/10.1111/ctr.13155] [PMID: 29140548]
[91]
Abuchowski, A. PEGylated Bovine Carboxyhemoglobin (SANGUINATE™): Results of clinical safety testing and use in patients. Adv. Exp. Med. Biol., 2016, 876, 461-467.
[http://dx.doi.org/10.1007/978-1-4939-3023-4_58] [PMID: 26782246]
[92]
Sam, C.; Desai, P.; Laber, D.; Patel, A.; Visweshwar, N.; Jaglal, M. Pegylated bovine carboxyhaemoglobin utilisation in a thrombotic thrombocytopenic purpura patient. Transfus. Med., 2017, 27(4), 300-302.
[http://dx.doi.org/10.1111/tme.12407] [PMID: 28401611]
[93]
Dhar, R.; Misra, H.; Diringer, M.N. SANGUINATE™ (PEGylated Carboxyhemoglobin Bovine) improves cerebral blood flow to vulnerable brain regions at risk of delayed cerebral ischemia after subarachnoid hemorrhage. Neurocrit. Care, 2017, 27(3), 341-349.
[http://dx.doi.org/10.1007/s12028-017-0418-3] [PMID: 28639001]
[94]
Li, T.; Yu, R.; Zhang, H-H.; Wang, H.; Liang, W-G.; Yang, X-M.; Yang, C-M. A method for purification and viral inactivation of human placenta hemoglobin. Artif. Cells Blood Substit. Immobil. Biotechnol., 2006, 34(2), 175-188.
[http://dx.doi.org/10.1080/10731190600580231] [PMID: 16537173]
[95]
Li, T.; Li, J.; Liu, J.; Zhang, P.; Wu, W.; Zhou, R.; Li, G.; Zhang, W.; Yi, M.; Huang, H. Polymerized placenta hemoglobin attenuates ischemia/reperfusion injury and restores the nitroso-redox balance in isolated rat heart. Free Radic. Biol. Med., 2009, 46(3), 397-405.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.10.042] [PMID: 19038330]
[96]
Wang, Q.; Hu, L.; Hu, Y.; Gong, G.; Tan, H.; Deng, L.; Sun, X.; Yi, X.; Sun, Y.; Wu, W.; Li, T. Carbon monoxide-saturated hemoglobin-based oxygen carriers attenuate high-altitude-induced cardiac injury by amelioration of the inflammation response and mitochondrial oxidative damage. Cardiology, 2017, 136(3), 180-191.
[http://dx.doi.org/10.1159/000448652] [PMID: 27728906]
[97]
Sakai, H. Overview of potential clinical applications of Hemoglobin Vesicles (HbV) as artificial red cells, evidenced by preclinical studies of the academic research consortium. J. Funct. Biomater., 2017, 8(1), 10.
[http://dx.doi.org/10.3390/jfb8010010] [PMID: 28294960]
[98]
Azuma, H.; Fujihara, M.; Sakai, H. Biocompatibility of HbV: liposome-encapsulated hemoglobin molecules-liposome effects on immune function. J. Funct. Biomater., 2017, 8(3), 24.
[http://dx.doi.org/10.3390/jfb8030024] [PMID: 28657582]
[99]
Taguchi, K.; Maruyama, T.; Otagiri, M. Pharmacokinetic properties of hemoglobin vesicles as a substitute for red blood cells. Drug Metab. Rev., 2011, 43(3), 362-373.
[http://dx.doi.org/10.3109/03602532.2011.558094] [PMID: 21428698]
[100]
Sakai, H.; Sato, A.; Sobolewski, P.; Takeoka, S.; Frangos, J.A.; Kobayashi, K.; Intaglietta, M.; Tsuchida, E. NO and CO binding profiles of hemoglobin vesicles as artificial oxygen carriers. Biochim. Biophys. Acta.Proteins Proteomics,, 2008, 1784, 1441-1447.
[http://dx.doi.org/10.1016/j.bbapap.2008.03.007]
[101]
Sakai, H.; Sato, A.; Masuda, K.; Takeoka, S.; Tsuchida, E. Encapsulation of concentrated hemoglobin solution in phospholipid vesicles retards the reaction with NO, but not CO, by intracellular diffusion barrier. J. Biol. Chem., 2008, 283(3), 1508-1517.
[http://dx.doi.org/10.1074/jbc.M707660200] [PMID: 18003613]
[102]
Nagao, S.; Taguchi, K.; Miyazaki, Y.; Wakayama, T.; Chuang, V.T.G.; Yamasaki, K.; Watanabe, H.; Sakai, H.; Otagiri, M.; Maruyama, T. Evaluation of a new type of nano-sized carbon monoxide donor on treating mice with experimentally induced colitis. J. Control. Release, 2016, 234, 49-58.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.016] [PMID: 27173944]
[103]
Nagao, S.; Taguchi, K.; Sakai, H.; Tanaka, R.; Horinouchi, H.; Watanabe, H.; Kobayashi, K.; Otagiri, M.; Maruyama, T. Carbon monoxide-bound hemoglobin-vesicles for the treatment of bleomycin-induced pulmonary fibrosis. Biomaterials, 2014, 35(24), 6553-6562.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.049] [PMID: 24811261]
[104]
Amara, N.; Goven, D.; Prost, F.; Muloway, R.; Crestani, B.; Boczkowski, J. NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFbeta1-induced fibroblast differentiation into myofibroblasts. Thorax, 2010, 65(8), 733-738.
[http://dx.doi.org/10.1136/thx.2009.113456] [PMID: 20685750]
[105]
Hecker, L.; Vittal, R.; Jones, T.; Jagirdar, R.; Luckhardt, T.R.; Horowitz, J.C.; Pennathur, S.; Martinez, F.J.; Thannickal, V.J. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat. Med., 2009, 15(9), 1077-1081.
[http://dx.doi.org/10.1038/nm.2005] [PMID: 19701206]
[106]
Boyko, E.J.; Koepsell, T.D.; Perera, D.R.; Inui, T.S. Risk of ulcerative colitis among former and current cigarette smokers. N. Engl. J. Med., 1987, 316(12), 707-710.
[http://dx.doi.org/10.1056/NEJM198703193161202] [PMID: 3821808]
[107]
Jick, H.; Walker, A.M. Cigarette smoking and ulcerative colitis. N. Engl. J. Med., 1983, 308(5), 261-263.
[http://dx.doi.org/10.1056/NEJM198302033080507] [PMID: 6848937]
[108]
Nagao, S.; Taguchi, K.; Sakai, H.; Yamasaki, K.; Watanabe, H.; Otagiri, M.; Maruyama, T. Carbon monoxide-bound hemoglobin vesicles ameliorate multiorgan injuries induced by severe acute pancreatitis in mice by their anti-inflammatory and antioxidant properties. Int. J. Nanomedicine, 2016, 11, 5611-5620.
[http://dx.doi.org/10.2147/IJN.S118185] [PMID: 27822039]
[109]
Taguchi, K.; Nagao, S.; Maeda, H.; Yanagisawa, H.; Sakai, H.; Yamasaki, K.; Wakayama, T.; Watanabe, H.; Otagiri, M.; Maruyama, T. Biomimetic carbon monoxide delivery based on hemoglobin vesicles ameliorates acute pancreatitis in mice via the regulation of macrophage and neutrophil activity. Drug Deliv., 2018, 25(1), 1266-1274.
[http://dx.doi.org/10.1080/10717544.2018.1477860] [PMID: 29847178]
[110]
Kingsnorth, A. Role of cytokines and their inhibitors in acute pancreatitis. Gut, 1997, 40(1), 1-4.
[http://dx.doi.org/10.1136/gut.40.1.1] [PMID: 9155566]
[111]
Pereda, J.; Sabater, L.; Aparisi, L.; Escobar, J.; Sandoval, J.; Viña, J.; López-Rodas, G.; Sastre, J. Interaction between cytokines and oxidative stress in acute pancreatitis. Curr. Med. Chem., 2006, 13(23), 2775-2787.
[http://dx.doi.org/10.2174/092986706778522011] [PMID: 17073628]
[112]
Sica, A.; Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest., 2012, 122(3), 787-795.
[http://dx.doi.org/10.1172/JCI59643] [PMID: 22378047]
[113]
Otterbein, L.E.; Bach, F.H.; Alam, J.; Soares, M.; Tao Lu, H.; Wysk, M.; Davis, R.J.; Flavell, R.A.; Choi, A.M. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med., 2000, 6(4), 422-428.
[http://dx.doi.org/10.1038/74680] [PMID: 10742149]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 18
Year: 2020
Page: [2949 - 2963]
Pages: 15
DOI: 10.2174/0929867325666181113122340
Price: $65

Article Metrics

PDF: 15
HTML: 1