The Computational Prediction Methods for Linear B-cell Epitopes

Author(s): Cangzhi Jia*, Hongyan Gong, Yan Zhu, Yixia Shi

Journal Name: Current Bioinformatics

Volume 14 , Issue 3 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: B-cell epitope prediction is an essential tool for a variety of immunological studies. For identifying such epitopes, several computational predictors have been proposed in the past 10 years.

Objective: In this review, we summarized the representative computational approaches developed for the identification of linear B-cell epitopes.

Methods: We mainly discuss the datasets, feature extraction methods and classification methods used in the previous work.

Results: The performance of the existing methods was not very satisfying, and so more effective approaches should be proposed by considering the structural information of proteins.

Conclusion: We consider existing challenges and future perspectives for developing reliable methods for predicting linear B-cell epitopes.

Keywords: linear B-cell epitopes, machine learning, bioinformatics, computational, immunological, feature extraction.

Davies DR, Cohen GH. Interactions of protein antigens with antibodies. Proc Natl Acad Sci USA 1996; 93(1): 7-12.
Langeveld JP, Martinez-Torrecuadrada J, Boshuizen RS, Meloen RH, Ignacio Casal J. Characterisation of a protective linear B cell epitope against feline parvoviruses. Vaccine 2001; 19(17-19): 2352-60.
Barlow DJ, Edwards MS, Thornton JM. Continuous and discontinuous protein antigenic determinants. Nature 1986; 322(6081): 747-8.
Walter G. Production and use of antibodies against synthetic peptides. J Immunol Methods 1986; 88(2): 149-61.
Yadav M, Liebau E, Haldar C, Rathaur S. Identification of major antigenic peptide of filarial glutathione-S-transferase. Vaccine 2011; 29(6): 1297-303.
Schlessinger A, Ofran Y, Yachdav G, Rost B. Epitome: database of structure-inferred antigenic epitopes. Nucleic Acids Res 2006; 34(Database issue): D777-80.
AntiJen. a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res 2005; 1(1): 1-12.
Vita R, Zarebski L, Greenbaum JA, et al. The immune epitope database 2.0. Nucleic Acids Res 2010; 38(Database issue): D854-62.
Ivanciuc O, Schein CH, Braun W. SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res 2003; 31(1): 359-62.
Xiao X, Shao S, Ding Y, Huang Z, Chou KC. Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 2006; 30(1): 49-54.
Xiao X, Wang P, Chou KC. GPCR-CA: A cellular automaton image approach for predicting G-protein-coupled receptor functional classes. J Comput Chem 2009; 30(9): 1414-23.
Gautam A, Chaudhary K, Kumar R, et al. In silico approaches for designing highly effective cell penetrating peptides. J Transl Med 2013; 11(1): 74.
Shen W, Cao Y, Cha L, et al. Predicting linear B-cell epitopes using amino acid anchoring pair composition. BioData Min 2015; 8(1): 14.
Lin SY, Cheng CW, Su EC. Prediction of B-cell epitopes using evolutionary information and propensity scales. BMC Bioinformatics 2013; 14(Suppl. 2): S10.
Chen J, Liu H, Yang J, Chou KC. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 2007; 33(3): 423-8.
Leslie C, Eskin E, Noble WS. The spectrum kernel: a string kernel for SVM protein classification. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing 2002.
Zaki NM, Deris S, Illias R. Application of string kernels in protein sequence classification. Appl Bioinformatics 2005; 4(1): 45-52.
Leslie CS, Eskin E, Cohen A, Weston J, Noble WS. Mismatch string kernels for discriminative protein classification. Bioinformatics 2004; 20(4): 467-76.
Saigo H, Vert JP, Ueda N, Akutsu T. Protein homology detection using string alignment kernels. Bioinformatics 2004; 20(11): 1682-9.
Lodhi H, et al. Text classification using string kernels. J Mach Learn Res 2002; 2(3): 419-44.
Yao B, Zhang L, Liang S, Zhang C. SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One 2012; 7(9): e45152.
Pruitt KD, Tatusova T, Klimke W, Maglott DR. NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res 2009; 37: D32-6.
Ren Y, Chen X, Feng M, Wang Q, Zhou P. Gaussian process: a promising approach for the modeling and prediction of Peptide binding affinity to MHC proteins. Protein Pept Lett 2011; 18(7): 670-8.
Huang JH, Wen M, Tang LJ, et al. Using random forest to classify linear B-cell epitopes based on amino acid properties and molecular features. Biochimie 2014; 103(1): 1-6.
Shao J, Xu D, Tsai SN, Wang Y, Ngai SM. Computational identification of protein methylation sites through bi-profile Bayes feature extraction. PLoS One 2009; 4(3): e4920.
Zheng W, Zhang C, Hanlon M, Ruan J, Gao J. An ensemble method for prediction of conformational B-cell epitopes from antigen sequences. Comput Biol Chem 2014; 49(49C): 51-8.
Gao J, Faraggi E, Zhou Y, Ruan J, Kurgan L. BEST: improved prediction of B-cell epitopes from antigen sequences. PLoS One 2012; 7(6): e40104.
Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292(2): 195-202.
Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 2004; 337(3): 635-45.
Zhang W, Xiong Y, Zhao M, et al. Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature. BMC Bioinformatics 2011; 12(1): 341-12.
Hu J. Prediction of Discontinuous B-Cell Epitopes Using Logistic Regression and Structural Information. J Proteomics Bioinform 2011; 04(1): 10-5.
Sun J, et al. Does difference exist between epitope and non-epitope residues? Analysis of the physicochemical and structural properties on conformational epitopes from B-cell. Immunome Res 2011; 7(3): 1-11.
Chen K, Mizianty MJ, Kurgan L. Prediction and analysis of nucleotide-binding residues using sequence and sequence-derived structural descriptors. Bioinformatics 2012; 28(3): 331-41.
El-Manzalawy Y, Dobbs D, Honavar V. Predicting flexible length linear B-cell epitopes 2008. 121-32.
Saha SGPS. Raghava. BcePred: Prediction of Continuous B-Cell Epitopes in Antigenic Sequences Using Physico-chemical Properties. Lect Notes Comput Sci 2004; 3239: 197-204.
Lian Y, Ge M, Pan XM. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression. BMC Bioinformatics 2014; 15(1): 414.
Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res 2006; 2(1): 2.
Liao Z, et al. In Silico Prediction of Gamma-Aminobutyric Acid Type-A Receptors Using Novel Machine-Learning-Based SVM and GBDT Approaches. BioMed Res Int 2016; 2016: 2375268.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 07 March, 2019
Page: [226 - 233]
Pages: 8
DOI: 10.2174/1574893613666181112145706
Price: $65

Article Metrics

PDF: 42
PRC: 1