Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

Efficient Catalytic Upgrade of Fructose to Alkyl Levulinates with Phenylpyridine- phosphotungstate Solid Hybrids

Author(s): Chengjiang Fang, Yan Li, Zhaozhuo Yu, Hu Li* and Song Yang*

Volume 6, Issue 1, 2019

Page: [44 - 52] Pages: 9

DOI: 10.2174/2213346105666181112112330

Abstract

Biomass, as the most abundant and renewable organic carbon source, can be upgraded into various value-added platform molecules. To implement more sustainable and economic catalytic biomass valorization, reusable heterogeneous catalysts would be one of the preferable choices. In this work, a series of phosphotungstic acid-based solid hybrids were produced by assembly of phosphotungstic acid with different pyridines using a facile solvothermal method. The obtained 3- phenylpyridine-phosphotungstate hybrid displayed superior catalytic performance in the upgrade of fructose to methyl levulinate with 71.2% yield and 83.2% fructose conversion at 140 ºC for 8 h in methanol, a bio-based and environmentally friendly solvent, which was probably due to its relatively large pore size and high hydrophobicity. This low-cost and eco-friendly catalytic process could be simply operated in a single pot without cumbersome separation steps. In addition, the 3- phenylpyridine-phosphotungstate catalyst was able to be reused for four times with little deactivation.

Keywords: Biomass conversion, biofuel, alkyl levulinate, inorganic-organic hybrid, heterogeneous catalysis, green chemistry.

Graphical Abstract
[1]
Li, H.; Riisager, A.; Saravanamurugan, S.; Pandey, A.; Sangwan, R.S.; Yang, S.; Luque, R. Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catal., 2017, 8, 148-187.
[2]
Wangchuk, T.; He, C.; Knibbs, L.D.; Mazaheri, M.; Morawska, L. A pilot study of traditional indoor biomass cooking and heating in rural Bhutan: Gas and particle concentrations and emission rates. Indoor Air, 2017, 27, 160-168.
[3]
Filiciotto, L.; Luque, R. Biomass promises: A bumpy road to a renewable economy. Curr. Green Chem., 2018, 5(1), 47-59.
[4]
Kimming, M.; Sundberg, C.; Nordberg, A.; Baky, A.; Bernesson, S.; Hansson, P.A. Replacing fossil energy for organic milk production-potential biomass sources and greenhouse gas emission reductions. J. Clean. Prod., 2015, 106, 400-407.
[5]
Li, H.; Zhao, W.; Saravanamurugan, S.; Dai, W.; He, J.; Meier, S.; Yang, S.; Riisager, A. Control of selectivity in hydrosilane-promoted heterogeneous palladium-catalysed reduction of furfural and aromatic carboxides. Commun. Chem., 2018, 1, 32.
[6]
Zhang, D.H.; Wang, J.Q.; Lin, Y.G.; Si, Y.L.; Huang, C.; Yang, J.; Huang, B.; Li, W. Present situation and future prospect of renewable energy in China. Renew. Sustain. Energy Rev., 2017, 76, 865-871.
[7]
Alcantara, A.R.; de Maria, P.D. Recent advances on the use of 2-methyltetrahydrofuran (2-MeTHF) in biotransformations. Curr. Green Chem., 2018, 5(2), 86-103.
[8]
Oreggioni, G.D.; Singh, B.; Cherubini, F.; Guest, G.; Lausselet, C.; Luberti, M.; Strømman, A.H. Environmental assessment of biomass gasification combined heat and power plants with absorptive and adsorptive carbon capture units in Norway. Int. J. Greenh. Gas Control, 2017, 57, 162-172.
[9]
Shikinaka, K.; Sotome, H.; Kubota, Y.; Tominaga, Y.; Nakamura, M.; Navarro, R.R.; Otsuka, Y. A small amount of nanoparticulated plant biomass, lignin, enhances the heat tolerance of poly (ethylene carbonate). J. Mater. Chem. A, 2018, 6(3), 837-839.
[10]
Xu, S.C.; Lamm, M.E.; Rahman, M.A.; Zhang, X.Z.; Zhu, T.Y.; Zhao, Z.D.; Tang, C.B. Renewable atom-efficient polyesters and thermosetting resins derived from high oleic soybean oil. Green Chem., 2018, 20(5), 1106-1113.
[11]
Jia, R.; Lei, H.Y.; Hino, T.; Arulrajah, A. Environmental changes in Ariake Sea of Japan and their relationships with Isahaya Bay reclamation. Mar. Pollut. Bull., 2018, 135, 832-844.
[12]
Li, H.; Zhao, W.F.; Riisager, A.; Saravanamurugan, S.; Wang, Z.W.; Fang, Z.; Yang, S.A. Pd-Catalyzed in situ domino process for mild and quantitative production of 2,5-dimethylfuran directly from carbohydrates. Green Chem., 2017, 19(9), 2101-2106.
[13]
Liu, Z.L.; Tian, D.; Hu, J.G.; Shen, F.; Long, L.L.; Zhang, Y.Z.; Yang, G.; Zeng, Y.M.; Zhang, J.; He, J.S.; Deng, S.H.; Hu, Y.D. Functionalizing bottom ash from biomass power plant for removing methylene blue from aqueous solution. Sci. Total Environ., 2018, 634, 760-768.
[14]
Luque, R. Catalytic biomass processing: prospects in future biorefineries. Curr. Green Chem., 2015, 2(1), 90-95.
[15]
Malladi, K.T.; Sowlati, T. Biomass logistics: A review of important features, optimization modeling and the new trends. Renew. Sustain. Energy Rev., 2018, 94, 587-599.
[16]
Zhang, S.H.; Yang, M.F.; Shao, J.G.; Yang, H.P.; Zeng, K.; Chen, Y.Q.; Luo, J.; Agblevor, F.A.; Chen, H.P. The conversion of biomass to light olefins on Fe-modified ZSM-5 catalyst: Effect of pyrolysis parameters. Sci. Total Environ., 2018, 628, 350-357.
[17]
Hu, H.W.; Liang, W.X.; Zhang, Y.Y.; Wu, S.Y.; Yang, Q.N.; Wang, Y.B.; Zhang, M.; Liu, Q.J. Multipurpose use of a corncob biomass for the production of polysaccharides and the fabrication of a biosorbent. ACS Sustain. Chem.& Eng., 2018, 6(3), 3830-3839.
[18]
Hu, L.; Xu, J.X.; Zhou, S.Y.; He, A.Y.; Tang, X.; Lin, L.; Xu, J.M.; Zhao, Y.J. Catalytic advances in the production and application of biomass-derived 2, 5-dihydroxymethylfuran. ACS Catal., 2018, 8(4), 2959-2980.
[19]
Tang, X.; Zuo, M.; Li, Z.; Liu, H.; Xiong, C.X.; Zeng, X.H.; Sun, Y.; Hu, L.; Liu, S.J.; Lei, T.Z.; Lin, L. Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. ChemSusChem, 2017, 10(13), 2696-2706.
[20]
Zuo, M.; Le, K.; Li, Z.; Jiang, Y.T.; Zeng, X.H.; Tang, X.; Sun, Y.; Lin, L. Green process for production of 5-hydroxymethylfurfural from carbohydrates with high purity in deep eutectic solvents. Ind. Crops Prod., 2017, 99, 1-6.
[21]
Tang, X.; Wei, J.N.; Ding, N.; Sun, Y.; Zeng, X.H.; Hu, L.; Liu, S.J.; Lei, T.Z.; Lin, L. Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: key intermediates for sustainable chemicals, materials and fuels. Renew. Sustain. Energy Rev., 2017, 77, 287-296.
[22]
Wang, J.M.; Zhang, Z.H.; Jin, S.W.; Shen, X.Z. Efficient conversion of carbohydrates into 5-hydroxylmethylfurfan and 5-ethoxymethylfurfural over sufonic acid-functionalized mesoporous carbon catalyst. Fuel, 2017, 192, 102-107.
[23]
Zhang, Z.H.; Huber, G.W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem. Soc. Rev., 2018, 47(4), 1351-1390.
[24]
Yuan, Z.L.; Liu, B.; Zhou, P.; Zhang, Z.H.; Chi, Q. Aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran with cesium-doped manganese dioxide. Catal. Sci. Technol., 2018.
[http://dx.doi.org/10.1039/c8cy01246f]
[25]
Darji, D.; Alias, Y.; Abd Razak, N.H. Effect of recycled imidazolium-based ionic liquids on biomass from rubber wood. Curr. Green Chem., 2017, 4(2), 74-81.
[26]
Zhang, L.X.; Xi, G.Y.; Yu, K.; Yu, H.; Wang, X.C. Furfural production from biomass-derived carbohydrates and lignocellulosic residues via heterogeneous acid catalysts. Ind. Crops Prod., 2017, 98, 68-75.
[27]
Zhang, L.X.; Xi, G.Y.; Zhang, J.X.; Yu, H.B.; Wang, X.C. Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural. Bioresour. Technol., 2017, 224, 656-661.
[28]
Guo, T.Y.; Li, X.C.; Liu, X.H.; Guo, Y.; Wang, Y.Q. Catalytic transformation of lignocellulosic biomass into arenes, 5-hydroxymethylfurfural, and furfural. ChemSusChem, 2018, 11, 1-9.
[29]
Huang, X.M.; Ouyang, X.H.; Hendriks, B.M.S.; Gonzalez, O.M.M.; Zhu, J.D.; Korányi, T.I.; Boot, M.D.; Hensen, E.J.M. Selective production of mono-aromatics from lignocellulose over Pd/C catalyst: the influence of acid co-catalysts. Faraday Discuss., 2017, 202, 141-156.
[30]
Qi, B.K.; Vu, A.; Wickramasinghe, S.R.; Qian, X.H. Glucose production from lignocellulosic biomass using a membrane-based polymeric solid acid catalyst. Biomass Bioenergy, 2017, 117, 137-145.
[31]
Bhaumik, P.; Dhepe, P.L. From lignocellulosic biomass to furfural: insight into the active species of a silica-supported tungsten oxide catalyst. ChemCatChem, 2017, 9(14), 2709-2716.
[32]
Xiao, Z.Q.; Zhang, Q.; Chen, T.T.; Wang, X.N.; Fan, Y.; Ge, Q.; Zhai, R.; Sun, R.; Ji, J.B.; Mao, J.W. Heterobimetallic catalysis for lignocellulose to ethylene glycol on nickel-tungsten catalysts: Influenced by hydroxy groups. Fuel, 2018, 230, 332-343.
[33]
Kim, S.; Han, J. Enhancement of energy efficiency and economics of process designs for catalytic co-production of bioenergy and bio-based products from lignocellulosic biomass. Int. J. Energy Res., 2017, 41(11), 1553-1562.
[34]
Feng, J.F.; Jiang, J.C.; Hse, C.Y.; Yang, Z.Z.; Wang, K.; Ye, J.; Xu, J.M. Selective catalytic conversion of waste lignocellulosic biomass for renewable value-added chemicals via directional microwave-assisted liquefaction. Sustain. Energ. Fuels, 2018, 2(5), 1035-1047.
[35]
Grewal, J.; Khare, S.K. One-pot bioprocess for lactic acid production from lignocellulosic agro-wastes by using ionic liquid stable Lactobacillus brevis. Bioresour. Technol., 2018, 251, 268-273.
[36]
Liu, Q.Y.; Zhang, T.; Liao, Y.H.; Cai, C.L.; Tan, J.; Wang, T.J.; Qiu, S.B.; He, M.H.; Ma, L.L. Production of C5/C6 sugar alcohols by hydrolytic hydrogenation of raw lignocellulosic biomass over Zr based solid acids combined with Ru/C. ACS Sustain. Chem.& Eng., 2017, 5, 5940-5950.
[37]
Mika, L.T.; Cséfalvay, E.; Németh, A. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem. Rev., 2017, 118, 505-613.
[38]
Jin, X.L.; Chen, X.L.; Shi, C.H.; Li, M.; Guan, Y.J.; Yu, C.Y.; Yamada, T.; Sacks, E.J.; Peng, J.H. Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis. Bioresour. Technol., 2017, 241, 603-609.
[39]
Wu, Z.Q.; Yang, W.C.; Chen, L.; Meng, H.Y.; Zhao, J.; Wang, S.Z. Morphology and microstructure of co-pyrolysis char from bituminous coal blended with lignocellulosic biomass: effects of cellulose, hemicellulose and lignin. Appl. Therm. Eng., 2017, 116, 24-32.
[40]
Chen, H.Y.; Liu, J.B.; Chang, X.; Chen, D.M.; Xue, Y.; Liu, P.; Lin, H.L.; Han, S. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol., 2017, 160, 196-206.
[41]
Huang, K.F.; Won, W.Y.; Barnett, K.J.; Brentzel, Z.J.; Alonso, D.M.; Huber, G.W.; Dumesic, J.A.; Maravelias, C.T. Improving economics of lignocellulosic biofuels: An integrated strategy for coproducing 1, 5-pentanediol and ethanol. Appl. Energy, 2018, 213, 585-594.
[42]
Luo, Y.P.; Li, Z.; Li, X.L.; Liu, X.F.; Fan, J.J.; Clark, J.H.; Hu, C.W. The production of furfural directly from hemicellulose in lignocellulosic biomass: A review. Catal. Today, 2019, 319, 14-24.
[43]
Jiang, L.Y.; Zhou, L.P.; Chao, J.Y.; Zhao, H.T.; Lu, T.L.; Su, Y.L.; Yang, X.M.; Xu, J. Direct catalytic conversion of carbohydrates to methyl levulinate: Synergy of solid Brønsted acid and Lewis acid. Appl. Catal. B: Environ, 2018, 220, 589-596.
[44]
Li, H.; Zhang, Q.Y.; Bhadury, P.S.; Yang, S. Furan-type compounds from carbohydrates via heterogeneous catalysis. Curr. Org. Chem., 2014, 18, 547-597.
[45]
Dai, J.; Peng, L.C.; Li, H. Intensified ethyl levulinate production from cellulose using a combination of low loading H2SO4 and Al(OTf)3. Catal. Commun., 2018, 103, 116-119.
[46]
Emel’yanenko, V.N.; Altuntepe, E.; Held, C.; Pimerzin, A.A.; Verevkin, S.P. Renewable platform chemicals: Thermochemical study of levulinic acid esters. Thermochim. Acta, 2018, 659, 213-221.
[47]
Liu, Y.; Liu, C.L.; Wu, H.Z.; Dong, W.S. An efficient catalyst for the conversion of fructose into methyl levulinate. Catal. Lett., 2013, 143, 1346-1353.
[48]
Jiang, L.Y.; Zhou, L.P.; Chao, J.Y.; Zhao, H.T.; Lu, T.L.; Su, Y.L.; Yang, X.M.; Xu, J. Direct catalytic conversion of carbohydrates to methyl levulinate: synergy of solid Brønsted acid and Lewis acid. Appl. Catal. B: Environ, 2018, 220, 589-596.
[49]
Babaei, Z.; Chermahini, A.N.; Dinari, M. Alumina-coated mesoporous silica SBA-15 as a solid catalyst for catalytic conversion of fructose into liquid biofuel candidate ethyl levulinate. Chem. Eng. J., 2018, 352, 45-52.
[50]
Li, H.; Fang, Z.; Luo, J.; Yang, S. Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Appl. Catal. B: Environ, 2017, 200, 182-191.
[51]
Mohammadbagheri, Z.; Chermahini, A.N. KCC-1/Pr-SO3H as an efficient heterogeneous catalyst for production of n-butyl levulinate from furfuryl alcohol. J. Ind. Eng. Chem., 2018, 62, 401-408.
[52]
Zhang, J.; Wu, S.B.; Li, B.; Zhang, H.D. Advances in the catalytic production of valuable levulinic acid derivatives. ChemCatChem, 2012, 4, 1230-1237.
[53]
Huang, Y.B.; Yang, T.; Lin, Y.T.; Zhu, Y.Z.; Pan, H. Facile and high-yield synthesis of methyl levulinate from cellulose. Green Chem., 2018, 20, 1323-1334.
[54]
vom Stein, T.; Meuresch, M.; Limper, D.; Schmitz, M.; Hölscher, M.; Coetzee, J.; Cole-Hamilton, D.J.; Klankermayer, J.; Leitner, W. Highly versatile catalytic hydrogenation of carboxylic and carbonic acid derivatives using a Ru-triphos complex: molecular control over selectivity and substrate scope. J. Am. Chem. Soc., 2014, 136, 13217-13225.
[55]
He, J.; Wang, Z.W.; Zhao, W.F.; Yang, T.T.; Liu, Y.X.; Yang, S. Catalytic upgrading of biomass-derivedγ-valerolactone to biofuels and valuable chemicals. Curr. Catal., 2017, 6, 31-41.
[56]
Li, H.; Fang, Z.; Smith, R.L.; Yang, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Pror. Energy Combust. Sci., 2016, 55, 98-194.
[57]
Yang, T.T.; Li, H.; He, J.; Liu, Y.X.; Zhao, W.F.; Wang, Z.W.; Ji, X.X.; Yang, S. Porous Ti/Zr microspheres for efficient transfer hydrogenation of biobased ethyl levulinate to γ-valerolactone. ACS Omega, 2017, 2, 1047-1054.
[58]
Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 2007, 9(9), 927-934.
[59]
Jessop, P.G. Searching for green solvents. Green Chem., 2011, 13(6), 1391-1398.
[60]
Feng, J.F.; Jiang, J.C.; Xu, J.M.; Yang, Z.Z.; Wang, K.; Guan, Q.; Chen, S.G. Preparation of methyl levulinate from fractionation of direct liquefied bamboo biomass. Appl. Energy, 2015, 154, 520-527.
[61]
Peng, L.C.; Li, H.; Lin, L.; Chen, K.L. Effect of metal salts existence during the acid-catalyzed conversion of glucose in methanol medium. Catal. Commun., 2015, 59, 10-13.
[62]
Pang, J.F.; Zheng, M.Y.; Li, X.S.; Song, L.; Sun, R.Y.; Sebastian, J.; Wang, A.Q.; Wang, J.H.; Wang, X.D.; Zhang, T. Catalytic conversion of carbohydrates to methyl lactate using isolated tin sites in SBA-15. ChemistrySelect, 2017, 2(1), 309-314.
[63]
Liu, R.L.; Chen, J.Z.; Huang, X.; Chen, L.M.; Ma, L.L.; Li, X.J. Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chem., 2013, 15(10), 2895-2903.
[64]
Pan, H.; Liu, X.F.; Zhang, H.; Yang, K.L.; Huang, S.; Yang, S. Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion. Renew. Energy, 2017, 107, 245-252.
[65]
Song, D.Y.; Sun, Y.N.; Zhang, Q.Q.; Zhang, P.P.; Guo, Y.H.; Leng, J.Y. Fabrication of propylsulfonic acid functionalized SiO2 core/PMO shell structured PrSO3H-SiO2@Si(R)Si nanospheres for the effective conversion of D-fructose into ethyl levulinate. Appl. Catal. A Gen., 2017, 546, 36-46.
[66]
Yu, F.; Zhong, R.Y.; Chong, H.; Smet, M.; Dehaen, W.; Sels, B.F. Fast catalytic conversion of recalcitrant cellulose into alkyl levulinates and levulinic acid in the presence of soluble and recoverable sulfonated hyperbranched poly(arylene oxindole)s. Green Chem., 2017, 19(1), 153-163.
[67]
Wang, Z.W.; Li, H.; Fang, C.J.; Zhao, W.F.; Yang, T.T.; Yang, S. Simply assembled acidic nanospheres for efficient production of 5-ethoxymethylfurfural from 5- hydromethylfurfural and fructose. Energy Technol., 2017, 5(11), 2046-2054.
[68]
An, R.; Xu, G.Z.; Chang, C.; Bai, J.; Fang, S.Q. Efficient one-pot synthesis of n-butyl levulinate from carbohydrates catalyzed by Fe2(SO4)3. J. Energy Chem., 2017, 26(3), 556-563.
[69]
Thapa, I.; Mullen, B.; Saleem, A.; Leibig, C.; Baker, R.T.; Giorgi, J.B. Efficient green catalysis for the conversion of fructose to levulinic acid. Appl. Catal. A Gen., 2017, 539, 70-79.
[70]
Prat, D.; Pardigon, O.; Flemming, H.W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; Hosek, P. Sanofi’s solvent selection guide: a step toward more sustainable processes. Org. Process Res. Dev., 2013, 17(12), 1517-1525.
[71]
Saravanamurugan, S.; Riisager, A. Zeolite catalyzed transformation of carbohydrates to alkyl levulinates. ChemCatChem, 2013, 5(7), 1754-1757.
[72]
Fang, C.J.; Li, Y.; Zhao, W.F.; Wu, W.B.; Li, H.; He, C.; Yang, S. Phosphotungstic acid heterogenized by assembly with pyridines for efficient catalytic conversion of fructose to methyl levulinate. RSC Advances, 2018, 8(30), 16585-16592.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy