Anthocyanins As Modulators of Cell Redox-Dependent Pathways in Non-Communicable Diseases

Author(s): Antonio Speciale, Antonella Saija, Romina Bashllari, Maria Sofia Molonia, Claudia Muscarà, Cristina Occhiuto, Francesco Cimino*, Mariateresa Cristani

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 12 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Chronic Noncommunicable Diseases (NCDs), mostly represented by cardiovascular diseases, diabetes, chronic pulmonary diseases, cancers, and several chronic pathologies, are one of the main causes of morbidity and mortality, and are mainly related to the occurrence of metabolic risk factors. Anthocyanins (ACNs) possess a wide spectrum of biological activities, such as anti-inflammatory, antioxidant, cardioprotective and chemopreventive properties, which are able to promote human health. Although ACNs present an apparent low bioavailability, their metabolites may play an important role in the in vivo protective effects observed.

This article directly addresses the scientific evidences supporting that ACNs could be useful to protect human population against several NCDs not only acting as antioxidant but through their capability to modulate cell redox-dependent signaling. In particular, ACNs interact with the NF-κB and AP-1 signal transduction pathways, which respond to oxidative signals and mediate a proinflammatory effect, and the Nrf2/ARE pathway and its regulated cytoprotective proteins (GST, NQO, HO-1, etc.), involved in both cellular antioxidant defenses and elimination/inactivation of toxic compounds, so countering the alterations caused by conditions of chemical/oxidative stress. In addition, supposed crosstalks could contribute to explain the protective effects of ACNs in different pathological conditions characterized by an altered balance among these pathways. Thus, this review underlines the importance of specific nutritional molecules for human health and focuses on the molecular targets and the underlying mechanisms of ACNs against various diseases.

Keywords: Anthocyanin, chronic diseases, inflammation, antioxidant, NF-κB, AP-1, Nrf2.

[1]
GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1659-1724.
[http://dx.doi.org/10.1016/S0140-6736(16)31679-8] [PMID: 27733284]
[2]
Bloom, J.R.; Wang, H.; Kang, S.H.; Wallace, N.T.; Hyun, J.K.; Hu, T.W. Capitation of public mental health services in Colorado: a five-year follow-up of system-level effects. Psychiatr. Serv., 2011, 62(2), 179-185.
[http://dx.doi.org/10.1176/ps.62.2.pss6202_0179] [PMID: 21285096]
[3]
World Health Organization. Global Action Plan for the Prevention and Control of NCDs 2013-2020 2013.
[4]
World Health Organization Noncommunicable Diseases Progress Monitor. 2017. http://apps.who.int/iris/bitstream/10665/258940/1/9789241513029-eng.pdf?ua=1 (Accessed on: March 10, 2018).
[5]
Dietary Guidelines Advisory Committee. "Scientific report of the 2015 Dietary Guidelines Advisory Committee: advisory report to the Secretary of Health and Human Services and the Secretary of Agriculture. Agricultural Research Service, 2015
[6]
Lupton, J.R.; Blumberg, J.B.; L’Abbe, M.; LeDoux, M.; Rice, H.B.; von Schacky, C.; Yaktine, A.; Griffiths, J.C. Nutrient reference value: non-communicable disease endpoints--a conference report. Eur. J. Nutr., 2016, 55(Suppl. 1), S1-S10.
[http://dx.doi.org/10.1007/s00394-016-1195-z] [PMID: 26983608]
[7]
Kimokoti, R.W.; Millen, B.E. Nutrition for the Prevention of Chronic Diseases. Med. Clin. North Am., 2016, 100(6), 1185-1198.
[http://dx.doi.org/10.1016/j.mcna.2016.06.003] [PMID: 27745589]
[8]
National Institutes of Health Office of Dietary Supplements. Bioactive Food Components Meetings: Solicitation of written comments on a proposed definition of “bioactive food components" (Fed Regist. 2004; 69: 55821–55822), 2017 Available at https://ods.od.nih.gov/Research/Bioactive_Food_Components_initiatives.aspx (Accessed on: March 10, 2018).
[9]
Ezzati, M.; Riboli, E. Behavioral and dietary risk factors for noncommunicable diseases. N. Engl. J. Med., 2013, 369(10), 954-964.
[http://dx.doi.org/10.1056/NEJMra1203528] [PMID: 24004122]
[10]
Cassidy, A.; Mukamal, K.J.; Liu, L.; Franz, M.; Eliassen, A.H.; Rimm, E.B. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation, 2013, 127(2), 188-196.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.122408] [PMID: 23319811]
[11]
Cassidy, A.; Bertoia, M.; Chiuve, S.; Flint, A.; Forman, J.; Rimm, E.B. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am. J. Clin. Nutr., 2016, 104(3), 587-594.
[http://dx.doi.org/10.3945/ajcn.116.133132] [PMID: 27488237]
[12]
de Pascual-Teresa, S.; Moreno, D.A.; García-Viguera, C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int. J. Mol. Sci., 2010, 11(4), 1679-1703.
[http://dx.doi.org/10.3390/ijms11041679] [PMID: 20480037]
[13]
Basu, A.; Nguyen, A.; Betts, N.M.; Lyons, T.J. Strawberry as a functional food: an evidence-based review. Crit. Rev. Food Sci. Nutr., 2014, 54(6), 790-806.
[http://dx.doi.org/10.1080/10408398.2011.608174] [PMID: 24345049]
[14]
Leong, D.J.; Choudhury, M.; Hirsh, D.M.; Hardin, J.A.; Cobelli, N.J.; Sun, H.B. Nutraceuticals: potential for chondroprotection and molecular targeting of osteoarthritis. Int. J. Mol. Sci., 2013, 14(11), 23063-23085.
[http://dx.doi.org/10.3390/ijms141123063] [PMID: 24284399]
[15]
Szajdek, A.; Borowska, E.J. Bioactive compounds and health-promoting properties of berry fruits: a review. Plant Foods Hum. Nutr., 2008, 63(4), 147-156.
[http://dx.doi.org/10.1007/s11130-008-0097-5] [PMID: 18931913]
[16]
Barnes, S. Nutritional genomics, polyphenols, diets, and their impact on dietetics. J. Am. Diet. Assoc., 2008, 108(11), 1888-1895.
[http://dx.doi.org/10.1016/j.jada.2008.08.014] [PMID: 18954579]
[17]
Shen, C.L.; Smith, B.J.; Lo, D.F.; Chyu, M.C.; Dunn, D.M.; Chen, C.H.; Kwun, I.S. Dietary polyphenols and mechanisms of osteoarthritis. J. Nutr. Biochem., 2012, 23(11), 1367-1377.
[http://dx.doi.org/10.1016/j.jnutbio.2012.04.001] [PMID: 22832078]
[18]
Castro-Acosta, M.L.; Lenihan-Geels, G.N.; Corpe, C.P.; Hall, W.L. Berries and anthocyanins: promising functional food ingredients with postprandial glycaemia-lowering effects. Proc. Nutr. Soc., 2016, 75(3), 342-355.
[http://dx.doi.org/10.1017/S0029665116000240] [PMID: 27170557]
[19]
Rodriguez-Mateos, A.; Ishisaka, A.; Mawatari, K.; Vidal-Diez, A.; Spencer, J.P.; Terao, J. Blueberry intervention improves vascular reactivity and lowers blood pressure in high-fat-, high-cholesterol-fed rats. Br. J. Nutr., 2013, 109(10), 1746-1754.
[http://dx.doi.org/10.1017/S0007114512003911] [PMID: 23046999]
[20]
Zunino, S.J.; Parelman, M.A.; Freytag, T.L.; Stephensen, C.B.; Kelley, D.S.; Mackey, B.E.; Woodhouse, L.R.; Bonnel, E.L. Effects of dietary strawberry powder on blood lipids and inflammatory markers in obese human subjects. Br. J. Nutr., 2012, 108(5), 900-909.
[http://dx.doi.org/10.1017/S0007114511006027] [PMID: 22068016]
[21]
Stull, A.J.; Cash, K.C.; Champagne, C.M.; Gupta, A.K.; Boston, R.; Beyl, R.A.; Johnson, W.D.; Cefalu, W.T. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. Nutrients, 2015, 7(6), 4107-4123.
[http://dx.doi.org/10.3390/nu7064107] [PMID: 26024297]
[22]
Amani, R.; Moazen, S.; Shahbazian, H.; Ahmadi, K.; Jalali, M.T. Flavonoid-rich beverage effects on lipid profile and blood pressure in diabetic patients. World J. Diabetes, 2014, 5(6), 962-968.
[http://dx.doi.org/10.4239/wjd.v5.i6.962] [PMID: 25512803]
[23]
Vendrame, S.; Del Bo’, C.; Ciappellano, S.; Riso, P.; Klimis-Zacas, D. Berry Fruit Consumption and Metabolic Syndrome. Antioxidants, 2016, 5(4)E34
[http://dx.doi.org/10.3390/antiox5040034] [PMID: 27706020]
[24]
Prasad, C.; Imrhan, V.; Juma, S.; Maziarz, M.; Prasad, A.; Tiernan, C.; Vijayagopal, P. Bioactive Plant Metabolites in the Management of Non-Communicable Metabolic Diseases: Looking at Opportunities beyond the Horizon. Metabolites, 2015, 5(4), 733-765.
[http://dx.doi.org/10.3390/metabo5040733] [PMID: 26703752]
[25]
Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res., 2017, 61(1)1361779
[http://dx.doi.org/10.1080/16546628.2017.1361779] [PMID: 28970777]
[26]
Prior, R.L.; Wu, X. Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radic. Res., 2006, 40(10), 1014-1028.
[http://dx.doi.org/10.1080/10715760600758522] [PMID: 17015246]
[27]
Speciale, A.; Chirafisi, J.; Saija, A.; Cimino, F. Nutritional antioxidants and adaptive cell responses: an update. Curr. Mol. Med., 2011, 11(9), 770-789.
[http://dx.doi.org/10.2174/156652411798062395] [PMID: 21999148]
[28]
Speciale, A.; Cimino, F.; Saija, A.; Canali, R.; Virgili, F. Bioavailability and molecular activities of anthocyanins as modulators of endothelial function. Genes Nutr., 2014, 9(4), 404.
[http://dx.doi.org/10.1007/s12263-014-0404-8] [PMID: 24838260]
[29]
Domitrovic, R. The molecular basis for the pharmacological activity of anthocyans. Curr. Med. Chem., 2011, 18(29), 4454-4469.
[http://dx.doi.org/10.2174/092986711797287601] [PMID: 21864288]
[30]
Lee, S.G.; Kim, B.; Yang, Y.; Pham, T.X.; Park, Y.K.; Manatou, J.; Koo, S.I.; Chun, O.K.; Lee, J.Y. Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-κB independent of NRF2-mediated mechanism. J. Nutr. Biochem., 2014, 25(4), 404-411.
[http://dx.doi.org/10.1016/j.jnutbio.2013.12.001] [PMID: 24565673]
[31]
Cimino, F.; Speciale, A.; Anwar, S.; Canali, R.; Ricciardi, E.; Virgili, F.; Trombetta, D.; Saija, A. Anthocyanins protect human endothelial cells from mild hyperoxia damage through modulation of Nrf2 pathway. Genes Nutr., 2013, 8(4), 391-399.
[http://dx.doi.org/10.1007/s12263-012-0324-4] [PMID: 23229494]
[32]
Forman, H.J.; Davies, K.J.; Ursini, F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med., 2014, 66, 24-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.045] [PMID: 23747930]
[33]
Davies, K.M. Recent Advances in Polyphenol Research., 2009. 139-166
[34]
Castañeda-Ovando, A.; Pacheco-Hernández, M.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem., 2009, 113(4), 859-871.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.001]
[35]
Pati, S.; Liberatore, M.T.; Gambacorta, G.; Antonacci, D.; La Notte, E. Rapid screening for anthocyanins and anthocyanin dimers in crude grape extracts by high performance liquid chromatography coupled with diode array detection and tandem mass spectrometry. J. Chromatogr. A, 2009, 1216(18), 3864-3868.
[http://dx.doi.org/10.1016/j.chroma.2009.02.068] [PMID: 19298968]
[36]
Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6), 481-504.
[http://dx.doi.org/10.1016/S0031-9422(00)00235-1] [PMID: 11130659]
[37]
Kong, J.M.; Chia, L.S.; Goh, N.K.; Chia, T.F.; Brouillard, R. Analysis and biological activities of anthocyanins. Phytochemistry, 2003, 64(5), 923-933.
[http://dx.doi.org/10.1016/S0031-9422(03)00438-2] [PMID: 14561507]
[38]
Bhagwat, S.; Haytowitz, D.B. USDA Database for the Flavonoid Content of Selected Foods Release 3.2 2015.
[39]
Fang, J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition, 2015, 31(11-12), 1301-1306.
[http://dx.doi.org/10.1016/j.nut.2015.04.015] [PMID: 26250485]
[40]
Joseph, S.V.; Edirisinghe, I.; Burton-Freeman, B.M. Berries: anti-inflammatory effects in humans. J. Agric. Food Chem., 2014, 62(18), 3886-3903.
[http://dx.doi.org/10.1021/jf4044056] [PMID: 24512603]
[41]
Chinese Nutrition Society. Chinese Dietary Reference Intakes. 2013, Science Press, Beijing, China (in chinese).
[42]
Wallace, T.C.; Slavin, M.; Frankenfeld, C.L. Systematic Review of Anthocyanins and Markers of Cardiovascular Disease. Nutrients, 2016, 8(1)E32
[http://dx.doi.org/10.3390/nu8010032] [PMID: 26761031]
[43]
Wallace, T.C.; Giusti, M.M. Anthocyanins. Adv. Nutr., 2015, 6(5), 620-622.
[http://dx.doi.org/10.3945/an.115.009233] [PMID: 26374184]
[44]
Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem., 2006, 54(11), 4069-4075.
[http://dx.doi.org/10.1021/jf060300l] [PMID: 16719536]
[45]
Sebastian, R.S.; Wilkinson Enns, C.; Goldman, J.D.; Martin, C.L.; Steinfeldt, L.C.; Murayi, T.; Moshfegh, A.J. A New Database Facilitates Characterization of Flavonoid Intake, Sources, and Positive Associations with Diet Quality among US Adults. J. Nutr., 2015, 145(6), 1239-1248.
[http://dx.doi.org/10.3945/jn.115.213025] [PMID: 25948787]
[46]
de Pascual-Teresa, S.; Sanchez-Ballesta, M.T. Anthocyanins: from plant to health. Phytochem. Rev., 2008, 7(2), 281-299.
[http://dx.doi.org/10.1007/s11101-007-9074-0]
[47]
Clifford, M.N. Anthocyanins–nature, occurrence and dietary burden. J. Sci. Food Agric., 2000, 80(7), 1063-1072.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1063:AID-JSFA605>3.0.CO;2-Q]
[48]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 230S-242S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[49]
Miller, R.J.; Jackson, K.G.; Dadd, T.; Mayes, A.E.; Brown, A.L.; Minihane, A.M. The impact of the catechol-O-methyltransferase genotype on the acute responsiveness of vascular reactivity to a green tea extract. Br. J. Nutr., 2011, 105(8), 1138-1144.
[http://dx.doi.org/10.1017/S0007114510004836] [PMID: 21144097]
[50]
Lampe, J.W. Diet, genetic polymorphisms, detoxification, and health risks. Altern. Ther. Health Med., 2007, 13(2), S108-S111.
[PMID: 17405687]
[51]
Iwuchukwu, O.F.; Ajetunmobi, J.; Ung, D.; Nagar, S. Characterizing the effects of common UDP glucuronosyltransferase (UGT) 1A6 and UGT1A1 polymorphisms on cis- and trans-resveratrol glucuronidation. Drug Metab. Dispos., 2009, 37(8), 1726-1732.
[http://dx.doi.org/10.1124/dmd.109.027391] [PMID: 19406951]
[52]
Del Rio, D.; Borges, G.; Crozier, A. Berry flavonoids and phenolics: bioavailability and evidence of protective effects. Br. J. Nutr., 2010, 104(Suppl. 3), S67-S90.
[http://dx.doi.org/10.1017/S0007114510003958] [PMID: 20955651]
[53]
Sandhu, A.K.; Huang, Y.; Xiao, D.; Park, E.; Edirisinghe, I.; Burton-Freeman, B. Pharmacokinetic Characterization and Bioavailability of Strawberry Anthocyanins Relative to Meal Intake. J. Agric. Food Chem., 2016, 64(24), 4891-4899.
[http://dx.doi.org/10.1021/acs.jafc.6b00805] [PMID: 27255121]
[54]
Oliveira, H.; Wu, N.; Zhang, Q.; Wang, J.; Oliveira, J.; de Freitas, V.; Mateus, N.; He, J.; Fernandes, I. Bioavailability studies and anticancer properties of malvidin based anthocyanins, pyranoanthocyanins and non-oxonium derivatives. Food Funct., 2016, 7(5), 2462-2468.
[http://dx.doi.org/10.1039/C6FO00445H] [PMID: 27165855]
[55]
Kay, C.D. Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr. Res. Rev., 2006, 19(1), 137-146.
[http://dx.doi.org/10.1079/NRR2005116] [PMID: 19079881]
[56]
Baron, G.; Altomare, A.; Regazzoni, L.; Redaelli, V.; Grandi, S.; Riva, A.; Morazzoni, P.; Mazzolari, A.; Carini, M.; Vistoli, G.; Aldini, G. Pharmacokinetic profile of bilberry anthocyanins in rats and the role of glucose transporters: LC-MS/MS and computational studies. J. Pharm. Biomed. Anal., 2017, 144, 112-121.
[http://dx.doi.org/10.1016/j.jpba.2017.04.042] [PMID: 28499643]
[57]
Mueller, D.; Jung, K.; Winter, M.; Rogoll, D.; Melcher, R.; Richling, E. Human intervention study to investigate the intestinal accessibility and bioavailability of anthocyanins from bilberries. Food Chem., 2017, 231, 275-286.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.130] [PMID: 28450007]
[58]
Jamar, G.; Estadella, D.; Pisani, L.P. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. Biofactors, 2017, 43(4), 507-516.
[http://dx.doi.org/10.1002/biof.1365] [PMID: 28504479]
[59]
Morais, C.A.; de Rosso, V.V.; Estadella, D.; Pisani, L.P. Anthocyanins as inflammatory modulators and the role of the gut microbiota. J. Nutr. Biochem., 2016, 33, 1-7.
[http://dx.doi.org/10.1016/j.jnutbio.2015.11.008] [PMID: 27260462]
[60]
Santino, A.; Scarano, A.; De Santis, S.; De Benedictis, M.; Giovinazzo, G.; Chieppa, M. Gut Microbiota Modulation and Anti-Inflammatory Properties of Dietary Polyphenols in IBD: New and Consolidated Perspectives. Curr. Pharm. Des., 2017, 23(16), 2344-2351.
[http://dx.doi.org/10.2174/1381612823666170207145420] [PMID: 28176667]
[61]
Lila, M.A.; Burton-Freeman, B.; Grace, M.; Kalt, W. Unraveling Anthocyanin Bioavailability for Human Health. Annu. Rev. Food Sci. Technol., 2016, 7, 375-393.
[http://dx.doi.org/10.1146/annurev-food-041715-033346] [PMID: 26772410]
[62]
Braga, A.R.C.; Murador, D.C.; de Souza Mesquita, L.M.; de Rosso, V.V. Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research. J. Food Compos. Anal., 2017.
[63]
Kay, C.D.; Pereira-Caro, G.; Ludwig, I.A.; Clifford, M.N.; Crozier, A. Anthocyanins and Flavanones Are More Bioavailable than Previously Perceived: A Review of Recent Evidence. Annu. Rev. Food Sci. Technol., 2017, 8, 155-180.
[http://dx.doi.org/10.1146/annurev-food-030216-025636] [PMID: 28125348]
[64]
Warner, E.F.; Smith, M.J.; Zhang, Q.; Raheem, K.S.; O’Hagan, D.; O’Connell, M.A.; Kay, C.D. Signatures of anthocyanin metabolites identified in humans inhibit biomarkers of vascular inflammation in human endothelial cells. Mol. Nutr. Food Res., 2017, 61(9)
[http://dx.doi.org/10.1002/mnfr.201700053] [PMID: 28457017]
[65]
Cassidy, A.; Minihane, A.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am. J. Clin. Nutr., 2017, 105(1), 10-22.
[http://dx.doi.org/10.3945/ajcn.116.136051] [PMID: 27881391]
[66]
Esposito, D.; Damsud, T.; Wilson, M.; Grace, M.H.; Strauch, R.; Li, X.; Lila, M.A.; Komarnytsky, S. Black Currant Anthocyanins Attenuate Weight Gain and Improve Glucose Metabolism in Diet-Induced Obese Mice with Intact, but Not Disrupted, Gut Microbiome. J. Agric. Food Chem., 2015, 63(27), 6172-6180.
[http://dx.doi.org/10.1021/acs.jafc.5b00963] [PMID: 26066489]
[67]
Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal., 2013, 18(14), 1818-1892.
[http://dx.doi.org/10.1089/ars.2012.4581] [PMID: 22794138]
[68]
Amin, H.P.; Czank, C.; Raheem, S.; Zhang, Q.; Botting, N.P.; Cassidy, A.; Kay, C.D. Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells. Mol. Nutr. Food Res., 2015, 59(6), 1095-1106.
[http://dx.doi.org/10.1002/mnfr.201400803] [PMID: 25787755]
[69]
Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol., 1956, 11(3), 298-300.
[http://dx.doi.org/10.1093/geronj/11.3.298] [PMID: 13332224]
[70]
Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-Mediated Cellular Signaling. Oxid. Med. Cell. Longev., 2016, 20164350965
[http://dx.doi.org/10.1155/2016/4350965] [PMID: 26998193]
[71]
Dröse, S.; Brandt, U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv. Exp. Med. Biol., 2012, 748, 145-169.
[http://dx.doi.org/10.1007/978-1-4614-3573-0_6] [PMID: 22729857]
[72]
Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol., 2011, 194(1), 7-15.
[http://dx.doi.org/10.1083/jcb.201102095] [PMID: 21746850]
[73]
Murray, C.I.; Van Eyk, J.E. Chasing cysteine oxidative modifications: proteomic tools for characterizing cysteine redox status. Circ Cardiovasc Genet, 2012, 5(5), 591.
[http://dx.doi.org/10.1161/CIRCGENETICS.111.961425] [PMID: 23074338]
[74]
Speciale, A.; Anwar, S.; Ricciardi, E.; Chirafisi, J.; Saija, A.; Cimino, F. Cellular adaptive response to glutathione depletion modulates endothelial dysfunction triggered by TNF-α. Toxicol. Lett., 2011, 207(3), 291-297.
[http://dx.doi.org/10.1016/j.toxlet.2011.09.017] [PMID: 21971136]
[75]
Kim, J.; Cha, Y.N.; Surh, Y.J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res., 2010, 690(1-2), 12-23.
[http://dx.doi.org/10.1016/j.mrfmmm.2009.09.007] [PMID: 19799917]
[76]
Tebay, L.E.; Robertson, H.; Durant, S.T.; Vitale, S.R.; Penning, T.M.; Dinkova-Kostova, A.T.; Hayes, J.D. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease., 2015.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.021]
[77]
Pall, M.L.; Levine, S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors 2015.
[78]
Derjuga, A.; Gourley, T.S.; Holm, T.M.; Heng, H.H.; Shivdasani, R.A.; Ahmed, R.; Andrews, N.C.; Blank, V. Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus. Mol. Cell. Biol., 2004, 24(8), 3286-3294.
[http://dx.doi.org/10.1128/MCB.24.8.3286-3294.2004] [PMID: 15060151]
[79]
Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; Igarashi, K.; Engel, J.D.; Yamamoto, M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev., 1999, 13(1), 76-86.
[http://dx.doi.org/10.1101/gad.13.1.76] [PMID: 9887101]
[80]
Tong, K.I.; Katoh, Y.; Kusunoki, H.; Itoh, K.; Tanaka, T.; Yamamoto, M. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol. Cell. Biol., 2006, 26(8), 2887-2900.
[http://dx.doi.org/10.1128/MCB.26.8.2887-2900.2006] [PMID: 16581765]
[81]
Katoh, Y.; Iida, K.; Kang, M.I.; Kobayashi, A.; Mizukami, M.; Tong, K.I.; McMahon, M.; Hayes, J.D.; Itoh, K.; Yamamoto, M. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Arch. Biochem. Biophys., 2005, 433(2), 342-350.
[http://dx.doi.org/10.1016/j.abb.2004.10.012] [PMID: 15581590]
[82]
Kobayashi, M.; Itoh, K.; Suzuki, T.; Osanai, H.; Nishikawa, K.; Katoh, Y.; Takagi, Y.; Yamamoto, M. Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. Genes Cells, 2002, 7(8), 807-820.
[http://dx.doi.org/10.1046/j.1365-2443.2002.00561.x] [PMID: 12167159]
[83]
Nioi, P.; Nguyen, T.; Sherratt, P.J.; Pickett, C.B. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol. Cell. Biol., 2005, 25(24), 10895-10906.
[http://dx.doi.org/10.1128/MCB.25.24.10895-10906.2005] [PMID: 16314513]
[84]
Baird, L.; Dinkova-Kostova, A.T. The cytoprotective role of the Keap1-Nrf2 pathway. Arch. Toxicol., 2011, 85(4), 241-272.
[http://dx.doi.org/10.1007/s00204-011-0674-5] [PMID: 21365312]
[85]
Xiang, M.; Namani, A.; Wu, S.; Wang, X. Nrf2: bane or blessing in cancer? J. Cancer Res. Clin. Oncol., 2014, 140(8), 1251-1259.
[http://dx.doi.org/10.1007/s00432-014-1627-1] [PMID: 24599821]
[86]
Cleasby, A.; Yon, J.; Day, P.J.; Richardson, C.; Tickle, I.J.; Williams, P.A.; Callahan, J.F.; Carr, R.; Concha, N.; Kerns, J.K.; Qi, H.; Sweitzer, T.; Ward, P.; Davies, T.G. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS One, 2014, 9(6)e98896
[http://dx.doi.org/10.1371/journal.pone.0098896] [PMID: 24896564]
[87]
Dinkova-Kostova, A.T.; Holtzclaw, W.D.; Cole, R.N.; Itoh, K.; Wakabayashi, N.; Katoh, Y.; Yamamoto, M.; Talalay, P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11908-11913.
[http://dx.doi.org/10.1073/pnas.172398899] [PMID: 12193649]
[88]
Wakabayashi, N.; Dinkova-Kostova, A.T.; Holtzclaw, W.D.; Kang, M.I.; Kobayashi, A.; Yamamoto, M.; Kensler, T.W.; Talalay, P. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc. Natl. Acad. Sci. USA, 2004, 101(7), 2040-2045.
[http://dx.doi.org/10.1073/pnas.0307301101] [PMID: 14764894]
[89]
Kaspar, J.W.; Niture, S.K.; Jaiswal, A.K. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med., 2009, 47(9), 1304-1309.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.07.035] [PMID: 19666107]
[90]
Canning, P.; Cooper, C.D.; Krojer, T.; Murray, J.W.; Pike, A.C.; Chaikuad, A.; Keates, T.; Thangaratnarajah, C.; Hojzan, V.; Ayinampudi, V.; Marsden, B.D.; Gileadi, O.; Knapp, S.; von Delft, F.; Bullock, A.N. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J. Biol. Chem., 2013, 288(11), 7803-7814.
[http://dx.doi.org/10.1074/jbc.M112.437996] [PMID: 23349464]
[91]
Chauhan, N.; Chaunsali, L.; Deshmukh, P.; Padmanabhan, B. Analysis of dimerization of BTB-IVR domains of Keap1 and its interaction with Cul3, by molecular modeling. Bioinformation, 2013, 9(9), 450-455.
[http://dx.doi.org/10.6026/97320630009450] [PMID: 23847398]
[92]
Zhang, D.D.; Hannink, M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell. Biol., 2003, 23(22), 8137-8151.
[http://dx.doi.org/10.1128/MCB.23.22.8137-8151.2003] [PMID: 14585973]
[93]
Jung, K.A.; Kwak, M.K. The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules, 2010, 15(10), 7266-7291.
[http://dx.doi.org/10.3390/molecules15107266] [PMID: 20966874]
[94]
Huang, H.C.; Nguyen, T.; Pickett, C.B. Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc. Natl. Acad. Sci. USA, 2000, 97(23), 12475-12480.
[http://dx.doi.org/10.1073/pnas.220418997] [PMID: 11035812]
[95]
Cullinan, S.B.; Diehl, J.A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem., 2004, 279(19), 20108-20117.
[http://dx.doi.org/10.1074/jbc.M314219200] [PMID: 14978030]
[96]
Xu, C.; Yuan, X.; Pan, Z.; Shen, G.; Kim, J.H.; Yu, S.; Khor, T.O.; Li, W.; Ma, J.; Kong, A.N. Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol. Cancer Ther., 2006, 5(8), 1918-1926.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0497] [PMID: 16928811]
[97]
Pi, J.; Bai, Y.; Reece, J.M.; Williams, J.; Liu, D.; Freeman, M.L.; Fahl, W.E.; Shugar, D.; Liu, J.; Qu, W.; Collins, S.; Waalkes, M.P. Molecular mechanism of human Nrf2 activation and degradation: role of sequential phosphorylation by protein kinase CK2. Free Radic. Biol. Med., 2007, 42(12), 1797-1806.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.001] [PMID: 17512459]
[98]
Apopa, P.L.; He, X.; Ma, Q. Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells. J. Biochem. Mol. Toxicol., 2008, 22(1), 63-76.
[http://dx.doi.org/10.1002/jbt.20212] [PMID: 18273910]
[99]
Hast, B.E.; Goldfarb, D.; Mulvaney, K.M.; Hast, M.A.; Siesser, P.F.; Yan, F.; Hayes, D.N.; Major, M.B. Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res., 2013, 73(7), 2199-2210.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4400] [PMID: 23382044]
[100]
Kabeya, Y.; Mizushima, N.; Yamamoto, A.; Oshitani-Okamoto, S.; Ohsumi, Y.; Yoshimori, T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci., 2004, 117(Pt 13), 2805-2812.
[http://dx.doi.org/10.1242/jcs.01131] [PMID: 15169837]
[101]
Jiang, T.; Harder, B.; Rojo de la Vega, M.; Wong, P.K.; Chapman, E.; Zhang, D.D. p62 links autophagy and Nrf2 signaling. Free Radic Biol Med., 2015, 88(Pt B), 199-204.
[102]
Abed, D.A.; Goldstein, M.; Albanyan, H.; Jin, H.; Hu, L. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents. Acta Pharm. Sin. B, 2015, 5(4), 285-299.
[http://dx.doi.org/10.1016/j.apsb.2015.05.008] [PMID: 26579458]
[103]
Wasserman, W.W.; Fahl, W.E. Functional antioxidant responsive elements. Proc. Natl. Acad. Sci. USA, 1997, 94(10), 5361-5366.
[http://dx.doi.org/10.1073/pnas.94.10.5361] [PMID: 9144242]
[104]
Hayes, J.D.; Ebisine, K.; Sharma, R.S.; Chowdhry, S.; Dinkova-Kostova, A.T.; Sutherland, C. Regulation of the CNC-bZIP transcription factor Nrf2 by Keap1 and the axis between GSK-3 and β-TrCP. Curr. Opin. Toxicol., 2016, 1, 92-103.
[http://dx.doi.org/10.1016/j.cotox.2016.10.003]
[105]
Hayden, M.S.; Ghosh, S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev., 2012, 26(3), 203-234.
[http://dx.doi.org/10.1101/gad.183434.111] [PMID: 22302935]
[106]
Pal, S.; Bhattacharjee, A.; Ali, A.; Mandal, N.C.; Mandal, S.C.; Pal, M. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J. Inflamm. (Lond.), 2014, 11, 23.
[http://dx.doi.org/10.1186/1476-9255-11-23] [PMID: 25152696]
[107]
Ghosh, S.; May, M.J.; Kopp, E.B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol., 1998, 16, 225-260.
[http://dx.doi.org/10.1146/annurev.immunol.16.1.225] [PMID: 9597130]
[108]
Baldwin, A.S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J. Clin. Invest., 2001, 107(3), 241-246.
[http://dx.doi.org/10.1172/JCI11991] [PMID: 11160144]
[109]
Huxford, T.; Ghosh, G. A structural guide to proteins of the NF-kappaB signaling module. Cold Spring Harb. Perspect. Biol., 2009, 1(3)a000075
[http://dx.doi.org/10.1101/cshperspect.a000075] [PMID: 20066103]
[110]
Alves, B.N.; Tsui, R.; Almaden, J.; Shokhirev, M.N.; Davis-Turak, J.; Fujimoto, J.; Birnbaum, H.; Ponomarenko, J.; Hoffmann, A. IκBε is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. J. Immunol., 2014, 192(7), 3121-3132.
[http://dx.doi.org/10.4049/jimmunol.1302351] [PMID: 24591377]
[111]
Escoubet-Lozach, L.; Benner, C.; Kaikkonen, M.U.; Lozach, J.; Heinz, S.; Spann, N.J.; Crotti, A.; Stender, J.; Ghisletti, S.; Reichart, D.; Cheng, C.S.; Luna, R.; Ludka, C.; Sasik, R.; Garcia-Bassets, I.; Hoffmann, A.; Subramaniam, S.; Hardiman, G.; Rosenfeld, M.G.; Glass, C.K. Mechanisms establishing TLR4-responsive activation states of inflammatory response genes. PLoS Genet., 2011, 7(12)e1002401
[http://dx.doi.org/10.1371/journal.pgen.1002401] [PMID: 22174696]
[112]
Huxford, T.; Huang, D.B.; Malek, S.; Ghosh, G. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell, 1998, 95(6), 759-770.
[http://dx.doi.org/10.1016/S0092-8674(00)81699-2] [PMID: 9865694]
[113]
Ghosh, S.; Karin, M. Missing pieces in the NF-kappaB puzzle. Cell, 2002, 109(Suppl.), S81-S96.
[http://dx.doi.org/10.1016/S0092-8674(02)00703-1] [PMID: 11983155]
[114]
Bonizzi, G.; Karin, M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol., 2004, 25(6), 280-288.
[http://dx.doi.org/10.1016/j.it.2004.03.008] [PMID: 15145317]
[115]
Scheidereit, C. IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene, 2006, 25(51), 6685-6705.
[http://dx.doi.org/10.1038/sj.onc.1209934] [PMID: 17072322]
[116]
Sun, S.C. The noncanonical NF-κB pathway. Immunol. Rev., 2012, 246(1), 125-140.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01088.x] [PMID: 22435551]
[117]
Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 227-241.
[http://dx.doi.org/10.1002/wsbm.1331] [PMID: 26990581]
[118]
Siggers, T.; Chang, A.B.; Teixeira, A.; Wong, D.; Williams, K.J.; Ahmed, B.; Ragoussis, J.; Udalova, I.A.; Smale, S.T.; Bulyk, M.L. Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-κB family DNA binding. Nat. Immunol., 2011, 13(1), 95-102.
[http://dx.doi.org/10.1038/ni.2151] [PMID: 22101729]
[119]
Pahl, H.L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 1999, 18(49), 6853-6866.
[http://dx.doi.org/10.1038/sj.onc.1203239] [PMID: 10602461]
[120]
Ben-Neriah, Y.; Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol., 2011, 12(8), 715-723.
[http://dx.doi.org/10.1038/ni.2060] [PMID: 21772280]
[121]
Speciale, A.; Anwar, S.; Canali, R.; Chirafisi, J.; Saija, A.; Virgili, F.; Cimino, F. Cyanidin-3-O-glucoside counters the response to TNF-alpha of endothelial cells by activating Nrf2 pathway. Mol. Nutr. Food Res., 2013, 57(11), 1979-1987.
[http://dx.doi.org/10.1002/mnfr.201300102] [PMID: 23901008]
[122]
Lee, J.H.; Khor, T.O.; Shu, L.; Su, Z.Y.; Fuentes, F.; Kong, A.N. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol. Ther., 2013, 137(2), 153-171.
[http://dx.doi.org/10.1016/j.pharmthera.2012.09.008] [PMID: 23041058]
[123]
Gloire, G.; Legrand-Poels, S.; Piette, J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol., 2006, 72(11), 1493-1505.
[http://dx.doi.org/10.1016/j.bcp.2006.04.011] [PMID: 16723122]
[124]
Lavrovsky, Y.; Schwartzman, M.L.; Levere, R.D.; Kappas, A.; Abraham, N.G. Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc. Natl. Acad. Sci. USA, 1994, 91(13), 5987-5991.
[http://dx.doi.org/10.1073/pnas.91.13.5987] [PMID: 8016102]
[125]
Chinenov, Y.; Kerppola, T.K. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene, 2001, 20(19), 2438-2452.
[http://dx.doi.org/10.1038/sj.onc.1204385] [PMID: 11402339]
[126]
Ye, N.; Ding, Y.; Wild, C.; Shen, Q.; Zhou, J. Small molecule inhibitors targeting activator protein 1 (AP-1). J. Med. Chem., 2014, 57(16), 6930-6948.
[http://dx.doi.org/10.1021/jm5004733] [PMID: 24831826]
[127]
Angel, P.; Karin, M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta, 1991, 1072(2-3), 129-157.
[PMID: 1751545]
[128]
Sun, Y.; Oberley, L.W. Redox regulation of transcriptional activators. Free Radic. Biol. Med., 1996, 21(3), 335-348.
[http://dx.doi.org/10.1016/0891-5849(96)00109-8] [PMID: 8855444]
[129]
Tewari, D.; Nabavi, S.F.; Nabavi, S.M.; Sureda, A.; Farooqi, A.A.; Atanasov, A.G.; Vacca, R.A.; Sethi, G.; Bishayee, A. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention. Pharmacol. Res., 2017.
[PMID: 28951297]
[130]
Espinosa-Diez, C.; Miguel, V.; Mennerich, D.; Kietzmann, T.; Sánchez-Pérez, P.; Cadenas, S.; Lamas, S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol., 2015, 6, 183-197.
[http://dx.doi.org/10.1016/j.redox.2015.07.008] [PMID: 26233704]
[131]
Chang, L.; Karin, M. Mammalian MAP kinase signalling cascades. Nature, 2001, 410(6824), 37-40.
[http://dx.doi.org/10.1038/35065000] [PMID: 11242034]
[132]
Fujioka, S.; Niu, J.; Schmidt, C.; Sclabas, G.M.; Peng, B.; Uwagawa, T.; Li, Z.; Evans, D.B.; Abbruzzese, J.L.; Chiao, P.J. NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol. Cell. Biol., 2004, 24(17), 7806-7819.
[http://dx.doi.org/10.1128/MCB.24.17.7806-7819.2004] [PMID: 15314185]
[133]
Fan, H.; Sun, B.; Gu, Q.; Lafond-Walker, A.; Cao, S.; Becker, L.C. Oxygen radicals trigger activation of NF-kappaB and AP-1 and upregulation of ICAM-1 in reperfused canine heart. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(5), H1778-H1786.
[http://dx.doi.org/10.1152/ajpheart.00796.2000] [PMID: 11959643]
[134]
Lee, S.W.; Han, S.I.; Kim, H.H.; Lee, Z.H. TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-kappaB. J. Biochem. Mol. Biol., 2002, 35(4), 371-376.
[PMID: 12296995]
[135]
von Knethen, A.; Callsen, D.; Brüne, B. NF-kappaB and AP-1 activation by nitric oxide attenuated apoptotic cell death in RAW 264.7 macrophages. Mol. Biol. Cell, 1999, 10(2), 361-372.
[http://dx.doi.org/10.1091/mbc.10.2.361] [PMID: 9950682]
[136]
Verma, I.M.; Stevenson, J.K.; Schwarz, E.M.; Van Antwerp, D.; Miyamoto, S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev., 1995, 9(22), 2723-2735.
[http://dx.doi.org/10.1101/gad.9.22.2723] [PMID: 7590248]
[137]
Stein, B.; Baldwin, A.S., Jr; Ballard, D.W.; Greene, W.C.; Angel, P.; Herrlich, P. Cross-coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J., 1993, 12(10), 3879-3891.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb06066.x] [PMID: 8404856]
[138]
Hotamisligil, G.S. Inflammation and metabolic disorders. Nature, 2006, 444(7121), 860-867.
[http://dx.doi.org/10.1038/nature05485] [PMID: 17167474]
[139]
Späh, F. Inflammation in atherosclerosis and psoriasis: common pathogenic mechanisms and the potential for an integrated treatment approach. Br. J. Dermatol., 2008, 159(Suppl. 2), 10-17.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08780.x] [PMID: 18700910]
[140]
Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; Chen, H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest., 2003, 112(12), 1821-1830.
[http://dx.doi.org/10.1172/JCI200319451] [PMID: 14679177]
[141]
Miller, M.A.; McTernan, P.G.; Harte, A.L.; Silva, N.F.; Strazzullo, P.; Alberti, K.G.; Kumar, S.; Cappuccio, F.P. Ethnic and sex differences in circulating endotoxin levels: A novel marker of atherosclerotic and cardiovascular risk in a British multi-ethnic population. Atherosclerosis, 2009, 203(2), 494-502.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.06.018] [PMID: 18672240]
[142]
Navegantes, K.C.; de Souza Gomes, R.; Pereira, P.A.T.; Czaikoski, P.G.; Azevedo, C.H.M.; Monteiro, M.C. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J. Transl. Med., 2017, 15(1), 36.
[http://dx.doi.org/10.1186/s12967-017-1141-8] [PMID: 28202039]
[143]
Koh, T.J.; DiPietro, L.A. Inflammation and wound healing: the role of the macrophage., Expert Rev. Mol. Med., 2011, 13e23.
[http://dx.doi.org/10.1017/S1462399411001943]
[144]
Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6)a001651
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]
[145]
Kim, E.K.; Choi, E.J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta, 2010, 1802(4), 396-405.
[http://dx.doi.org/10.1016/j.bbadis.2009.12.009] [PMID: 20079433]
[146]
Johnson, M.H.; de Mejia, E.G.; Fan, J.; Lila, M.A.; Yousef, G.G. Anthocyanins and proanthocyanidins from blueberry-blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate-utilizing enzymes in vitro. Mol. Nutr. Food Res., 2013, 57(7), 1182-1197.
[http://dx.doi.org/10.1002/mnfr.201200678] [PMID: 23526625]
[147]
Limtrakul, P.; Yodkeeree, S.; Pitchakarn, P.; Punfa, W. Suppression of Inflammatory Responses by Black Rice Extract in RAW 264.7 Macrophage Cells via Downregulation of NF-kB and AP-1 Signaling Pathways. Asian Pac. J. Cancer Prev., 2015, 16(10), 4277-4283.
[http://dx.doi.org/10.7314/APJCP.2015.16.10.4277] [PMID: 26028086]
[148]
Appel, K.; Meiser, P.; Millán, E.; Collado, J.A.; Rose, T.; Gras, C.C.; Carle, R.; Muñoz, E. Chokeberry (Aronia melanocarpa (Michx.) Elliot) concentrate inhibits NF-κB and synergizes with selenium to inhibit the release of pro-inflammatory mediators in macrophages. Fitoterapia, 2015, 105, 73-82.
[http://dx.doi.org/10.1016/j.fitote.2015.06.009] [PMID: 26079445]
[149]
Roth, S.; Spalinger, M.R.; Müller, I.; Lang, S.; Rogler, G.; Scharl, M. Bilberry-derived anthocyanins prevent IFN-γ-induced pro-inflammatory signalling and cytokine secretion in human THP-1 monocytic cells. Digestion, 2014, 90(3), 179-189.
[http://dx.doi.org/10.1159/000366055] [PMID: 25401758]
[150]
Sogo, T.; Terahara, N.; Hisanaga, A.; Kumamoto, T.; Yamashiro, T.; Wu, S.; Sakao, K.; Hou, D.X. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin. Biofactors, 2015, 41(1), 58-65.
[http://dx.doi.org/10.1002/biof.1201] [PMID: 25728636]
[151]
Hou, D.X.; Luo, D.; Tanigawa, S.; Hashimoto, F.; Uto, T.; Masuzaki, S.; Fujii, M.; Sakata, Y. Prodelphinidin B-4 3′-O-gallate, a tea polyphenol, is involved in the inhibition of COX-2 and iNOS via the downregulation of TAK1-NF-kappaB pathway. Biochem. Pharmacol., 2007, 74(5), 742-751.
[http://dx.doi.org/10.1016/j.bcp.2007.06.006] [PMID: 17658484]
[152]
Bognar, E.; Sarszegi, Z.; Szabo, A.; Debreceni, B.; Kalman, N.; Tucsek, Z.; Sumegi, B.; Gallyas, F., Jr Antioxidant and anti-inflammatory effects in RAW264.7 macrophages of malvidin, a major red wine polyphenol. PLoS One, 2013, 8(6)e65355
[http://dx.doi.org/10.1371/journal.pone.0065355] [PMID: 23755222]
[153]
Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm., 2007, 2007, 45673.
[http://dx.doi.org/10.1155/2007/45673] [PMID: 18274639]
[154]
Zhang, Y.; Lian, F.; Zhu, Y.; Xia, M.; Wang, Q.; Ling, W.; Wang, X.D. Cyanidin-3-O-beta-glucoside inhibits LPS-induced expression of inflammatory mediators through decreasing IkappaBalpha phosphorylation in THP-1 cells. Inflamm. Res., 2010, 59(9), 723-730.
[http://dx.doi.org/10.1007/s00011-010-0183-7] [PMID: 20309718]
[155]
Wang, Q.; Xia, M.; Liu, C.; Guo, H.; Ye, Q.; Hu, Y.; Zhang, Y.; Hou, M.; Zhu, H.; Ma, J.; Ling, W. Cyanidin-3-O-beta-glucoside inhibits iNOS and COX-2 expression by inducing liver X receptor alpha activation in THP-1 macrophages. Life Sci., 2008, 83(5-6), 176-184.
[http://dx.doi.org/10.1016/j.lfs.2008.05.017] [PMID: 18619979]
[156]
Min, S.W.; Ryu, S.N.; Kim, D.H. Anti-inflammatory effects of black rice, cyanidin-3-O-beta-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int. Immunopharmacol., 2010, 10(8), 959-966.
[http://dx.doi.org/10.1016/j.intimp.2010.05.009] [PMID: 20669401]
[157]
Jo, Y.H.; Park, H.C.; Choi, S.; Kim, S.; Bao, C.; Kim, H.W.; Choi, H.K.; Lee, H.J.; Auh, J.H. Metabolomic Analysis Reveals Cyanidins in Black Raspberry as Candidates for Suppression of Lipopolysaccharide-Induced Inflammation in Murine Macrophages. J. Agric. Food Chem., 2015, 63(22), 5449-5458.
[http://dx.doi.org/10.1021/acs.jafc.5b00560] [PMID: 26023864]
[158]
Varì, R.; D’Archivio, M.; Filesi, C.; Carotenuto, S.; Scazzocchio, B.; Santangelo, C.; Giovannini, C.; Masella, R. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages. J. Nutr. Biochem., 2011, 22(5), 409-417.
[http://dx.doi.org/10.1016/j.jnutbio.2010.03.008] [PMID: 20621462]
[159]
Karlsen, A.; Retterstøl, L.; Laake, P.; Paur, I.; Bøhn, S.K.; Sandvik, L.; Blomhoff, R. Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J. Nutr., 2007, 137(8), 1951-1954.
[http://dx.doi.org/10.1093/jn/137.8.1951] [PMID: 17634269]
[160]
Aboonabi, A.; Singh, I. Chemopreventive role of anthocyanins in atherosclerosis via activation of Nrf2-ARE as an indicator and modulator of redox. Biomed. Pharmacother., 2015, 72, 30-36.
[http://dx.doi.org/10.1016/j.biopha.2015.03.008] [PMID: 26054672]
[161]
Yi, L.; Chen, C.Y.; Jin, X.; Zhang, T.; Zhou, Y.; Zhang, Q.Y.; Zhu, J.D.; Mi, M.T. Differential suppression of intracellular reactive oxygen species-mediated signaling pathway in vascular endothelial cells by several subclasses of flavonoids. Biochimie, 2012, 94(9), 2035-2044.
[http://dx.doi.org/10.1016/j.biochi.2012.05.027] [PMID: 22683914]
[162]
Chen, C.Y.; Yi, L.; Jin, X.; Zhang, T.; Fu, Y.J.; Zhu, J.D.; Mi, M.T.; Zhang, Q.Y.; Ling, W.H.; Yu, B. Inhibitory effect of delphinidin on monocyte-endothelial cell adhesion induced by oxidized low-density lipoprotein via ROS/p38MAPK/NF-κB pathway. Cell Biochem. Biophys., 2011, 61(2), 337-348.
[http://dx.doi.org/10.1007/s12013-011-9216-2] [PMID: 21695376]
[163]
Chao, P.Y.; Huang, Y.P.; Hsieh, W.B. Inhibitive effect of purple sweet potato leaf extract and its components on cell adhesion and inflammatory response in human aortic endothelial cells. Cell Adhes. Migr., 2013, 7(2), 237-245.
[http://dx.doi.org/10.4161/cam.23649] [PMID: 23466865]
[164]
Speciale, A.; Canali, R.; Chirafisi, J.; Saija, A.; Virgili, F.; Cimino, F. Cyanidin-3-O-glucoside protection against TNF-α-induced endothelial dysfunction: involvement of nuclear factor-κB signaling. J. Agric. Food Chem., 2010, 58(22), 12048-12054.
[http://dx.doi.org/10.1021/jf1029515] [PMID: 20958056]
[165]
Yan, X.; Wu, L.; Li, B.; Meng, X.; Dai, H.; Zheng, Y.; Fu, J. Cyanidin-3-O-glucoside Induces Apoptosis and Inhibits Migration of Tumor Necrosis Factor-α-Treated Rat Aortic Smooth Muscle Cells. Cardiovasc. Toxicol., 2016, 16(3), 251-259.
[http://dx.doi.org/10.1007/s12012-015-9333-z] [PMID: 26138096]
[166]
Kim, H.J.; Tsoy, I.; Park, J.M.; Chung, J.I.; Shin, S.C.; Chang, K.C. Anthocyanins from soybean seed coat inhibit the expression of TNF-alpha-induced genes associated with ischemia/reperfusion in endothelial cell by NF-kappaB-dependent pathway and reduce rat myocardial damages incurred by ischemia and reperfusion in vivo. FEBS Lett., 2006, 580(5), 1391-1397.
[http://dx.doi.org/10.1016/j.febslet.2006.01.062] [PMID: 16457818]
[167]
Pantan, R.; Tocharus, J.; Suksamrarn, A.; Tocharus, C. Synergistic effect of atorvastatin and Cyanidin-3-glucoside on angiotensin II-induced inflammation in vascular smooth muscle cells. Exp. Cell Res., 2016, 342(2), 104-112.
[http://dx.doi.org/10.1016/j.yexcr.2016.02.017] [PMID: 26957227]
[168]
Parzonko, A.; Oświt, A.; Bazylko, A.; Naruszewicz, M. Anthocyans-rich Aronia melanocarpa extract possesses ability to protect endothelial progenitor cells against angiotensin II induced dysfunction. Phytomedicine, 2015, 22(14), 1238-1246.
[http://dx.doi.org/10.1016/j.phymed.2015.10.009] [PMID: 26655406]
[169]
Lee, I.C.; Bae, J.S. Suppressive effects of pelargonidin on PolyPhosphate-mediated vascular inflammatory responses. Arch. Pharm. Res., 2017, 40(2), 258-267.
[http://dx.doi.org/10.1007/s12272-016-0856-z] [PMID: 27826751]
[170]
Huang, W.Y.; Liu, Y.M.; Wang, J.; Wang, X.N.; Li, C.Y. Anti-inflammatory effect of the blueberry anthocyanins malvidin-3-glucoside and malvidin-3-galactoside in endothelial cells. Molecules, 2014, 19(8), 12827-12841.
[http://dx.doi.org/10.3390/molecules190812827] [PMID: 25153881]
[171]
Huang, W.Y.; Wang, J.; Liu, Y.M.; Zheng, Q.S.; Li, C.Y. Inhibitory effect of Malvidin on TNF-α-induced inflammatory response in endothelial cells. Eur. J. Pharmacol., 2014, 723, 67-72.
[http://dx.doi.org/10.1016/j.ejphar.2013.11.041] [PMID: 24333549]
[172]
Paixão, J.; Dinis, T.C.; Almeida, L.M. Malvidin-3-glucoside protects endothelial cells up-regulating endothelial NO synthase and inhibiting peroxynitrite-induced NF-kB activation. Chem. Biol. Interact., 2012, 199(3), 192-200.
[http://dx.doi.org/10.1016/j.cbi.2012.08.013] [PMID: 22959858]
[173]
Fratantonio, D.; Speciale, A.; Ferrari, D.; Cristani, M.; Saija, A.; Cimino, F. Palmitate-induced endothelial dysfunction is attenuated by cyanidin-3-O-glucoside through modulation of Nrf2/Bach1 and NF-κB pathways. Toxicol. Lett., 2015, 239(3), 152-160.
[http://dx.doi.org/10.1016/j.toxlet.2015.09.020] [PMID: 26422990]
[174]
Fratantonio, D.; Cimino, F.; Molonia, M.S.; Ferrari, D.; Saija, A.; Virgili, F.; Speciale, A. Cyanidin-3-O-glucoside ameliorates palmitate-induced insulin resistance by modulating IRS-1 phosphorylation and release of endothelial derived vasoactive factors. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(3), 351-357.
[http://dx.doi.org/10.1016/j.bbalip.2016.12.008] [PMID: 28011403]
[175]
Shan, Q.; Zheng, Y.; Lu, J.; Zhang, Z.; Wu, D.; Fan, S.; Hu, B.; Cai, X.; Cai, H.; Liu, P.; Liu, F. Purple sweet potato color ameliorates kidney damage via inhibiting oxidative stress mediated NLRP3 inflammasome activation in high fat diet mice. Food Chem. Toxicol., 2014, 69, 339-346.
[http://dx.doi.org/10.1016/j.fct.2014.04.033] [PMID: 24795233]
[176]
Lei, Y.F.; Chen, J.L.; Wei, H.; Xiong, C.M.; Zhang, Y.H.; Ruan, J.L. Hypolipidemic and anti-inflammatory properties of Abacopterin A from Abacopteris penangiana in high-fat diet-induced hyperlipidemia mice. Food Chem. Toxicol., 2011, 49(12), 3206-3210.
[http://dx.doi.org/10.1016/j.fct.2011.08.027] [PMID: 21963953]
[177]
Li, J.; Lim, S.S.; Lee, J.Y.; Kim, J.K.; Kang, S.W.; Kim, J.L.; Kang, Y.H. Purple corn anthocyanins dampened high-glucose-induced mesangial fibrosis and inflammation: possible renoprotective role in diabetic nephropathy. J. Nutr. Biochem., 2012, 23(4), 320-331.
[http://dx.doi.org/10.1016/j.jnutbio.2010.12.008] [PMID: 21543205]
[178]
Lee, J.S.; Kim, Y.R.; Park, J.M.; Kim, Y.E.; Baek, N.I.; Hong, E.K. Cyanidin-3-glucoside isolated from mulberry fruits protects pancreatic β-cells against glucotoxicity-induced apoptosis. Mol. Med. Rep., 2015, 11(4), 2723-2728.
[http://dx.doi.org/10.3892/mmr.2014.3078] [PMID: 25501967]
[179]
Zhang, B.; Buya, M.; Qin, W.; Sun, C.; Cai, H.; Xie, Q.; Xu, B.; Wu, Y. Anthocyanins from Chinese bayberry extract activate transcription factor Nrf2 in β cells and negatively regulate oxidative stress-induced autophagy. J. Agric. Food Chem., 2013, 61(37), 8765-8772.
[http://dx.doi.org/10.1021/jf4012399] [PMID: 23930663]
[180]
Min, H.K.; Kim, S.M.; Baek, S.Y.; Woo, J.W.; Park, J.S.; Cho, M.L.; Lee, J.; Kwok, S.K.; Kim, S.W.; Park, S.H. Anthocyanin Extracted from Black Soybean Seed Coats Prevents Autoimmune Arthritis by Suppressing the Development of Th17 Cells and Synthesis of Proinflammatory Cytokines by Such Cells, via Inhibition of NF-κB. PLoS One, 2015, 10(11)e0138201
[http://dx.doi.org/10.1371/journal.pone.0138201] [PMID: 26544846]
[181]
Seong, A.R.; Yoo, J.Y.; Choi, K.; Lee, M.H.; Lee, Y.H.; Lee, J.; Jun, W.; Kim, S.; Yoon, H.G. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-κB acetylation in fibroblast-like synoviocyte MH7A cells. Biochem. Biophys. Res. Commun., 2011, 410(3), 581-586.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.029] [PMID: 21683061]
[182]
Haseeb, A.; Chen, D.; Haqqi, T.M. Delphinidin inhibits IL-1β-induced activation of NF-κB by modulating the phosphorylation of IRAK-1(Ser376) in human articular chondrocytes. Rheumatology (Oxford), 2013, 52(6), 998-1008.
[http://dx.doi.org/10.1093/rheumatology/kes363] [PMID: 23392593]
[183]
Moriwaki, S.; Suzuki, K.; Muramatsu, M.; Nomura, A.; Inoue, F.; Into, T.; Yoshiko, Y.; Niida, S. Delphinidin, one of the major anthocyanidins, prevents bone loss through the inhibition of excessive osteoclastogenesis in osteoporosis model mice. PLoS One, 2014, 9(5)e97177
[http://dx.doi.org/10.1371/journal.pone.0097177] [PMID: 24824988]
[184]
Ferrari, D.; Speciale, A.; Cristani, M.; Fratantonio, D.; Molonia, M.S.; Ranaldi, G.; Saija, A.; Cimino, F. Cyanidin-3-O-glucoside inhibits NF-kB signalling in intestinal epithelial cells exposed to TNF-α and exerts protective effects via Nrf2 pathway activation. Toxicol. Lett., 2016, 264, 51-58.
[http://dx.doi.org/10.1016/j.toxlet.2016.10.014] [PMID: 27793764]
[185]
Serra, D.; Paixão, J.; Nunes, C.; Dinis, T.C.; Almeida, L.M. Cyanidin-3-glucoside suppresses cytokine-induced inflammatory response in human intestinal cells: comparison with 5-aminosalicylic acid. PLoS One, 2013, 8(9)e73001
[http://dx.doi.org/10.1371/journal.pone.0073001] [PMID: 24039842]
[186]
Serra, D.; Almeida, L.M.; Dinis, T.C. Anti-inflammatory protection afforded by cyanidin-3-glucoside and resveratrol in human intestinal cells via Nrf2 and PPAR-γ: Comparison with 5-aminosalicylic acid. Chem. Biol. Interact., 2016, 260, 102-109.
[http://dx.doi.org/10.1016/j.cbi.2016.11.003] [PMID: 27818126]
[187]
Taverniti, V.; Fracassetti, D.; Del Bo’, C.; Lanti, C.; Minuzzo, M.; Klimis-Zacas, D.; Riso, P.; Guglielmetti, S. Immunomodulatory effect of a wild blueberry anthocyanin-rich extract in human Caco-2 intestinal cells. J. Agric. Food Chem., 2014, 62(33), 8346-8351.
[http://dx.doi.org/10.1021/jf502180j] [PMID: 25075866]
[188]
Gessner, D.K.; Fiesel, A.; Most, E.; Dinges, J.; Wen, G.; Ringseis, R.; Eder, K. Supplementation of a grape seed and grape marc meal extract decreases activities of the oxidative stress-responsive transcription factors NF-κB and Nrf2 in the duodenal mucosa of pigs. Acta Vet. Scand., 2013, 55, 18.
[http://dx.doi.org/10.1186/1751-0147-55-18] [PMID: 23453040]
[189]
Roth, S.; Spalinger, M.R.; Gottier, C.; Biedermann, L.; Zeitz, J.; Lang, S.; Weber, A.; Rogler, G.; Scharl, M. Bilberry-Derived Anthocyanins Modulate Cytokine Expression in the Intestine of Patients with Ulcerative Colitis. PLoS One, 2016, 11(5)e0154817
[http://dx.doi.org/10.1371/journal.pone.0154817] [PMID: 27152519]
[190]
Ferrari, D.; Cimino, F.; Fratantonio, D.; Molonia, M.S.; Bashllari, R.; Busà, R.; Saija, A.; Speciale, A. Cyanidin-3-O-Glucoside Modulates the In Vitro Inflammatory Crosstalk between Intestinal Epithelial and Endothelial Cells. Mediators Inflamm., 2017, 20173454023
[http://dx.doi.org/10.1155/2017/3454023] [PMID: 28373746]
[191]
Kuntz, S.; Asseburg, H.; Dold, S.; Römpp, A.; Fröhling, B.; Kunz, C.; Rudloff, S. Inhibition of low-grade inflammation by anthocyanins from grape extract in an in vitro epithelial-endothelial co-culture model. Food Funct., 2015, 6(4), 1136-1149.
[http://dx.doi.org/10.1039/C4FO00755G] [PMID: 25690135]
[192]
Shih, P.H.; Hwang, S.L.; Yeh, C.T.; Yen, G.C. Synergistic effect of cyanidin and PPAR agonist against nonalcoholic steatohepatitis-mediated oxidative stress-induced cytotoxicity through MAPK and Nrf2 transduction pathways. J. Agric. Food Chem., 2012, 60(11), 2924-2933.
[http://dx.doi.org/10.1021/jf300005v] [PMID: 22364184]
[193]
Hwang, Y.P.; Choi, J.H.; Choi, J.M.; Chung, Y.C.; Jeong, H.G. Protective mechanisms of anthocyanins from purple sweet potato against tert-butyl hydroperoxide-induced hepatotoxicity. Food Chem. Toxicol., 2011, 49(9), 2081-2089.
[http://dx.doi.org/10.1016/j.fct.2011.05.021] [PMID: 21640154]
[194]
Hwang, Y.P.; Choi, J.H.; Yun, H.J.; Han, E.H.; Kim, H.G.; Kim, J.Y.; Park, B.H.; Khanal, T.; Choi, J.M.; Chung, Y.C.; Jeong, H.G. Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induced liver injury in rats by inducing Nrf2-mediated antioxidant enzymes and reducing COX-2 and iNOS expression. Food Chem. Toxicol., 2011, 49(1), 93-99.
[http://dx.doi.org/10.1016/j.fct.2010.10.002] [PMID: 20934476]
[195]
Luo, H.; Lv, X.D.; Wang, G.E.; Li, Y.F.; Kurihara, H.; He, R.R. Anti-inflammatory effects of anthocyanins-rich extract from bilberry (Vaccinium myrtillus L.) on croton oil-induced ear edema and Propionibacterium acnes plus LPS-induced liver damage in mice. Int. J. Food Sci. Nutr., 2014, 65(5), 594-601.
[http://dx.doi.org/10.3109/09637486.2014.886184] [PMID: 24548119]
[196]
Jiang, Z.; Chen, C.; Xie, W.; Wang, M.; Wang, J.; Zhang, X. Anthocyanins attenuate alcohol-induced hepatic injury by inhibiting pro-inflammation signalling. Nat. Prod. Res., 2016, 30(4), 469-473.
[http://dx.doi.org/10.1080/14786419.2015.1020492] [PMID: 25774691]
[197]
Shah, S.A.; Amin, F.U.; Khan, M.; Abid, M.N.; Rehman, S.U.; Kim, T.H.; Kim, M.W.; Kim, M.O. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J. Neuroinflammation, 2016, 13(1), 286.
[http://dx.doi.org/10.1186/s12974-016-0752-y] [PMID: 27821173]
[198]
Jeong, J.W.; Lee, W.S.; Shin, S.C.; Kim, G.Y.; Choi, B.T.; Choi, Y.H. Anthocyanins downregulate lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by suppressing the NF-κB and Akt/MAPKs signaling pathways. Int. J. Mol. Sci., 2013, 14(1), 1502-1515.
[http://dx.doi.org/10.3390/ijms14011502] [PMID: 23344054]
[199]
Wang, H.Y.; Wang, H.; Wang, J.H.; Wang, Q.; Ma, Q.F.; Chen, Y.Y. Protocatechuic Acid Inhibits Inflammatory Responses in LPS-Stimulated BV2 Microglia via NF-κB and MAPKs Signaling Pathways. Neurochem. Res., 2015, 40(8), 1655-1660.
[http://dx.doi.org/10.1007/s11064-015-1646-6] [PMID: 26134310]
[200]
Khan, M.S.; Ali, T.; Kim, M.W.; Jo, M.H.; Jo, M.G.; Badshah, H.; Kim, M.O. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Neurochem. Int., 2016, 100, 1-10.
[http://dx.doi.org/10.1016/j.neuint.2016.08.005] [PMID: 27522965]
[201]
Tarozzi, A.; Morroni, F.; Merlicco, A.; Bolondi, C.; Teti, G.; Falconi, M.; Cantelli-Forti, G.; Hrelia, P. Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25-35) oligomer-induced toxicity. Neurosci. Lett., 2010, 473(2), 72-76.
[http://dx.doi.org/10.1016/j.neulet.2010.02.006] [PMID: 20152881]
[202]
Belkacemi, A.; Ramassamy, C. Anthocyanins Protect SK-N-SH Cells Against Acrolein-Induced Toxicity by Preserving the Cellular Redox State. J. Alzheimers Dis., 2016, 50(4), 981-998.
[http://dx.doi.org/10.3233/JAD-150770] [PMID: 26890747]
[203]
Jia, H.; Chen, W.; Yu, X.; Wu, X.; Li, S.; Liu, H.; Liao, J.; Liu, W.; Mi, M.; Liu, L.; Cheng, D. Black rice anthocyanidins prevent retinal photochemical damage via involvement of the AP-1/NF-κB/Caspase-1 pathway in Sprague-Dawley rats. J. Vet. Sci., 2013, 14(3), 345-353.
[http://dx.doi.org/10.4142/jvs.2013.14.3.345] [PMID: 23820171]
[204]
Wang, Y.; Huo, Y.; Zhao, L.; Lu, F.; Wang, O.; Yang, X.; Ji, B.; Zhou, F. Cyanidin-3-glucoside and its phenolic acid metabolites attenuate visible light-induced retinal degeneration in vivo via activation of Nrf2/HO-1 pathway and NF-κB suppression. Mol. Nutr. Food Res., 2016, 60(7), 1564-1577.
[http://dx.doi.org/10.1002/mnfr.201501048] [PMID: 26991594]
[205]
Ogawa, K.; Kuse, Y.; Tsuruma, K.; Kobayashi, S.; Shimazawa, M.; Hara, H. Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro. BMC Complement. Altern. Med., 2014, 14, 120.
[http://dx.doi.org/10.1186/1472-6882-14-120] [PMID: 24690313]
[206]
Miyake, S.; Takahashi, N.; Sasaki, M.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Vision preservation during retinal inflammation by anthocyanin-rich bilberry extract: cellular and molecular mechanism. Lab. Invest., 2012, 92(1), 102-109.
[http://dx.doi.org/10.1038/labinvest.2011.132] [PMID: 21894150]
[207]
Song, Y.; Huang, L.; Yu, J. Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling. J. Neuroimmunol., 2016, 301, 1-6.
[http://dx.doi.org/10.1016/j.jneuroim.2016.11.001] [PMID: 27847126]
[208]
Tsoyi, K.; Park, H.B.; Kim, Y.M.; Chung, J.I.; Shin, S.C.; Lee, W.S.; Seo, H.G.; Lee, J.H.; Chang, K.C.; Kim, H.J. Anthocyanins from black soybean seed coats inhibit UVB-induced inflammatory cylooxygenase-2 gene expression and PGE2 production through regulation of the nuclear factor-kappaB and phosphatidylinositol 3-kinase/Akt pathway. J. Agric. Food Chem., 2008, 56(19), 8969-8974.
[http://dx.doi.org/10.1021/jf801345c] [PMID: 18778065]
[209]
Cimino, F.; Cristani, M.; Saija, A.; Bonina, F.P.; Virgili, F. Protective effects of a red orange extract on UVB-induced damage in human keratinocytes. Biofactors, 2007, 30(2), 129-138.
[http://dx.doi.org/10.1002/biof.5520300206] [PMID: 18356584]
[210]
Cimino, F.; Ambra, R.; Canali, R.; Saija, A.; Virgili, F. Effect of cyanidin-3-O-glucoside on UVB-induced response in human keratinocytes. J. Agric. Food Chem., 2006, 54(11), 4041-4047.
[http://dx.doi.org/10.1021/jf060253x] [PMID: 16719532]
[211]
Bae, J.Y.; Lim, S.S.; Kim, S.J.; Choi, J.S.; Park, J.; Ju, S.M.; Han, S.J.; Kang, I.J.; Kang, Y.H. Bog blueberry anthocyanins alleviate photoaging in ultraviolet-B irradiation-induced human dermal fibroblasts. Mol. Nutr. Food Res., 2009, 53(6), 726-738.
[http://dx.doi.org/10.1002/mnfr.200800245] [PMID: 19199288]
[212]
Huang, C.; Zhang, D.; Li, J.; Tong, Q.; Stoner, G.D. Differential inhibition of UV-induced activation of NF kappa B and AP-1 by extracts from black raspberries, strawberries, and blueberries. Nutr. Cancer, 2007, 58(2), 205-212.
[http://dx.doi.org/10.1080/01635580701328453] [PMID: 17640167]
[213]
Afaq, F.; Malik, A.; Syed, D.; Maes, D.; Matsui, M.S.; Mukhtar, H. Pomegranate fruit extract modulates UV-B-mediated phosphorylation of mitogen-activated protein kinases and activation of nuclear factor kappa B in normal human epidermal keratinocytes paragraph sign. Photochem. Photobiol., 2005, 81(1), 38-45.
[http://dx.doi.org/10.1562/2004-08-06-RA-264.1] [PMID: 15493960]
[214]
Choi, M.J.; Kim, B.K.; Park, K.Y.; Yokozawa, T.; Song, Y.O.; Cho, E.J. Anti-aging effects of cyanidin under a stress-induced premature senescence cellular system. Biol. Pharm. Bull., 2010, 33(3), 421-426.
[http://dx.doi.org/10.1248/bpb.33.421] [PMID: 20190403]
[215]
Pratheeshkumar, P.; Son, Y.O.; Wang, X.; Divya, S.P.; Joseph, B.; Hitron, J.A.; Wang, L.; Kim, D.; Yin, Y.; Roy, R.V.; Lu, J.; Zhang, Z.; Wang, Y.; Shi, X. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin. Toxicol. Appl. Pharmacol., 2014, 280(1), 127-137.
[http://dx.doi.org/10.1016/j.taap.2014.06.028] [PMID: 25062774]
[216]
Imanishi, T.; Hano, T.; Nishio, I. Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J. Hypertens., 2005, 23(1), 97-104.
[http://dx.doi.org/10.1097/00004872-200501000-00018] [PMID: 15643130]
[217]
Del Bo’, C.; Roursgaard, M.; Porrini, M.; Loft, S.; Møller, P.; Riso, P. Different effects of anthocyanins and phenolic acids from wild blueberry (Vaccinium angustifolium) on monocytes adhesion to endothelial cells in a TNF-α stimulated proinflammatory environment. Mol. Nutr. Food Res., 2016, 60(11), 2355-2366.
[http://dx.doi.org/10.1002/mnfr.201600178] [PMID: 27324255]
[218]
Gerber, P.A.; Rutter, G.A. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxid. Redox Signal., 2017, 26(10), 501-518.
[http://dx.doi.org/10.1089/ars.2016.6755] [PMID: 27225690]
[219]
Gioxari, A.; Kaliora, A.C.; Marantidou, F.; Panagiotakos, D.P. Intake of ω-3 polyunsaturated fatty acids in patients with rheumatoid arthritis: A systematic review and meta-analysis. Nutrition, 2018, 45, 114-124.e4.
[http://dx.doi.org/10.1016/j.nut.2017.06.023] [PMID: 28965775]
[220]
Kuntz, S.; Kunz, C.; Domann, E.; Würdemann, N.; Unger, F.; Römpp, A.; Rudloff, S. Inhibition of Low-Grade Inflammation by Anthocyanins after Microbial Fermentation in Vitro. Nutrients, 2016, 8(7)E411
[http://dx.doi.org/10.3390/nu8070411] [PMID: 27384582]
[221]
Almeida Morais, C.; Oyama, L.M.; de Oliveira, J.L.; Carvalho Garcia, M.; de Rosso, V.V.; Sousa Mendes Amigo, L.; do Nascimento, C.M.; Pisani, L.P. Jussara (Euterpe edulis Mart.) supplementation during pregnancy and lactation modulates the gene and protein expression of inflammation biomarkers induced by trans-fatty acids in the colon of offspring. Mediators Inflamm., 2014, 2014987927
[http://dx.doi.org/10.1155/2014/987927] [PMID: 25276060]
[222]
Morais, C.A.; Oyama, L.M.; de Moura Conrado, R.; de Rosso, V.V.; do Nascimento, C.O.; Pisani, L.P. Polyphenols-rich fruit in maternal diet modulates inflammatory markers and the gut microbiota and improves colonic expression of ZO-1 in offspring. Food Res. Int., 2015, 77, 186-193.
[http://dx.doi.org/10.1016/j.foodres.2015.06.043]
[223]
Caricilli, A.M.; Castoldi, A.; Câmara, N.O. Intestinal barrier: A gentlemen’s agreement between microbiota and immunity. World J. Gastrointest. Pathophysiol., 2014, 5(1), 18-32.
[http://dx.doi.org/10.4291/wjgp.v5.i1.18] [PMID: 24891972]
[224]
Kamat, C.D.; Gadal, S.; Mhatre, M.; Williamson, K.S.; Pye, Q.N.; Hensley, K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J. Alzheimers Dis., 2008, 15(3), 473-493.
[http://dx.doi.org/10.3233/JAD-2008-15314] [PMID: 18997301]
[225]
Amin, F.U.; Shah, S.A.; Badshah, H.; Khan, M.; Kim, M.O. Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ1-42-induced oxidative stress. J. Nanobiotechnology, 2017, 15(1), 12.
[http://dx.doi.org/10.1186/s12951-016-0227-4] [PMID: 28173812]
[226]
Wong, I.Y.; Koo, S.C.; Chan, C.W. Prevention of age-related macular degeneration. Int. Ophthalmol., 2011, 31(1), 73-82.
[http://dx.doi.org/10.1007/s10792-010-9397-5] [PMID: 20862519]
[227]
Pillai, S.; Oresajo, C.; Hayward, J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review. Int. J. Cosmet. Sci., 2005, 27(1), 17-34.
[http://dx.doi.org/10.1111/j.1467-2494.2004.00241.x] [PMID: 18492178]
[228]
Kwon, J.Y.; Lee, K.W.; Kim, J.E.; Jung, S.K.; Kang, N.J.; Hwang, M.K.; Heo, Y.S.; Bode, A.M.; Dong, Z.; Lee, H.J. Delphinidin suppresses ultraviolet B-induced cyclooxygenases-2 expression through inhibition of MAPKK4 and PI-3 kinase. Carcinogenesis, 2009, 30(11), 1932-1940.
[http://dx.doi.org/10.1093/carcin/bgp216] [PMID: 19776176]
[229]
Ernst, I.M.; Wagner, A.E.; Huebbe, P.; Rimbach, G. Cyanidin does not affect sulforaphane-mediated Nrf2 induction in cultured human keratinocytes. Br. J. Nutr., 2012, 107(3), 360-363.
[http://dx.doi.org/10.1017/S0007114511002984] [PMID: 21745425]
[230]
Han, S.J.; Ryu, S.N.; Trinh, H.T.; Joh, E.H.; Jang, S.Y.; Han, M.J.; Kim, D.H. Metabolism of cyanidin-3-O-beta-D-glucoside isolated from black colored rice and its antiscratching behavioral effect in mice. J. Food Sci., 2009, 74(8), H253-H258.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01327.x] [PMID: 19799667]
[231]
Khan, N.; Afaq, F.; Mukhtar, H. Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid. Redox Signal., 2008, 10(3), 475-510.
[http://dx.doi.org/10.1089/ars.2007.1740] [PMID: 18154485]
[232]
Lin, B.W.; Gong, C.C.; Song, H.F.; Cui, Y.Y. Effects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol., 2017, 174(11), 1226-1243.
[http://dx.doi.org/10.1111/bph.13627] [PMID: 27646173]
[233]
Hou, D.X.; Fujii, M.; Terahara, N.; Yoshimoto, M. Molecular Mechanisms Behind the Chemopreventive Effects of Anthocyanidins. J. Biomed. Biotechnol., 2004, 2004(5), 321-325.
[http://dx.doi.org/10.1155/S1110724304403040] [PMID: 15577196]
[234]
Wang, S.Y.; Feng, R.; Bowman, L.; Penhallegon, R.; Ding, M.; Lu, Y. Antioxidant activity in lingonberries (Vaccinium vitis-idaea L.) and its inhibitory effect on activator protein-1, nuclear factor-kappaB, and mitogen-activated protein kinases activation. J. Agric. Food Chem., 2005, 53(8), 3156-3166.
[http://dx.doi.org/10.1021/jf048379m] [PMID: 15826073]
[235]
Yun, J.M.; Afaq, F.; Khan, N.; Mukhtar, H. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells. Mol. Carcinog., 2009, 48(3), 260-270.
[http://dx.doi.org/10.1002/mc.20477] [PMID: 18729103]
[236]
Signorelli, P.; Fabiani, C.; Brizzolari, A.; Paroni, R.; Casas, J.; Fabriàs, G.; Rossi, D.; Ghidoni, R.; Caretti, A. Natural grape extracts regulate colon cancer cells malignancy. Nutr. Cancer, 2015, 67(3), 494-503.
[http://dx.doi.org/10.1080/01635581.2015.1004591] [PMID: 25705818]
[237]
Yun, J.W.; Lee, W.S.; Kim, M.J.; Lu, J.N.; Kang, M.H.; Kim, H.G.; Kim, D.C.; Choi, E.J.; Choi, J.Y.; Kim, H.G.; Lee, Y.K.; Ryu, C.H.; Kim, G.; Choi, Y.H.; Park, O.J.; Shin, S.C. Characterization of a profile of the anthocyanins isolated from Vitis coignetiae Pulliat and their anti-invasive activity on HT-29 human colon cancer cells. Food Chem. Toxicol., 2010, 48(3), 903-909.
[http://dx.doi.org/10.1016/j.fct.2009.12.031] [PMID: 20060025]
[238]
Fan, M.J.; Wang, I.C.; Hsiao, Y.T.; Lin, H.Y.; Tang, N.Y.; Hung, T.C.; Quan, C.; Lien, J.C.; Chung, J.G. Anthocyanins from black rice (Oryza sativa L.) demonstrate antimetastatic properties by reducing MMPs and NF-κB expressions in human oral cancer CAL 27 cells. Nutr. Cancer, 2015, 67(2), 327-338.
[http://dx.doi.org/10.1080/01635581.2015.990576] [PMID: 25658905]
[239]
Kuntz, S.; Kunz, C.; Rudloff, S. Inhibition of pancreatic cancer cell migration by plasma anthocyanins isolated from healthy volunteers receiving an anthocyanin-rich berry juice. Eur. J. Nutr., 2017, 56(1), 203-214.
[http://dx.doi.org/10.1007/s00394-015-1070-3] [PMID: 26476633]
[240]
Chen, T.; Rose, M.E.; Hwang, H.; Nines, R.G.; Stoner, G.D. Black raspberries inhibit N-nitrosomethylbenzylamine (NMBA)-induced angiogenesis in rat esophagus parallel to the suppression of COX-2 and iNOS. Carcinogenesis, 2006, 27(11), 2301-2307.
[http://dx.doi.org/10.1093/carcin/bgl109] [PMID: 16777990]
[241]
Shin, D.Y.; Lee, W.S.; Kim, S.H.; Kim, M.J.; Yun, J.W.; Lu, J.N.; Lee, S.J.; Tsoy, I.; Kim, H.J.; Ryu, C.H.; Kim, G.Y.; Kang, H.S.; Shin, S.C.; Choi, Y.H. Anti-invasive activity of anthocyanins isolated from Vitis coignetiae in human hepatocarcinoma cells. J. Med. Food, 2009, 12(5), 967-972.
[http://dx.doi.org/10.1089/jmf.2008.1338] [PMID: 19857058]
[242]
Chen, P.N.; Kuo, W.H.; Chiang, C.L.; Chiou, H.L.; Hsieh, Y.S.; Chu, S.C. Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chem. Biol. Interact., 2006, 163(3), 218-229.
[http://dx.doi.org/10.1016/j.cbi.2006.08.003] [PMID: 16970933]
[243]
Thoppil, R.J.; Bhatia, D.; Barnes, K.F.; Haznagy-Radnai, E.; Hohmann, J.; Darvesh, A.S.; Bishayee, A. Black currant anthocyanins abrogate oxidative stress through Nrf2- mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma. Curr. Cancer Drug Targets, 2012, 12(9), 1244-1257.
[PMID: 22873220]
[244]
Chen, P.N.; Chu, S.C.; Chiou, H.L.; Kuo, W.H.; Chiang, C.L.; Hsieh, Y.S. Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett., 2006, 235(2), 248-259.
[http://dx.doi.org/10.1016/j.canlet.2005.04.033] [PMID: 15975709]
[245]
Kausar, H.; Jeyabalan, J.; Aqil, F.; Chabba, D.; Sidana, J.; Singh, I.P.; Gupta, R.C. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett., 2012, 325(1), 54-62.
[http://dx.doi.org/10.1016/j.canlet.2012.05.029] [PMID: 22659736]
[246]
Im, N.K.; Jang, W.J.; Jeong, C.H.; Jeong, G.S. Delphinidin suppresses PMA-induced MMP-9 expression by blocking the NF-κB activation through MAPK signaling pathways in MCF-7 human breast carcinoma cells. J. Med. Food, 2014, 17(8), 855-861.
[http://dx.doi.org/10.1089/jmf.2013.3077] [PMID: 25000305]
[247]
Syed, D.N.; Afaq, F.; Sarfaraz, S.; Khan, N.; Kedlaya, R.; Setaluri, V.; Mukhtar, H. Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation. Toxicol. Appl. Pharmacol., 2008, 231(1), 52-60.
[http://dx.doi.org/10.1016/j.taap.2008.03.023] [PMID: 18499206]
[248]
Hafeez, B.B.; Siddiqui, I.A.; Asim, M.; Malik, A.; Afaq, F.; Adhami, V.M.; Saleem, M.; Din, M.; Mukhtar, H. A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer PC3 cells in vitro and in vivo: involvement of nuclear factor-kappaB signaling. Cancer Res., 2008, 68(20), 8564-8572.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2232] [PMID: 18922932]
[249]
Muñoz-Espada, A.C.; Watkins, B.A. Cyanidin attenuates PGE2 production and cyclooxygenase-2 expression in LNCaP human prostate cancer cells. J. Nutr. Biochem., 2006, 17(9), 589-596.
[http://dx.doi.org/10.1016/j.jnutbio.2005.10.007] [PMID: 16443360]
[250]
Lee, S.J.; Hong, S.; Yoo, S.H.; Kim, G.W. Cyanidin-3-O-sambubioside from Acanthopanax sessiliflorus fruit inhibits metastasis by downregulating MMP-9 in breast cancer cells MDA-MB-231. Planta Med., 2013, 79(17), 1636-1640.
[http://dx.doi.org/10.1055/s-0033-1350954] [PMID: 24214832]
[251]
Lu, J.N.; Lee, W.S.; Yun, J.W.; Kim, M.J.; Kim, H.J.; Kim, D.C.; Jeong, J.H.; Choi, Y.H.; Kim, G.S.; Ryu, C.H.; Shin, S.C. Anthocyanins from Vitis coignetiae Pulliat Inhibit Cancer Invasion and Epithelial-Mesenchymal Transition, but These Effects Can Be Attenuated by Tumor Necrosis Factor in Human Uterine Cervical Cancer HeLa Cells. Evid. Based Complement. Alternat. Med., 2013, 2013503043
[http://dx.doi.org/10.1155/2013/503043] [PMID: 23864892]
[252]
Boivin, D.; Blanchette, M.; Barrette, S.; Moghrabi, A.; Béliveau, R. Inhibition of cancer cell proliferation and suppression of TNF-induced activation of NFkappaB by edible berry juice. Anticancer Res., 2007, 27(2), 937-948.
[PMID: 17465224]
[253]
Hecht, S.S.; Huang, C.; Stoner, G.D.; Li, J.; Kenney, P.M.; Sturla, S.J.; Carmella, S.G. Identification of cyanidin glycosides as constituents of freeze-dried black raspberries which inhibit anti-benzo[a]pyrene-7,8-diol-9,10-epoxide induced NFkappaB and AP-1 activity. Carcinogenesis, 2006, 27(8), 1617-1626.
[http://dx.doi.org/10.1093/carcin/bgi366] [PMID: 16522666]
[254]
Forester, S.C.; Choy, Y.Y.; Waterhouse, A.L.; Oteiza, P.I. The anthocyanin metabolites gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde decrease human colon cancer cell viability by regulating pro-oncogenic signals. Mol. Carcinog., 2014, 53(6), 432-439.
[http://dx.doi.org/10.1002/mc.21974] [PMID: 23124926]
[255]
Singh, S.; Singh, P.P.; Roberts, L.R.; Sanchez, W. Chemopreventive strategies in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(1), 45-54.
[http://dx.doi.org/10.1038/nrgastro.2013.143] [PMID: 23938452]
[256]
Steward, W.P.; Brown, K. Cancer chemoprevention: a rapidly evolving field. Br. J. Cancer, 2013, 109(1), 1-7.
[http://dx.doi.org/10.1038/bjc.2013.280] [PMID: 23736035]
[257]
Bin Hafeez, B.; Asim, M.; Siddiqui, I.A.; Adhami, V.M.; Murtaza, I.; Mukhtar, H. Delphinidin, a dietary anthocyanidin in pigmented fruits and vegetables: a new weapon to blunt prostate cancer growth. Cell Cycle, 2008, 7(21), 3320-3326.
[http://dx.doi.org/10.4161/cc.7.21.6969] [PMID: 18948740]
[258]
Cristani, M.; Speciale, A.; Saija, A.; Gangemi, S.; Minciullo, P.L.; Cimino, F. Circulating Advanced Oxidation Protein Products as Oxidative Stress Biomarkers and Progression Mediators in Pathological Conditions Related to Inflammation and Immune Dysregulation. Curr. Med. Chem., 2016, 23(34), 3862-3882.
[http://dx.doi.org/10.2174/0929867323666160902154748] [PMID: 27593960]
[259]
Wang, J.; Yi, J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol. Ther., 2008, 7(12), 1875-1884.
[http://dx.doi.org/10.4161/cbt.7.12.7067] [PMID: 18981733]
[260]
Assi, M.; Rébillard, A. The Janus-Faced Role of Antioxidants in Cancer Cachexia: New Insights on the Established Concepts. Oxid. Med. Cell. Longev., 2016, 20169579868
[http://dx.doi.org/10.1155/2016/9579868] [PMID: 27642498]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 12
Year: 2020
Page: [1955 - 1996]
Pages: 42
DOI: 10.2174/0929867325666181112093336
Price: $65

Article Metrics

PDF: 19
HTML: 2
EPUB: 1
PRC: 1