Structural and Bioactive Studies of Halogenated Constituents from Sponges

Author(s): Chao Li, Dayong Shi*.

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 14 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Marine organisms are abundant sources of bioactive natural products. Among metabolites produced by sponges and their associated microbial communities, halogenated natural compounds accounted for an important part due to their potent biological activities. The present review updates and compiles a total of 258 halogenated organic compounds isolated in the past three decades, especially brominated derivatives derived from 31 genera of marine sponges. These compounds can be classified as the following classes: brominated polyunsaturated lipids, nitrogen compounds, brominated tyrosine derivatives and other halogenated compounds. These substances were listed together with their source organisms, structures and bioactivities. For this purpose, 84 references were consulted.

Keywords: Halogenated, sponges, marine, isolate, constitutes, activity.

[1]
Woo, S.Y.; Win, N.N.; Wong, C.P.; Ito, T.; Hoshino, S.; Ngwe, H.; Aye, A.A.; Han, N.M.; Zhang, H.; Hayashi, F.; Abe, I.; Morita, H. Two new pyrrolo-2-aminoimidazoles from a Myanmarese marine sponge, Clathria prolifera. J. Nat. Med., 2018, 72(3), 803-807.
[http://dx.doi.org/10.1007/s11418-018-1205-y] [PMID: 29569222]
[2]
Öztürk, B.; de Jaeger, L.; Smidt, H.; Sipkema, D. Culture-dependent and independent approaches for identifying novel halogenases encoded by Crambe crambe (marine sponge) microbiota. Sci. Rep., 2013, 3(6153), 2780-2787.
[http://dx.doi.org/10.1038/srep02780] [PMID: 24071658]
[3]
Li, T.; Wang, B.; De Voogd, N.J.; Tang, X.L. Two new diterpene alkaloids from the South China sea sponge Agelas aff. Nemoechinata. Chin. Chem. Lett., 2016, 47(7), 1048-1051.
[http://dx.doi.org/10.1016/j.cclet.2016.05.017]
[4]
Carté, B.K. Biomedical potential of marine natural products. Bioscience, 1996, 46(4), 271-286.
[http://dx.doi.org/10.2307/1312834]
[5]
Gribble, G.W. Recently discovered naturally occurring heterrocyclic organohalogen compounds. Heterocycles, 2012, 84(1), 157-207.
[http://dx.doi.org/10.3987/REV-11-SR(P)5]
[6]
Gribble, G.W. The diversity of naturally produced organohalogens. Chemosphere, 2003, 52(2), 289-297.
[http://dx.doi.org/10.1016/S0045-6535(03)00207-8] [PMID: 12738253]
[7]
Vetter, W.; Janussen, D. Halogenated natural products in five species of Antarctic sponges: compounds with POP-like properties? Environ. Sci. Technol., 2005, 39(11), 3889-3895.
[http://dx.doi.org/10.1021/es0484597] [PMID: 15984761]
[8]
Laport, M.S.; Santos, O.C.; Muricy, G. Marine sponges: potential sources of new antimicrobial drugs. Curr. Pharm. Biotechnol., 2009, 10(1), 86-105.
[http://dx.doi.org/10.2174/138920109787048625] [PMID: 19149592]
[9]
Lira, N.S.; Montes, R.C.; Tavares, J.F.; da Silva, M.S.; da Cunha, E.V.; de Athayde-Filho, P.F.; Rodrigues, L.C.; da Silva Dias, C.; Barbosa-Filho, J.M. Brominated compounds from marine sponges of the genus Aplysina and a compilation of their 13C NMR spectral data. Mar. Drugs, 2011, 9(11), 2316-2368.
[http://dx.doi.org/10.3390/md9112316] [PMID: 22163189]
[10]
Laus, G. Biological activities of natural halogen compounds. Stud. Nat. Prod. Chem., 2001, 25, 757-809.
[http://dx.doi.org/10.1016/S1572-5995(01)80022-3]
[11]
Lebouvier, N.; Jullian, V.; Desvignes, I.; Maurel, S.; Parenty, A.; Dorin-Semblat, D.; Doerig, C.; Sauvain, M.; Laurent, D. Antiplasmodial activities of homogentisic acid derivative protein kinase inhibitors isolated from a Vanuatu marine sponge Pseudoceratina sp. Mar. Drugs, 2009, 7(4), 640-653.
[http://dx.doi.org/10.3390/md7040640] [PMID: 20098604]
[12]
Aiello, A.; Fattorusso, E.; Imperatore, C.; Menna, M.; Müller, W.E. Iodocionin, a cytotoxic iodinated metabolite from the Mediterranean ascidian Ciona edwardsii. Mar. Drugs, 2010, 8(2), 285-291.
[http://dx.doi.org/10.3390/md8020285] [PMID: 20390106]
[13]
Jiang, W.; Liu, D.; Deng, Z.W.; De Voogd, N.J.; Proksch, P.; Lin, W. Brominated polyunsaturated lipids and their stereochemistry from the Chinese marine sponge Xestospongia testudinaria. Tetrahedron, 2011, 67(1), 58-68.
[http://dx.doi.org/10.1016/j.tet.2010.11.045]
[14]
Pham, N.B.; Butler, M.S.; Hooper, J.N.A.; Moni, R.W.; Quinn, R.J. Isolation of xestosterol esters of brominated acetylenic fatty acids from the marine sponge xestospongia testudinaria. J. Nat. Prod., 1999, 62(10), 1439-1442.
[http://dx.doi.org/10.1021/np9901635] [PMID: 10543913]
[15]
Keffer, J.L.; Plaza, A.; Bewley, C.A. Motualevic acids A-F, antimicrobial acids from the sponge Siliquariaspongia sp. Org. Lett., 2009, 11(5), 1087-1090.
[http://dx.doi.org/10.1021/ol802890b] [PMID: 19191563]
[16]
Liang, L.F.; Wang, T.; Cai, Y.S.; He, W.F.; Sun, P.; Li, Y.F.; Huang, Q.; Taglialatela-Scafati, O.; Wang, H.Y.; Guo, Y.W. Brominated polyunsaturated lipids from the Chinese sponge Xestospongia testudinaria as a new class of pancreatic lipase inhibitors. Eur. J. Med. Chem., 2014, 79, 290-297.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.003] [PMID: 24747066]
[17]
Akiyama, T.; Takada, K.; Oikawa, T.; Matsuura, N.; Ise, Y.; Okada, S.; Matsunaga, S. Stimulators of adipogenesis from the marine sponge Xestospongia testudinaria. Tetrahedron, 2013, 69(32), 6560-6564.
[http://dx.doi.org/10.1016/j.tet.2013.06.007]
[18]
Davis, R.A.; Duffy, S.; Avery, V.M.; Camp, D.; Hooper, J.N.A.; Quinn, R.J. (+)-7-Bromotrypargine: an antimalarial β-carboline from the Australian marine sponge Ancorina sp. Tetrahedron Lett., 2010, 51(4), 583-585.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.055]
[19]
Dai, J.; Jiménez, J.I.; Kelly, M.; Williams, P.G. Dictazoles: potential vinyl cyclobutane biosynthetic precursors to the dictazolines. J. Org. Chem., 2010, 75(7), 2399-2402.
[http://dx.doi.org/10.1021/jo902566n] [PMID: 20222695]
[20]
Watts, K.R.; Morinaka, B.I.; Amagata, T.; Robinson, S.J.; Tenney, K.; Bray, W.M.; Gassner, N.C.; Lokey, R.S.; Media, J.; Valeriote, F.A.; Crews, P. Biostructural features of additional jasplakinolide (jaspamide) analogues. J. Nat. Prod., 2011, 74(3), 341-351.
[http://dx.doi.org/10.1021/np100721g] [PMID: 21241058]
[21]
Gala, F.; D’auria, M.V.; De Marino, S.; Sepe, V.; Zollo, F.; Smith, C.D.; Keller, S.N.; Zampella, A. Jaspamides M-P: new tryptophan modified jaspamide derivatives from the sponge Jaspis splendans. Tetrahedron, 2009, 65, 51-56.
[http://dx.doi.org/10.1016/j.tet.2008.10.076]
[22]
Plaza, A.; Keffer, J.L.; Lloyd, J.R.; Colin, P.L.; Bewley, C.A. Paltolides A--C, anabaenopeptin-type peptides from the palau sponge Theonella swinhoei. J. Nat. Prod., 2010, 73(3), 485-488.
[http://dx.doi.org/10.1021/np900728x] [PMID: 20078073]
[23]
Lu, Z.; Van Wagoner, R.M.; Harper, M.K.; Baker, H.L.; Hooper, J.N.; Bewley, C.A.; Ireland, C.M. Mirabamides E-H, HIV-inhibitory depsipeptides from the sponge Stelletta clavosa. J. Nat. Prod., 2011, 74(2), 185-193.
[http://dx.doi.org/10.1021/np100613p] [PMID: 21280591]
[24]
Buchanan, M.S.; Carroll, A.R.; Wessling, D.; Jobling, M.; Avery, V.M.; Davis, R.A.; Feng, Y.; Hooper, J.N.; Quinn, R.J. Clavatadines C-E, guanidine alkaloids from the Australian sponge Suberea clavata. J. Nat. Prod., 2009, 72(5), 973-975.
[http://dx.doi.org/10.1021/np8008013] [PMID: 19379003]
[25]
El-Naggar, M.; Capon, R.J. Discorhabdins revisited: cytotoxic alkaloids from southern australian marine sponges of the genera Higginsia and Spongosorites. J. Nat. Prod., 2009, 72(3), 460-464.
[http://dx.doi.org/10.1021/np8007667] [PMID: 19226152]
[26]
Grkovic, T.; Copp, B.R. New natural products in the discorhabdin A- and B-series from New Zealand-sourced Latrunculia spp. sponges. Tetrahedron, 2009, 65(32), 6335-6340.
[http://dx.doi.org/10.1016/j.tet.2009.06.012]
[27]
Na, M.; Ding, Y.; Wang, B.; Tekwani, B.L.; Schinazi, R.F.; Franzblau, S.; Kelly, M.; Stone, R.; Li, X.C.; Ferreira, D.; Hamann, M.T. Anti-infective discorhabdins from a deep-water alaskan sponge of the genus Latrunculia. J. Nat. Prod., 2010, 73(3), 383-387.
[http://dx.doi.org/10.1021/np900281r] [PMID: 20337497]
[28]
Hertiani, T.; Edrada-Ebel, R.; Ortlepp, S.; van Soest, R.W.; de Voogd, N.J.; Wray, V.; Hentschel, U.; Kozytska, S.; Müller, W.E.; Proksch, P. From anti-fouling to biofilm inhibition: new cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorg. Med. Chem., 2010, 18(3), 1297-1311.
[http://dx.doi.org/10.1016/j.bmc.2009.12.028] [PMID: 20061160]
[29]
Appenzeller, J.; Tilvi, S.; Martin, M.T.; Gallard, J.F. EI-bitar, H.; Dau, E.T.; Debitus; Laurent, D.; Moriou, C.; AI-Mourabit, A. Benzosceptrins A (Ia) and B (Ib) with a unique benzocyclobutane skeleton and nagelamide S (II) and T (III) from pacific sponges. Org. Lett., 2010, 11(21), 4874-4877.
[http://dx.doi.org/10.1021/ol901946h] [PMID: 19863148]
[30]
Tilvi, S.; Moriou, C.; Martin, M.T.; Gallard, J.F.; Sorres, J.; Patel, K.; Petek, S.; Debitus, C.; Ermolenko, L.; Al-Mourabit, A. Agelastatin E, agelastatin F, and benzosceptrin C from the marine sponge Agelas dendromorpha. J. Nat. Prod., 2010, 73(4), 720-723.
[http://dx.doi.org/10.1021/np900539j] [PMID: 20166736]
[31]
D’ambrosio, M.; Guerriero, A.; Pietra, F.; Ripamonti, M.; Debitus, C.; Waikedre, J.; Pietra, F. The active centres of agelastatin A, a strongly cytotoxic alkaloid of the coral sea axinellid sponge Agelas dendromorpha, as determined by comparative bioassays with semisynthetic derivatives. Helv. Chim. Acta, 1996, 79(3), 727-735.
[http://dx.doi.org/10.1002/hlca.19960790315]
[32]
Hong, T.W.; Jímenez, D.R.; Molinski, T.F. Agelastatins C and D, new pentacyclic bromopyrroles from the sponge Cymbastela sp., and potent arthropod toxicity of (-)-agelastatin A. J. Nat. Prod., 1998, 61(1), 158-161.
[http://dx.doi.org/10.1021/np9703813] [PMID: 9461668]
[33]
Yasuda, T.; Araki, A.; Kubota, T.; Ito, J.; Mikami, Y.; Fromont, J.; Kobayashi, J. Bromopyrrole alkaloids from marine sponges of the genus Agelas. J. Nat. Prod., 2009, 72(3), 488-491.
[http://dx.doi.org/10.1021/np800645q] [PMID: 19209898]
[34]
Patel, K.; Laville, R.; Martin, M.T.; Tilvi, S.; Moriou, C.; Gallard, J.F.; Ermolenko, L.; Debitus, C.; Al-Mourabit, A. Unprecedented stylissazoles A-C from Stylissa carteri: another dimension for marine pyrrole-2-aminoimidazole metabolite diversity. Angew. Chem. Int. Ed. Engl., 2010, 49(28), 4775-4779.
[http://dx.doi.org/10.1002/anie.201000444] [PMID: 20514657]
[35]
Sauleau, P.; Retailleau, P.; Nogues, S.; Carletti, I.; Marcourt, L.; Raux, R.; Mourabit, A.I.A.; Debitus, C.A.; Debitus, C. Dihydrohymenialdisines, new pyrrole-2-amino-imidazole alkaloids from the marine sponge Cymbastela cantharella. Tetrahedron Lett., 2011, 52, 2676-2678.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.073]
[36]
Ebada, S.S.; Edrada-Ebel, R.; de Voogd, N.J.; Wray, V.; Proksch, P. Dibromopyrrole alkaloids from the marine sponge Acanthostylotella sp. Nat. Prod. Commun., 2009, 4(1), 47-52.
[http://dx.doi.org/10.1177/1934578X0900400112] [PMID: 19370874]
[37]
Hu, J.F.; Peng, J.; Kazi, A.B.; Kelly, M.; Hamann, M.T. Bromopyrrole alkaloids from the Jamaican sponge Didiscus oxeata. J. Chem. Res., 2005, 36(50), 427-428.
[http://dx.doi.org/10.3184/030823405774309113]
[38]
Umeyama, A.; Ito, S.; Yuasa, E.; Arihara, S.; Yamada, T. A new bromopyrrole alkaloid and the optical resolution of the racemate from the marine sponge homaxinella sp. J. Nat. Prod., 1998, 61(11), 1433-1434.
[http://dx.doi.org/10.1021/np980207u] [PMID: 9834174]
[39]
König, G.M.; Wright, A.D.; Linden, A.; Linden, A. Antiplasmodial and cytotoxic metabolites from the Maltese sponge Agelas oroides. Planta Med., 1998, 64(5), 443-447.
[http://dx.doi.org/10.1055/s-2006-957477] [PMID: 9690346]
[40]
Fattorusso, E.; Taglialatela-Scafati, O. Two novel pyrrole-imidazole alkaloids from the Mediterranean sponge Agelas oroides. Tetrahedron Lett., 2000, 41(50), 9917-9922.
[http://dx.doi.org/10.1016/S0040-4039(00)01764-0]
[41]
Parra, L.L.L.; Bertonha, A.F.; Severo, I.R.M.; Aguiar, A.C.C.; de Souza, G.E.; Oliva, G.; Guido, R.V.C.; Grazzia, N.; Costa, T.R.; Miguel, D.C.; Gadelha, F.R.; Ferreira, A.G.; Hajdu, E.; Romo, D.; Berlinck, R.G.S. Isolation, derivative synthesis, and structure-activity relationships of antiparasitic bromopyrrole alkaloids from the marine sponge Tedania brasiliensis. J. Nat. Prod., 2018, 81(1), 188-202.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00876] [PMID: 29297684]
[42]
Dalisay, D.S.; Molinski, T.F. Structure elucidation at the nanomole scale. 3. Phorbasides G-I from Phorbas sp. J. Nat. Prod., 2010, 73(4), 679-682.
[http://dx.doi.org/10.1021/np1000297] [PMID: 20184337]
[43]
Xu, S.; Yoshimura, H.; Maru, N.; Ohno, O.; Arimoto, H.; Uemura, D. Pinnarine, another member of the halichlorine family. Isolation and preparation from pinnaic acid. J. Nat. Prod., 2011, 74(5), 1323-1326.
[http://dx.doi.org/10.1021/np200031d] [PMID: 21410164]
[44]
Esposito, G.; Bourguet-Kondracki, M.L.; Mai, L.H.; Longeon, A.; Teta, R.; Meijer, L.; Van Soest, R.; Mangoni, A.; Costantino, V. Chloromethylhalicyclamine B, a marine-derived protein kinase CK1δ/ε inhibitor. J. Nat. Prod., 2016, 79(11), 2953-2960.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00939] [PMID: 27933894]
[45]
Shaala, L.A.; Youssef, D.T.A.; Badr, J.M.; Sulaiman, M.; Khedr, A.E.I.; Sayed, K.A. Bioactive alkaloids from the Red Sea marine Verongid sponge Pseudoceratina arabica. Tetrahedron, 2015, 71(41), 7837-7841.
[http://dx.doi.org/10.1016/j.tet.2015.08.024]
[46]
Cruz, P.G.; Martínez Leal, J.F.; Daranas, A.H.; Pérez, M.; Cuevas, C. On the mechanism of action of dragmacidins I and J, two new representatives of a new class of protein phosphatase 1 and 2A inhibitors. ACS Omega, 2018, 3(4), 3760-3767.
[http://dx.doi.org/10.1021/acsomega.7b01786] [PMID: 30023878]
[47]
Campos, P.E.; Wolfender, J.L.; Queiroz, E.F.; Marcourt, L. AI-Mourabit, A.; De Voogd, N.; Illien, B.; Gauvin-Bialecki, A. Amphimedonoic acid and psammaplysene E, novel brominated alkaloids from Amphimedon sp. Tetrahedron Lett., 2017, 58(40), 3901-3904.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.072]
[48]
Maru, N.; Koyama, T.; Ohno, O.; Kaoru, K.; Uemura, D. Sunabedine, a novel toxic bromotyrosine-derivative alkaloid from Okinawan sponge, order Verongida. Heterocycles, 2010, 82(1), 371-375.
[http://dx.doi.org/10.3987/COM-10-S(E)7]
[49]
Feng, Y.; Davis, R.; Sykes, M.; Avery, V.; Camp, D.; Quinn, R. Pseudoceratinazole A: a novel bromotyrosine alkaloid from the Australian sponge Pseudoceratina sp. Tetrahedron Lett., 2010, 51(37), 4847-4850.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.052]
[50]
Yang, X.; Davis, R.A.; Buchanan, M.S.; Duffy, S.; Avery, V.M.; Camp, D.; Quinn, R.J. Antimalarial bromotyrosine derivatives from the Australian marine sponge Hyattella sp. J. Nat. Prod., 2010, 73(5), 985-987.
[http://dx.doi.org/10.1021/np900834g] [PMID: 20462236]
[51]
Xu, M.; Andrews, K.T.; Birrell, G.W.; Tran, T.L.; Camp, D.; Davis, R.A.; Quinn, R.J. Psammaplysin H, a new antimalarial bromotyrosine alkaloid from a marine sponge of the genus Pseudoceratina. Bioorg. Med. Chem. Lett., 2011, 21(2), 846-848.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.081] [PMID: 21190857]
[52]
Kon, Y.; Kubota, T.; Shibazaki, A.; Gonoi, T.; Kobayashi, J. Ceratinadins A-C, new bromotyrosine alkaloids from an Okinawan marine sponge Pseudoceratina sp. Bioorg. Med. Chem. Lett., 2010, 20(15), 4569-4572.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.015] [PMID: 20584605]
[53]
Calcul, L.; Inman, W.D.; Morris, A.A.; Tenney, K.; Ratnam, J.; McKerrow, J.H.; Valeriote, F.A.; Crews, P. Additional insights on the bastadins: isolation of analogues from the sponge Ianthella cf. reticulata and exploration of the oxime configurations. J. Nat. Prod., 2010, 73(3), 365-372.
[http://dx.doi.org/10.1021/np9005986] [PMID: 20102170]
[54]
Fujiwara, T.; Hwang, J.H.; Kanamoto, A.; Nagai, H.; Takagi, M.; Shin-Ya, K. JBIR-44, a new bromotyrosine compound from a marine sponge Psammaplysilla purpurea. J. Antibiot. (Tokyo), 2009, 62(7), 393-395.
[http://dx.doi.org/10.1038/ja.2009.49] [PMID: 19557033]
[55]
Wright, A.E.; Roth, G.P.; Hoffman, J.K.; Divlianska, D.B.; Pechter, D.; Sennett, S.H.; Guzmán, E.A.; Linley, P.; McCarthy, P.J.; Pitts, T.P.; Pomponi, S.A.; Reed, J.K. Isolation, synthesis, and biological activity of aphrocallistin, an adenine-substituted bromotyramine metabolite from the Hexactinellida sponge Aphrocallistes beatrix. J. Nat. Prod., 2009, 72(6), 1178-1183.
[http://dx.doi.org/10.1021/np900183v] [PMID: 19459694]
[56]
Nakamura, H.; Wu, H.; Kobayashi, J.I.; Nakamura, Y.; Ohizumi, Y.; Hirat, Y. Purealin, a novel enzyme activator from the Okinawan marine sponge Psammaplysilla purea. Tetrahedron Lett., 1985, 26(37), 4517-4520.
[http://dx.doi.org/10.1016/S0040-4039(00)88945-5]
[57]
Takito, J.; Nakamura, H.; Kobayashi, J.; Ohizumi, Y.; Ebisawa, K.; Nonomura, Y. Purealin, a novel enzyme activator from the Okinawan marine sponge Psammaplysilla purea. Tetrahedron Lett., 1986, 26(37), 4517-4520.
[58]
Jumaryatno, P.; Blanchfield, J.; Garson, M. New bromotyrosine derivative from Australian sponge 27th International Symposium on the Chemistry of Natural Products and 7th International Conference on Biodiversity, Queensland, Australia, 2011, pp. 10-15.
[59]
Wu, H.; Nakamura, H.; Kobayashi, J.; Ohizumi, Y.; Hirata, Y. Lipopurealins, novel bromotyrosine derivatives with long chain acyl groups, from the marine sponge Psammaplysilla purea. Cell. Mol. Life Sci., 1986, 42(7), 855-856.
[http://dx.doi.org/10.1007/BF01941553]
[60]
Kobayashi, J.; Honma, K.; Tsuda, M.; Kosaka, T. Lipopurealins D and E and purealidin H, new bromotyrosine alkaloids from the Okinawan marine sponge Psammaplysilla purea. J. Nat. Prod., 2004, 58(3), 197-200.
[http://dx.doi.org/10.1021/np50117a022]
[61]
Ishibashi, M.; Tsuda, M.; Ohizumi, Y.; Sasaki, T.; Kobayashi, J. Purealidin A, a new cytotoxic bromotyrosine-derived alkaloid from the Okinawan marine sponge Psammaplysilla purea. Experientia, 1991, 47(3), 299-300.
[http://dx.doi.org/10.1007/BF01958166] [PMID: 2009943]
[62]
Kobayashi, J.I.; Tsuda, M.; Agemi, K.; Shigemori, H.; Ishibashi, M.; Sasaki, T. Purealidins B and C, new bromotyrosine alkaloids from the Okinawan marine sponge Psammaplysilla purea. Tetrahedron, 1991, 47(33), 6617-6622.
[http://dx.doi.org/10.1016/S0040-4020(01)82314-0]
[63]
Tsuda, M.; Shigemori, H.; Ishibashi, M.; Kobayashi, J. Purealidin D, a new pyridine alkaloid from the okinawan marine sponge Psammaplysilla purea. Tetrahedron Lett., 1992, 33(18), 2597-2598.
[http://dx.doi.org/10.1016/S0040-4039(00)92253-6]
[64]
Tsuda, M.; Shigemori, H.; Ishibashi, M.; Kobayashi, J. Purealidins E-G, New bromotyrosine alkaloids from the Okinawan marine sponge Psammaplysilla purea. J. Nat. Prod., 1992, 55(9), 1325-1327.
[http://dx.doi.org/10.1021/np50087a026]
[65]
Kobayashi, J.I.; Honma, K.; Sasaki, T.; Tsuda, M. Purealidins J-R, new bromotyrosine alkaloids from the Okinawan marine sponge Psammaplysilla purea. Chem. Pharm. Bull. (Tokyo), 1995, 43(3), 403-407.
[http://dx.doi.org/10.1248/cpb.43.403]
[66]
Tabudravu, J.N.; Jaspars, M. Purealidin S and purpuramine J, bromotyrosine alkaloids from the Fijian marine sponge Druinella sp. J. Nat. Prod., 2002, 65(12), 1798-1801.
[http://dx.doi.org/10.1021/np020275n] [PMID: 12502317]
[67]
Roll, D.M.; Chang, C.W.J.; Scheuer, P.J.; Gray, G.A.; Shoolery, J.N.; Matsumoto, G.K.; Van Duyne, G.D.; Clardy, J. Structure of the psammaplysins. J. Am. Chem. Soc., 1985, 107(10), 2916-2920.
[http://dx.doi.org/10.1021/ja00296a014]
[68]
Yagi, H.; Matsunaga, S.; Fusetani, N. Purpuramines A-I, new bromotyrosine-derived metabolites from the marine sponge Psammaplysilla purpurea. Tetrahedron, 1993, 49(18), 3749-3754.
[http://dx.doi.org/10.1016/S0040-4020(01)90227-3]
[69]
Jurek, J.; Yoshida, W.Y.; Scheuer, P.J.; Kelly-Borges, M. Three new bromotyrosine-derived metabolites of the sponge Psammaplysilla purpurea. J. Nat. Prod., 1993, 56(9), 1609-1612.
[http://dx.doi.org/10.1021/np50099a025]
[70]
Longeon, A.; Guyot, M.; Vacelet, J. Araplysillins-I and-II: biologically active dibromotyrosine derivatives from the sponge Psammaplysilla arabica. Cell. Mol. Life Sci., 1990, 46(5), 548-550.
[http://dx.doi.org/10.1007/BF01954262]
[71]
Gunasekera, M.; Gunasekera, S.P. Dihydroxyaerothionin and aerophobin 1. Two brominated tyrosine metabolites from the deep water marine sponge Verongula rigida. J. Nat. Prod., 1989, 52(4), 753-756.
[http://dx.doi.org/10.1021/np50064a014] [PMID: 2530314]
[72]
Carroll, A.R.; Kaiser, S.M.; Davis, R.A.; Moni, R.W.; Hooper, J.N.; Quinn, R.J. A bastadin with potent and selective delta-opioid receptor binding affinity from the Australian sponge Ianthella flabelliformis. J. Nat. Prod., 2010, 73(6), 1173-1176.
[http://dx.doi.org/10.1021/np100010z] [PMID: 20575589]
[73]
Niemann, H.; Lin, W.; Müller, W.E.; Kubbutat, M.; Lai, D.; Proksch, P. Trimeric hemibastadin congener from the marine sponge Ianthella basta. J. Nat. Prod., 2013, 76(1), 121-125.
[http://dx.doi.org/10.1021/np300764u] [PMID: 23249297]
[74]
Carney, J.R.; Scheuer, P.J.; Kelly-Borges, M. A new bastadin from the sponge Psammaplysilla purpurea. J. Nat. Prod., 1993, 56(1), 153-157.
[http://dx.doi.org/10.1021/np50091a025] [PMID: 8383731]
[75]
Coll, J.C.; Kearns, P.S.; Rideout, J.A.; Sankar, V. Bastadin 21, a novel isobastarane metabolite from the Great Barrier Reef marine sponge Ianthella quadrangulata. J. Nat. Prod., 2002, 65(5), 753-756.
[http://dx.doi.org/10.1021/np010520n] [PMID: 12027760]
[76]
Mukai, H.; Kubota, T.; Aoyama, K.; Mikami, Y.; Fromont, J.; Kobayashi, J. Tyrokeradines A and B, new bromotyrosine alkaloids with an imidazolyl-quinolinone moiety from a verongid sponge. Bioorg. Med. Chem. Lett., 2009, 19(5), 1337-1339.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.056] [PMID: 19201605]
[77]
El-Demerdash, A.; Moriou, C.; Toullec, J.; Besson, M.; Soulet, S.; Schmitt, N.; Petek, S.; Lecchini, D.; Debitus, C.; Al-Mourabit, A. Bioactive Bromotyrosine-Derived Alkaloids from the Polynesian Sponge Suberea ianthelliformis. Mar. Drugs, 2018, 16(5)E146
[http://dx.doi.org/10.3390/md16050146] [PMID: 29702602]
[78]
Zhang, H.; Conte, M.M.; Capon, R.J. Franklinolides A-C from an Australian marine sponge complex: phosphodiesters strongly enhance polyketide cytotoxicity. Angew. Chem. Int. Ed. Engl., 2010, 49(51), 9904-9906.
[http://dx.doi.org/10.1002/anie.201005883] [PMID: 21082643]
[79]
Sirirath, S.; Tanaka, J.; Ohtani, I.I.; Ichiba, T.; Rachmat, R.; Ueda, K.; Usui, T.; Osada, H.; Higa, T. Bitungolides A-F, new polyketides from the Indonesian sponge Theonella cf. swinhoei. J. Nat. Prod., 2002, 65(12), 1820-1823.
[http://dx.doi.org/10.1021/np0200865] [PMID: 12502321]
[80]
Utkina, N.K.; Fedoreyev, S.A.; Ilyin, S.G.; Antipin, M.Y. 3,5-Dibromo-2-methoxybenzoic acid from sea sponge Didiscus sp. Russ. Chem. Bull., 1998, 47(11), 2292-2294.
[http://dx.doi.org/10.1007/BF02494298]
[81]
Liu, H.; Lohith, K.; Rosario, M.; Pulliam, T.H.; O’Connor, R.D.; Bell, L.J.; Bewley, C.A. Polybrominated diphenyl ethers: structure determination and trends in antibacterial activity. J. Nat. Prod., 2016, 79(7), 1872-1876.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00229] [PMID: 27399938]
[82]
Sun, S.; Canning, C.B.; Bhargava, K.; Sun, X.; Zhu, W.; Zhou, N.; Zhang, Y.; Zhou, K. Polybrominated diphenyl ethers with potent and broad spectrum antimicrobial activity from the marine sponge Dysidea. Bioorg. Med. Chem. Lett., 2015, 25(10), 2181-2183.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.057] [PMID: 25863431]
[83]
Yamazaki, H.; Sumilat, D.A.; Kanno, S.; Ukai, K.; Rotinsulu, H.; Wewengkang, D.S.; Ishikawa, M.; Mangindaan, R.E.; Namikoshi, M. A polybromodiphenyl ether from an Indonesian marine sponge Lamellodysidea herbacea and its chemical derivatives inhibit protein tyrosine phosphatase 1B, an important target for diabetes treatment. J. Nat. Med., 2013, 67(4), 730-735.
[http://dx.doi.org/10.1007/s11418-012-0735-y] [PMID: 23274914]
[84]
Utkina, N.K.; Denisenko, V.A.; Scholokova, O.V.; Virovaya, M.V.; Gerasimenko, A.V.; Popov, D.Y.; Krasokhin, V.B.; Popov, A.M. Spongiadioxins A and B, two new polybrominated dibenzo-p-dioxins from an Australian marine sponge Dysidea dendyi. J. Nat. Prod., 2001, 64(2), 151-153.
[http://dx.doi.org/10.1021/np0003544] [PMID: 11434317]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 14
Year: 2020
Page: [2335 - 2360]
Pages: 26
DOI: 10.2174/0929867325666181112092159
Price: $65

Article Metrics

PDF: 19
HTML: 1