Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

New Strategies for Therapeutic Cancer Vaccines

Author(s): Hanjiao Qin, Jiyao Sheng, Dan Zhang, Xuewen Zhang, Linlin Liu*, Bingjin Li*, Guangquan Li* and Zhuo Zhang

Volume 19, Issue 2, 2019

Page: [213 - 221] Pages: 9

DOI: 10.2174/1871520618666181109151835

open access plus

Abstract

Background: Patients with low response rates to cancer vaccines, short duration of anti-tumor response after vaccination, and relatively weak curative effects are problems that have not been resolved effectively during the development and application of cancer vaccines. With the continuous improvement of knowledge and awareness regarding the immune system and cancer cells, many researches have helped to explain the reasons for poor vaccine efficacy. Input from researchers accompanied by some newly emerged strategies could bring hope to improve the therapeutic effects of vaccines.

Methods: Data were collected from Web of Science, Medline, Pubmed, through searching of these keywords: “cancer vaccine”, “cancer stem cell”, “targeted agent”, “immune checkpoint blockade” and “neoantigen”.

Results: It may be more effective in immunotherapy of human cancers, including cancer stem cell vaccines, combination vaccines with targeted agents or immune checkpoint blockade, and neoantigen-based vaccines.

Conclusion: Personalized vaccines will become the mainstream solution of cancer treatment program with the continuous improvement of human understanding of the immune system and the progress of related experiments.

Keywords: Cancer vaccine, new strategies, cancer stem cell, targeted agent, immune checkpoint blockade, neoantigen.

Graphical Abstract
[1]
Patel, S.A.; Minn, A.J. Combination cancer therapy with immune checkpoint blockade: Mechanisms and strategies. Immunity, 2018, 48(3), 417-433.
[2]
Bryan, J.T.; Buckland, B.; Hammond, J.; Jansen, K.U. Prevention of cervical cancer: Journey to develop the first human papillomavirus virus-like particle vaccine and the next generation vaccine. Curr. Opin. Chem. Biol., 2016, 32, 34-47.
[3]
Chang, M.H.; You, S.L.; Chen, C.J.; Liu, C.J.; Lai, M.W.; Wu, T.C.; Wu, S.F.; Lee, C.M.; Yang, S.S.; Chu, H.C.; Wang, T.E.; Chen, B.W.; Chuang, W.L.; Soon, M.S.; Lin, C.Y.; Chiou, S.T.; Kuo, H.S.; Chen, D.S. Long-term effects of hepatitis B immunization of infants in preventing liver cancer. Gastroenterology, 2016, 151(3), 472-480.
[4]
Van-der-Bruggen, P.; Traversari, C.; Chomez, P.; Lurquin, C.; De Plaen, E.; Van-den-Eynde, B.; Knuth, A.; Boon, T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991, 254(5038), 1643-1647.
[5]
Sondak, V.K.; Sosman, J.A. Results of clinical trials with an allogenic melanoma tumor cell lysate vaccine: Melacine. Semin. Cancer Biol., 2003, 13(6), 409-415.
[6]
Rassweiler, J. Re: Ten-year survival analysis for renal carcinoma patients treated with an autologous tumour lysate vaccine in an adjuvant setting. Eur. Urol., 2012, 61(1), 219-220.
[7]
Wen, Y.J.; Min, R.; Tricot, G.; Barlogie, B.; Yi, Q. Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: Promising effector cells for immunotherapy. Blood, 2002, 99(9), 3280-3285.
[8]
Cornelissen, R.; Hegmans, J.P.; Maat, A.P.; Kaijen-Lambers, M.E.; Bezemer, K.; Hendriks, R.W.; Hoogsteden, H.C.; Aerts, J.G. Extended tumor control after dendritic cell vaccination with low-dose cyclophosphamide as adjuvant treatment in patients with malignant pleural mesothelioma. Am. J. Respir. Crit. Care Med., 2016, 193(9), 1023-1031.
[9]
Higano, C.S.; Corman, J.M.; Smith, D.C.; Centeno, A.S.; Steidle, C.P.; Gittleman, M.; Simons, J.W.; Sacks, N.; Aimi, J.; Small, E.J. Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer, 2008, 113(5), 975-984.
[10]
Schwartzentruber, D.J.; Lawson, D.H.; Richards, J.M.; Conry, R.M.; Miller, D.M.; Treisman, J.; Gailani, F.; Riley, L.; Conlon, K.; Pockaj, B.; Kendra, K.L.; White, R.L.; Gonzalez, R.; Kuzel, T.M.; Curti, B.; Leming, P.D.; Whitman, E.D.; Balkissoon, J.; Reintgen, D.S.; Kaufman, H.; Marincola, F.M.; Merino, M.J.; Rosenberg, S.A.; Choyke, P.; Vena, D.; Hwu, P. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med., 2011, 364(22), 2119-2127.
[11]
Rosalia, R.A.; Quakkelaar, E.D.; Redeker, A.; Khan, S.; Camps, M.; Drijfhout, J.W.; Silva, A.L.; Jiskoot, W.; van Hall, T.; Van-Veelen, P.A.; Janssen, G.; Franken, K.; Cruz, L.J.; Tromp, A.; Oostendorp, J.; Van-der Burg, S.H.; Ossendorp, F.; Melief, C.J. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur. J. Immunol., 2013, 43(10), 2554-2565.
[12]
Masuko, K.; Wakita, D.; Togashi, Y.; Kita, T.; Kitamura, H.; Nishimura, T. Artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP): Preparation and immunological analysis of vaccine efficacy. Immunol. Lett., 2015, 163(1), 102-112.
[13]
Carbone, D.P.; Ciernik, I.F.; Kelley, M.J.; Smith, M.C.; Nadaf, S.; Kavanaugh, D.; Maher, V.E.; Stipanov, M.; Contois, D.; Johnson, B.E.; Pendleton, C.D.; Seifert, B.; Carter, C.; Read, E.J.; Greenblatt, J.; Top, L.E.; Kelsey, M.I.; Minna, J.D.; Berzofsky, J.A. Immunization with mutant p53- and K-ras-derived peptides in cancer patients: Immune response and clinical outcome. J. Clin. Oncol., 2005, 23(22), 5099-5107.
[14]
Okuyama, R.; Aruga, A.; Hatori, T.; Takeda, K.; Yamamoto, M. Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. OncoImmunology, 2013, 2(11), e27010.
[15]
Bowen, W.S.; Svrivastava, A.K.; Batra, L.; Barsoumian, H.; Shirwan, H. Current challenges for cancer vaccine adjuvant development. Expert Rev. Vaccines, 2018, 17(3), 207-215.
[16]
Yen, H.H.; Scheerlinck, J.P. Co-delivery of plasmid-encoded cytokines modulates the immune response to a DNA vaccine delivered by in vivo electroporation. Vaccine, 2007, 25(14), 2575-2582.
[17]
Thalmensi, J.; Pliquet, E.; Liard, C.; Escande, M.; Bestetti, T.; Julithe, M.; Kostrzak, A.; Pailhes-Jimenez, A.S.; Bourges, E.; Loustau, M.; Caumartin, J.; Lachgar, A.; Huet, T.; Wain-Hobson, S.; Langlade-Demoyen, P. Anticancer DNA vaccine based on human telomerase reverse transcriptase generates a strong and specific T cell immune response. OncoImmunology, 2016, 5(3), e1083670.
[18]
Trimble, C.L.; Morrow, M.P.; Kraynyak, K.A.; Shen, X.; Dallas, M.; Yan, J.; Edwards, L.; Parker, R.L.; Denny, L.; Giffear, M.; Brown, A.S.; Marcozzi-Pierce, K.; Shah, D.; Slager, A.M.; Sylvester, A.J.; Khan, A.; Broderick, K.E.; Juba, R.J.; Herring, T.A.; Boyer, J.; Lee, J.; Sardesai, N.Y.; Weiner, D.B.; Bagarazzi, M.L. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet (London, England), 2015, 386(10008), 2078-2088.
[19]
Santos, P.M.; Butterfield, L.H. Dendritic cell-based cancer vaccines. J. Immunol., 2018, 200(2), 443-449.
[20]
Dong, W.; Wei, R.; Shen, H.; Ni, Y.; Meng, L.; Du, J. Combination of DC vaccine and conventional chemotherapeutics. Anticancer. Agents Med. Chem., 2016, 16(5), 558-567.
[21]
Hardin, M.O.; Vreeland, T.J.; Clifton, G.T.; Hale, D.F.; Herbert, G.S.; Greene, J.M.; Jackson, D.O.; Berry, J.E.; Nichols, P.; Yin, S.; Yu, X.; Wagner, T.E.; Peoples, G.E. Tumor lysate particle loaded dendritic cell vaccine: Preclinical testing of a novel personalized cancer vaccine. Immunotherapy, 2018, 10(5), 373-382.
[22]
Grunwitz, C.; Kranz, L.M. mRNA cancer vaccines-messages that prevail. Curr. Top. Microbiol. Immunol., 2017, 405, 145-164.
[23]
Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; Xu, Y.; Frohlich, M.W.; Schellhammer, P.F. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med., 2010, 363(5), 411-422.
[24]
Garu, A.; Moku, G.; Gulla, S.K.; Chaudhuri, A. Genetic Immunization with in vivo dendritic cell-targeting liposomal DNA vaccine carrier induces long-lasting antitumor immune response. Mol. Ther., 2016, 24(2), 385-397.
[25]
Calderon-Gonzalez, R.; Bronchalo-Vicente, L.; Freire, J.; Frande-Cabanes, E.; Alaez-Alvarez, L.; Gomez-Roman, J.; Yanez-Diaz, S.; Alvarez-Dominguez, C. Exceptional antineoplastic activity of a dendritic-cell-targeted vaccine loaded with a listeria peptide proposed against metastatic melanoma. Oncotarget, 2016, 7(13), 16855-16865.
[26]
Kandalaft, L.E.; Powell, D.J., Jr; Chiang, C.L.; Tanyi, J.; Kim, S.; Bosch, M.; Montone, K.; Mick, R.; Levine, B.L.; Torigian, D.A.; June, C.H.; Coukos, G. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. OncoImmunology, 2013, 2(1), e22664.
[27]
Schuler, P.J.; Harasymczuk, M.; Visus, C.; Deleo, A.; Trivedi, S.; Lei, Y.; Argiris, A.; Gooding, W.; Butterfield, L.H.; Whiteside, T.L.; Ferris, R.L. Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin. Cancer Res., 2014, 20(9), 2433-2444.
[28]
Lasky, J.L., III; Panosyan, E.H.; Plant, A.; Davidson, T.; Yong, W.H.; Prins, R.M.; Liau, L.M.; Moore, T.B. Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas. Anticancer Res., 2013, 33(5), 2047-2056.
[29]
Hunn, M.K.; Bauer, E.; Wood, C.E.; Gasser, O.; Dzhelali, M.; Ancelet, L.R.; Mester, B.; Sharples, K.J.; Findlay, M.P.; Hamilton, D.A.; Hermans, I.F. Dendritic cell vaccination combined with temozolomide retreatment: Results of a phase I trial in patients with recurrent glioblastoma multiforme. J. Neurooncol., 2015, 121(2), 319-329.
[30]
Vermeulen, L.; Sprick, M.R.; Kemper, K.; Stassi, G.; Medema, J.P. Cancer stem cells--old concepts, new insights. Cell Death Differ., 2008, 15(6), 947-958.
[31]
Garcia-Rubino, M.E.; Lozano-Lopez, C.; Campos, J.M. Inhibitors of cancer stem cells. Anticancer. Agents Med. Chem., 2016, 16(10), 1230-1239.
[32]
Ghisolfi, L.; Keates, A.C.; Hu, X.; Lee, D.K.; Li, C.J. Ionizing radiation induces stemness in cancer cells. PLoS One, 2012, 7(8), e43628.
[33]
Hu, X.; Ghisolfi, L.; Keates, A.C.; Zhang, J.; Xiang, S.; Lee, D.K.; Li, C.J. Induction of cancer cell stemness by chemotherapy. Cell Cycle (Georgetown, Tex.),, 2012, 11(14), 2691-2698.
[34]
Mooney, C.J.; Hakimjavadi, R.; Fitzpatrick, E.; Kennedy, E.; Walls, D.; Morrow, D.; Redmond, E.M.; Cahill, P.A. Hedgehog and resident vascular stem cell fate. Stem Cells Int., 2015, 2015, 468428.
[35]
Huang, J.; Kalderon, D. Coupling of hedgehog and hippo pathways promotes stem cell maintenance by stimulating proliferation. J. Cell Biol., 2014, 205(3), 325-338.
[36]
Famili, F.; Brugman, M.H.; Taskesen, E.; Naber, B.E.; Fodde, R.; Staal, F.J. High levels of canonical wnt signaling lead to loss of stemness and increased differentiation in hematopoietic stem cells. Stem Cell Reports, 2016, 6(5), 652-659.
[37]
Mah, I.K.; Soloff, R.; Hedrick, S.M.; Mariani, F.V. Atypical PKC-iota controls stem cell expansion via regulation of the notch pathway. Stem Cell Reports, 2015, 5(5), 866-880.
[38]
Lu, L.; Tao, H.; Chang, A.E.; Hu, Y.; Shu, G.; Chen, Q.; Egenti, M.; Owen, J.; Moyer, J.S.; Prince, M.E.; Huang, S.; Wicha, M.S.; Xia, J.C.; Li, Q. Cancer stem cell vaccine inhibits metastases of primary tumors and induces humoral immune responses against cancer stem cells. OncoImmunology, 2015, 4(3), e990767.
[39]
Hu, Y.; Lu, L.; Xia, Y.; Chen, X.; Chang, A.E.; Hollingsworth, R.E.; Hurt, E.; Owen, J.H.; Moyer, J.S.; Prince, M.E.; Dai, F.; Bao, Y.; Wang, Y.; Whitfield, J.; Xia, J.; Huang, S.; Wicha, M.S.; Li, Q. Therapeutic efficacy of cancer stem cell vaccines in the adjuvant setting. Cancer Res., 2016, 76(16), 4661-4672.
[40]
Zhao, F.; He, X.; Sun, J.; Wu, D.; Pan, M.; Li, M.; Wu, S.; Zhang, R.; Yan, C.; Dou, J. Cancer stem cell vaccine expressing ESAT-6-gpi and IL-21 inhibits melanoma growth and metastases. Am. J. Transl. Res., 2015, 7(10), 1870-1882.
[41]
Duarte, S.; Momier, D.; Baque, P.; Casanova, V.; Loubat, A.; Samson, M.; Guigonis, J.M.; Staccini, P.; Saint-Paul, M.C.; De Lima, M.P.; Carle, G.F.; Pierrefite-Carle, V. Preventive cancer stem cell-based vaccination reduces liver metastasis development in a rat colon carcinoma syngeneic model. Stem Cells (Dayton, Ohio), 2013, 31(3), 423-432.
[42]
Lin, M.; Yuan, Y.Y.; Liu, S.P.; Shi, J.J.; Long, X.A.; Niu, L.Z.; Chen, J.B.; Li, Q.; Xu, K.C. Prospective study of the safety and efficacy of a pancreatic cancer stem cell vaccine. J. Cancer Res. Clin. Oncol., 2015, 141(10), 1827-1833.
[43]
Lin, M.; Li, S.Y.; Xu, K.C.; Liu, Z.P.; Mu, F.; Yuan, Y.Y.; Wang, X.H.; Chen, J.B.; Li, Q. Safety and efficacy study of lung cancer stem cell vaccine. Immunol. Res., 2015, 62(1), 16-22.
[44]
Marra, A.; Ferrone, C.; Fusciello, C.; Scognamiglio, G.; Ferrone, S.; Pepe, S.; Perri, F.; Sabbatino, F. Translational research in cutaneous melanoma: New therapeutic perspectives. Anticancer. Agents Med. Chem., 2017, 18(2), 166-181.
[45]
Oyama, T.; Ran, S.; Ishida, T.; Nadaf, S.; Kerr, L.; Carbone, D.P.; Gabrilovich, D.I. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J. Immunol., 1998, 160(3), 1224-1232.
[46]
Ohm, J.E.; Carbone, D.P. VEGF as a mediator of tumor-associated immunodeficiency. Immunol. Res., 2001, 23(2-3), 263-272.
[47]
Osada, T.; Chong, G.; Tansik, R.; Hong, T.; Spector, N.; Kumar, R.; Hurwitz, H.I.; Dev, I.; Nixon, A.B.; Lyerly, H.K.; Clay, T.; Morse, M.A. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother., 2008, 57(8), 1115-1124.
[48]
Gabrilovich, D.I.; Chen, H.L.; Girgis, K.R.; Cunningham, H.T.; Meny, G.M.; Nadaf, S.; Kavanaugh, D.; Carbone, D.P. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med., 1996, 2(10), 1096-1103.
[49]
Terme, M.; Colussi, O.; Marcheteau, E.; Tanchot, C.; Tartour, E.; Taieb, J. Modulation of immunity by antiangiogenic molecules in cancer. Clin. Dev. Immunol., 2012, 2012, 492920.
[50]
Neagu, M.R.; Reardon, D.A. Rindopepimut vaccine and bevacizumab combination therapy: Improving survival rates in relapsed glioblastoma patients? Immunotherapy, 2015, 7(6), 603-606.
[51]
Yang, D.H.; Park, J.S.; Jin, C.J.; Kang, H.K.; Nam, J.H.; Rhee, J.H.; Kim, Y.K.; Chung, S.Y.; Choi, S.J.; Kim, H.J.; Chung, I.J.; Lee, J.J. The dysfunction and abnormal signaling pathway of dendritic cells loaded by tumor antigen can be overcome by neutralizing VEGF in multiple myeloma. Leuk. Res., 2009, 33(5), 665-670.
[52]
Bagcchi, S. Sunitinib still first-line therapy for metastatic renal cancer. Lancet Oncol., 2014, 15(10), e420.
[53]
Potapova, O.; Laird, A.D.; Nannini, M.A.; Barone, A.; Li, G.; Moss, K.G.; Cherrington, J.M.; Mendel, D.B. Contribution of individual targets to the antitumor efficacy of the multitargeted receptor tyrosine kinase inhibitor SU11248. Mol. Cancer Ther., 2006, 5(5), 1280-1289.
[54]
Hipp, M.M.; Hilf, N.; Walter, S.; Werth, D.; Brauer, K.M.; Radsak, M.P.; Weinschenk, T.; Singh-Jasuja, H.; Brossart, P. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood, 2008, 111(12), 5610-5620.
[55]
Nizard, M.; Roussel, H.; Diniz, M.O.; Karaki, S.; Tran, T.; Voron, T.; Dransart, E.; Sandoval, F.; Riquet, M.; Rance, B.; Marcheteau, E.; Fabre, E.; Mandavit, M.; Terme, M.; Blanc, C.; Escudie, J.B.; Gibault, L.; Barthes, F.L.P.; Granier, C.; Ferreira, L.C.S.; Badoual, C.; Johannes, L.; Tartour, E. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat. Commun., 2017, 8, 15221.
[56]
Finlay, D.; Cantrell, D.A. Metabolism, migration and memory in cytotoxic T cells. Nat. Rev. Immunol., 2011, 11(2), 109-117.
[57]
Araki, K.; Turner, A.P.; Shaffer, V.O.; Gangappa, S.; Keller, S.A.; Bachmann, M.F.; Larsen, C.P.; Ahmed, R. mTOR regulates memory CD8 T-cell differentiation. Nature, 2009, 460(7251), 108-112.
[58]
Wang, Y.; Sparwasser, T.; Figlin, R.; Kim, H.L. Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition. Cancer Res., 2014, 74(8), 2217-2228.
[59]
Wang, Y.; Wang, X.Y.; Subjeck, J.R.; Shrikant, P.A.; Kim, H.L. Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines. Br. J. Cancer, 2011, 104(4), 643-652.
[60]
Nagini, S. Breast cancer: Current molecular therapeutic targets and new players. Anticancer. Agents Med. Chem., 2017, 17(2), 152-163.
[61]
Ina, K.; Kataoka, T.; Ando, T. The use of lentinan for treating gastric cancer. Anticancer. Agents Med. Chem., 2013, 13(5), 681-688.
[62]
Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987, 235(4785), 177-182.
[63]
Wolpoe, M.E.; Lutz, E.R.; Ercolini, A.M.; Murata, S.; Ivie, S.E.; Garrett, E.S.; Emens, L.A.; Jaffee, E.M.; Reilly, R.T. HER-2/neuspecific monoclonal antibodies collaborate with HER-2/neu-targeted granulocyte macrophage colony-stimulating factor secreting whole cell vaccination to augment CD8+ T cell effector function and tumorfree survival in Her-2/neu-transgenic mice. J. Immunol., (Baltimore, Md., 1950),, 2003, 171(4), 2161-2169.
[64]
Disis, M.L.; Wallace, D.R.; Gooley, T.A.; Dang, Y.; Slota, M.; Lu, H.; Coveler, A.L.; Childs, J.S.; Higgins, D.M.; Fintak, P.A.; Dela-Rosa, C.; Tietje, K.; Link, J.; Waisman, J.; Salazar, L.G. Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J. Clin. Oncol., 2009, 27(28), 4685-4692.
[65]
Chen, G.; Gupta, R.; Petrik, S.; Laiko, M.; Leatherman, J.M.; Asquith, J.M.; Daphtary, M.M.; Garrett-Mayer, E.; Davidson, N.E.; Hirt, K.; Berg, M.; Uram, J.N.; Dauses, T.; Fetting, J.; Duus, E.M.; Atay-Rosenthal, S.; Ye, X.; Wolff, A.C.; Stearns, V.; Jaffee, E.M.; Emens, L.A. A feasibility study of cyclophosphamide, trastuzumab, and an allogeneic GM-CSF-secreting breast tumor vaccine for HER2+ metastatic breast cancer. Cancer Immunol. Res., 2014, 2(10), 949-961.
[66]
Bekaii-Saab, T.S.; Roda, J.M.; Guenterberg, K.D.; Ramaswamy, B.; Young, D.C.; Ferketich, A.K.; Lamb, T.A.; Grever, M.R.; Shapiro, C.L.; Carson, W.E., III A phase I trial of paclitaxel and trastuzumab in combination with interleukin-12 in patients with HER2/neu-expressing malignancies. Mol. Cancer Ther., 2009, 8(11), 2983-2991.
[67]
Romero, P.; Banchereau, J.; Bhardwaj, N.; Cockett, M.; Disis, M.L.; Dranoff, G.; Gilboa, E.; Hammond, S.A.; Hershberg, R.; Korman, A.J.; Kvistborg, P.; Melief, C.; Mellman, I.; Palucka, A.K.; Redchenko, I.; Robins, H.; Sallusto, F.; Schenkelberg, T.; Schoenberger, S.; Sosman, J.; Tureci, O.; Van-den-Eynde, B.; Koff, W.; Coukos, G. The Human Vaccines Project: A roadmap for cancer vaccine development. Sci. Transl. Med., 2016, 8(334), 334ps9.
[68]
Liu, Y. Neoantigen: A long march toward cancer immunotherapy. Clin. Cancer Res., 2016, 22(11), 2602-2604.
[69]
Lu, Y.C.; Robbins, P.F. Targeting neoantigens for cancer immunotherapy. Int. Immunol., 2016, 28(7), 365-370.
[70]
Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; Chen, C.; Olive, O.; Carter, T.A.; Li, S.; Lieb, D.J.; Eisenhaure, T.; Gjini, E.; Stevens, J.; Lane, W.J.; Javeri, I.; Nellaiappan, K.; Salazar, A.; Daley, H.; Seaman, M.; Buchbinder, E.I.; Yoon, C.H.; Harden, M.; Lennon, N.; Gabriel, S.; Rodig, S.J.; Barouch, D.H.; Aster, J.C.; Getz, G.; Wucherpfennig, K.; Neuberg, D.; Ritz, J.; Lander, E.S.; Fritsch, E.F.; Hacohen, N.; Wu, C.J. An immunogenic personal neoantigen vaccine for melanoma patients. Nature, 2017, 547(7662), 217-221.
[71]
Ye, Z.; Qian, Q.; Jin, H.; Qian, Q. Cancer vaccine: Learning lessons from immune checkpoint inhibitors. J. Cancer, 2018, 9(2), 263-268.
[72]
Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science, 2015, 348(6230), 69-74.
[73]
Gubin, M.M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J.P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C.D.; Krebber, W.J.; Mulder, G.E.; Toebes, M.; Vesely, M.D.; Lam, S.S.; Korman, A.J.; Allison, J.P.; Freeman, G.J.; Sharpe, A.H.; Pearce, E.L.; Schumacher, T.N.; Aebersold, R.; Rammensee, H.G.; Melief, C.J.; Mardis, E.R.; Gillanders, W.E.; Artyomov, M.N.; Schreiber, R.D. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 2014, 515(7528), 577-581.
[74]
Yadav, M.; Jhunjhunwala, S.; Phung, Q.T.; Lupardus, P.; Tanguay, J.; Bumbaca, S.; Franci, C.; Cheung, T.K.; Fritsche, J.; Weinschenk, T.; Modrusan, Z.; Mellman, I.; Lill, J.R.; Delamarre, L. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature, 2014, 515(7528), 572-576.
[75]
Hundal, J.; Carreno, B.M.; Petti, A.A.; Linette, G.P.; Griffith, O.L.; Mardis, E.R.; Griffith, M. pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens. Gen. Med., 2016, 8(1), 11.
[76]
Carreno, B.M.; Magrini, V.; Becker-Hapak, M.; Kaabinejadian, S.; Hundal, J.; Petti, A.A.; Ly, A.; Lie, W.R.; Hildebrand, W.H.; Mardis, E.R.; Linette, G.P. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 2015, 348(6236), 803-808.
[77]
Pritchard, A.L.; Burel, J.G.; Neller, M.A.; Hayward, N.K.; Lopez, J.A.; Fatho, M.; Lennerz, V.; Wolfel, T.; Schmidt, C.W. Exome sequencing to predict neoantigens in melanoma. Cancer Immunol. Res., 2015, 3(9), 992-998.
[78]
Katsnelson, A. Mutations as munitions: Neoantigen vaccines get a closer look as cancer treatment. Nat. Med., 2016, 22(2), 122-124.
[79]
Schenkelberg, T.; Kieny, M.P.; Bianco, A.E.; Koff, W.C. Building the human vaccines project: Strategic management recommendations and summary report of the 15-16 July 2014 business workshop. Expert Rev. Vaccines, 2015, 14(5), 629-636.
[80]
Lenschow, D.J.; Walunas, T.L.; Bluestone, J.A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol., 1996, 14, 233-258.
[81]
Mohamed, H.; Eltobgy, M.; Abdel-Rahman, O. Immune checkpoints aberrations and malignant mesothelioma: Assessment of prognostic value and evaluation of therapeutic potentials. Anticancer. Agents Med. Chem., 2017, 17(9), 1228-1233.
[82]
Boise, L.H.; Minn, A.J.; Noel, P.J.; June, C.H.; Accavitti, M.A.; Lindsten, T.; Thompson, C.B. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity, 1995, 3(1), 87-98.
[83]
Linsley, P.S.; Greene, J.L.; Brady, W.; Bajorath, J.; Ledbetter, J.A.; Peach, R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity, 1994, 1(9), 793-801.
[84]
Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895.
[85]
Chen, L.; Han, X. Anti-PD-1/PD-L1 therapy of human cancer: Past, present, and future. J. Clin. Invest., 2015, 125(9), 3384-3391.
[86]
Hawkes, E.A.; Grigg, A.; Chong, G. Programmed cell death-1 inhibition in lymphoma. Lancet Oncol., 2015, 16(5), e234-e245.
[87]
Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.W.; Weber, J.S.; Dronca, R.; Gangadhar, T.C.; Patnaik, A.; Zarour, H.; Joshua, A.M.; Gergich, K.; Elassaiss-Schaap, J.; Algazi, A.; Mateus, C.; Boasberg, P.; Tumeh, P.C.; Chmielowski, B.; Ebbinghaus, S.W.; Li, X.N.; Kang, S.P.; Ribas, A. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med., 2013, 369(2), 134-144.
[88]
Valsecchi, M.E. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med., 2015, 373(13), 1270.
[89]
Van-Der-Burg, S.H.; Arens, R.; Ossendorp, F.; Van-Hall, T.; Melief, C.J. Vaccines for established cancer: Overcoming the challenges posed by immune evasion. Nat. Rev. Cancer, 2016, 16(4), 219-233.
[90]
Rekoske, B.T.; Olson, B.M.; McNeel, D.G. Antitumor vaccination of prostate cancer patients elicits PD-1/PD-L1 regulated antigen-specific immune responses. OncoImmunology, 2016, 5(6), e1165377.
[91]
Fu, J.; Malm, I.J.; Kadayakkara, D.K.; Levitsky, H.; Pardoll, D.; Kim, Y.J. Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. Cancer Res., 2014, 74(15), 4042-4052.
[92]
Hailemichael, Y.; Woods, A.; Fu, T.; He, Q.; Nielsen, M.C.; Hasan, F.; Roszik, J.; Xiao, Z.; Vianden, C.; Khong, H.; Singh, M.; Sharma, M.; Faak, F.; Moore, D.; Dai, Z.; Anthony, S.M.; Schluns, K.S.; Sharma, P.; Engelhard, V.H.; Overwijk, W.W. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J. Clin. Invest., 2018, 128(4), 1338-1354.
[93]
Overwijk, W.W. Cancer vaccines in the era of checkpoint blockade: The magic is in the adjuvant. Curr. Opin. Immunol., 2017, 47, 103-109.
[94]
Xue, W.; Metheringham, R.L.; Brentville, V.A.; Gunn, B.; Symonds, P.; Yagita, H.; Ramage, J.M.; Durrant, L.G. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade. OncoImmunology, 2016, 5(6), e1169353.
[95]
Liu, Z.; Zhou, H.; Wang, W.; Fu, Y.X.; Zhu, M. A novel dendritic cell targeting HPV16 E7 synthetic vaccine in combination with PD-L1 blockade elicits therapeutic antitumor immunity in mice. OncoImmunology, 2016, 5(6), e1147641.
[96]
Gibney, G.T.; Kudchadkar, R.R.; DeConti, R.C.; Thebeau, M.S.; Czupryn, M.P.; Tetteh, L.; Eysmans, C.; Richards, A.; Schell, M.J.; Fisher, K.J.; Horak, C.E.; Inzunza, H.D.; Yu, B.; Martinez, A.J.; Younos, I.; Weber, J.S. Safety, correlative markers, and clinical results of adjuvant nivolumab in combination with vaccine in resected high-risk metastatic melanoma. Clin. Cancer Res., 2015, 21(4), 712-720.
[97]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; Van-Den-Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbe, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[98]
Van-Elsas, A.; Hurwitz, A.A.; Allison, J.P. Combination immunotherapy of B16 melanoma using anti-Ctotoxic T Lymphocyte-Associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med., 1999, 190(3), 355-366.
[99]
Eertwegh, A.V.D.; Versluis, J. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: A phase 1 dose-escalation trial. Lancet Oncol., 2012, 13(5), 509-517.
[100]
Gatti-Mays, M.E.; Redman, J.M.; Collins, J.M.; Bilusic, M. Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations. Hum. Vaccin. Immunother., 2017, 13(11), 2561-2574.

© 2024 Bentham Science Publishers | Privacy Policy