Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules

Author(s): Paolo D’Arrigo, Martina Tufano, Anna Rea, Vincenza Vigorito, Nunzia Novizio, Salvatore Russo, Maria Fiammetta Romano, Simona Romano*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 15 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

The immune system actively counteracts the tumorigenesis process; a breakout of the immune system function, or its ability to recognize transformed cells, can favor cancer development. Cancer becomes able to escape from immune system control by using multiple mechanisms, which are only in part known at a cellular and molecular level. Among these mechanisms, in the last decade, the role played by the so-called “inhibitory immune checkpoints” is emerging as pivotal in preventing the tumor attack by the immune system. Physiologically, the inhibitory immune checkpoints work to maintain the self-tolerance and attenuate the tissue injury caused by pathogenic infections. Cancer cell exploits such immune-inhibitory molecules to contrast the immune intervention and induce tumor tolerance. Molecular agents that target these checkpoints represent the new frontier for cancer treatment. Despite the heterogeneity and multiplicity of molecular alterations among the tumors, the immune checkpoint targeted therapy has been shown to be helpful in selected and even histologically different types of cancer, and are currently being adopted against an increasing variety of tumors. The most frequently used is the moAb-based immunotherapy that targets the Programmed Cell Death 1 protein (PD-1), the PD-1 Ligand (PD-L1) or the cytotoxic T lymphocyte antigen-4 (CTLA4). However, new therapeutic approaches are currently in development, along with the discovery of new immune checkpoints exploited by the cancer cell. This article aims to review the inhibitory checkpoints, which are known up to now, along with the mechanisms of cancer immunoediting. An outline of the immune checkpoint targeting approaches, also including combined immunotherapies and the existing trials, is also provided. Notwithstanding the great efforts devoted by researchers in the field of biomarkers of response, to date, no validated FDA-approved immunological biomarkers exist for cancer patients. We highlight relevant studies on predictive biomarkers and attempt to discuss the challenges in this field, due to the complex and largely unknown dynamic mechanisms that drive the tumor immune tolerance.

Keywords: Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), Programmed Cell Death 1 (PD-1), Programmed Death- Ligand 1 (PD-L1), Lymphocyte Activation Gene-3 (LAG-3), T cell immunoglobulin and mucin domain 3 (TIM-3), V-domain Ig suppressor of T cell activation (VISTA), Immune-regulatory molecule indoleamine pyrrole-2, 3- dioxygenase-1, 2 (IDO), Adenosine A2a receptor (A2aR), B and T lymphocyte associated (BTLA), B7 homolog 3 protein (B7-H3), B7 homolog 4 protein (B7-H4).

[1]
D’Angelo, S.P.; Tap, W.D.; Schwartz, G.K.; Carvajal, R.D. Sarcoma immunotherapy: past approaches and future directions. Sarcoma, 2014, 2014, 391967
[http://dx.doi.org/10.1155/2014/391967] [PMID: 24778572]
[2]
Hobohm, U. Fever and cancer in perspective. Cancer Immunol. Immunother., 2001, 50(8), 391-396.
[http://dx.doi.org/10.1007/s002620100216] [PMID: 11726133]
[3]
Ehrlich, P. Über den jetzigen Stand der Karzinomforschung. Ned. Tijdschr. Geneeskd., 1909, 5, 273-290.
[4]
Burnet, M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. BMJ, 1957, 1(5023), 841-847.
[http://dx.doi.org/10.1136/bmj.1.5023.841] [PMID: 13413231]
[5]
Old, L.J.; Boyse, E.A. Immunology of Experimental Tumors. Annu. Rev. Med., 1964, 15, 167-186.
[http://dx.doi.org/10.1146/annurev.me.15.020164.001123] [PMID: 14139934]
[6]
Manjili, M.H. Revisiting cancer immunoediting by understanding cancer immune complexity. J. Pathol., 2011, 224(1), 5-9.
[http://dx.doi.org/10.1002/path.2865] [PMID: 21480229]
[7]
Rygaard, J.; Povlsen, C.O. The mouse mutant nude does not develop spontaneous tumours. An argument against immunological surveillance. Acta Pathol Microbiol Scand B Microbiol Immunol, 1974, 82(1), 99-106.
[PMID: 4597815]
[8]
Dighe, A.S.; Richards, E.; Old, L.J.; Schreiber, R.D. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity, 1994, 1(6), 447-456.
[http://dx.doi.org/10.1016/1074-7613(94)90087-6] [PMID: 7895156]
[9]
Street, S.E.; Trapani, J.A.; MacGregor, D.; Smyth, M.J. Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J. Exp. Med., 2002, 196(1), 129-134.
[http://dx.doi.org/10.1084/jem.20020063] [PMID: 12093877]
[10]
Shankaran, V.; Ikeda, H.; Bruce, A.T.; White, J.M.; Swanson, P.E.; Old, L.J.; Schreiber, R.D. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 2001, 410(6832), 1107-1111.
[http://dx.doi.org/10.1038/35074122] [PMID: 11323675]
[11]
Birkeland, S.A.; Storm, H.H.; Lamm, L.U.; Barlow, L.; Blohmé, I.; Forsberg, B.; Eklund, B.; Fjeldborg, O.; Friedberg, M.; Frödin, L. Cancer risk after renal transplantation in the Nordic countries, 1964-1986. Int. J. Cancer, 1995, 60(2), 183-189.
[http://dx.doi.org/10.1002/ijc.2910600209] [PMID: 7829213]
[12]
Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol., 2002, 3(11), 991-998.
[http://dx.doi.org/10.1038/ni1102-991] [PMID: 12407406]
[13]
Kim, R.; Emi, M.; Tanabe, K. Cancer immunoediting from immune surveillance to immune escape. Immunology, 2007, 121(1), 1-14.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02587.x] [PMID: 17386080]
[14]
Dunn, G.P.; Old, L.J.; Schreiber, R.D. The three Es of cancer immunoediting. Annu. Rev. Immunol., 2004, 22, 329-360.
[http://dx.doi.org/10.1146/annurev.immunol.22.012703.104803] [PMID: 15032581]
[15]
Balkwill, F.R.; Capasso, M.; Hagemann, T. The tumor microenvironment at a glance. J. Cell Sci., 2012, 125(Pt 23), 5591-5596.
[http://dx.doi.org/10.1242/jcs.116392] [PMID: 23420197]
[16]
Chen, L.; Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol., 2013, 13(4), 227-242.
[http://dx.doi.org/10.1038/nri3405] [PMID: 23470321]
[17]
Coulombe, M.; Lafferty, K.J.; Gill, R.G. Nature of tolerance induction to peripheral (extrathymic) islet allografts. Transplant. Proc., 1994, 26(2), 720-721.
[PMID: 8171624]
[18]
Linsley, P.S.; Greene, J.L.; Brady, W.; Bajorath, J.; Ledbetter, J.A.; Peach, R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity, 1994, 1(9), 793-801.
[http://dx.doi.org/10.1016/S1074-7613(94)80021-9] [PMID: 7534620]
[19]
Riley, J.L.; Mao, M.; Kobayashi, S.; Biery, M.; Burchard, J.; Cavet, G.; Gregson, B.P.; June, C.H.; Linsley, P.S. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11790-11795.
[http://dx.doi.org/10.1073/pnas.162359999] [PMID: 12195015]
[20]
Schneider, H.; Downey, J.; Smith, A.; Zinselmeyer, B.H.; Rush, C.; Brewer, J.M.; Wei, B.; Hogg, N.; Garside, P.; Rudd, C.E. Reversal of the TCR stop signal by CTLA-4. Science, 2006, 313(5795), 1972-1975.
[http://dx.doi.org/10.1126/science.1131078] [PMID: 16931720]
[21]
Egen, J.G.; Allison, J.P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity, 2002, 16(1), 23-35.
[http://dx.doi.org/10.1016/S1074-7613(01)00259-X] [PMID: 11825563]
[22]
Parry, R.V.; Chemnitz, J.M.; Frauwirth, K.A.; Lanfranco, A.R.; Braunstein, I.; Kobayashi, S.V.; Linsley, P.S.; Thompson, C.B.; Riley, J.L. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol., 2005, 25(21), 9543-9553.
[http://dx.doi.org/10.1128/MCB.25.21.9543-9553.2005] [PMID: 16227604]
[23]
Schneider, H.; Mandelbrot, D.A.; Greenwald, R.J.; Ng, F.; Lechler, R.; Sharpe, A.H.; Rudd, C.E. Cutting edge: CTLA-4 (CD152) differentially regulates mitogen-activated protein kinases (extracellular signal-regulated kinase and c-Jun N-terminal kinase) in CD4+ T cells from receptor/ligand-deficient mice. J. Immunol., 2002, 169(7), 3475-3479.
[http://dx.doi.org/10.4049/jimmunol.169.7.3475] [PMID: 12244135]
[24]
Jago, C.B.; Yates, J.; Câmara, N.O.; Lechler, R.I.; Lombardi, G. Differential expression of CTLA-4 among T cell subsets. Clin. Exp. Immunol., 2004, 136(3), 463-471.
[http://dx.doi.org/10.1111/j.1365-2249.2004.02478.x] [PMID: 15147348]
[25]
Leung, H.T.; Bradshaw, J.; Cleaveland, J.S.; Linsley, P.S. Cytotoxic T lymphocyte-associated molecule-4, a high-avidity receptor for CD80 and CD86, contains an intracellular localization motif in its cytoplasmic tail. J. Biol. Chem., 1995, 270(42), 25107-25114.
[http://dx.doi.org/10.1074/jbc.270.42.25107] [PMID: 7559643]
[26]
Brown, A.J. Effect of family visits on the blood pressure and heart rate of patients in the coronary-care unit. Heart Lung, 1976, 5(2), 291-296.
[PMID: 1046036]
[27]
Wing, K.; Onishi, Y.; Prieto-Martin, P.; Yamaguchi, T.; Miyara, M.; Fehervari, Z.; Nomura, T.; Sakaguchi, S. CTLA-4 control over Foxp3+ regulatory T cell function. Science, 2008, 322(5899), 271-275.
[http://dx.doi.org/10.1126/science.1160062] [PMID: 18845758]
[28]
Teft, W.A.; Kirchhof, M.G.; Madrenas, J. A molecular perspective of CTLA-4 function. Annu. Rev. Immunol., 2006, 24, 65-97.
[http://dx.doi.org/10.1146/annurev.immunol.24.021605.090535] [PMID: 16551244]
[29]
Qureshi, O.S.; Zheng, Y.; Nakamura, K.; Attridge, K.; Manzotti, C.; Schmidt, E.M.; Baker, J.; Jeffery, L.E.; Kaur, S.; Briggs, Z.; Hou, T.Z.; Futter, C.E.; Anderson, G.; Walker, L.S.; Sansom, D.M. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science, 2011, 332(6029), 600-603.
[http://dx.doi.org/10.1126/science.1202947] [PMID: 21474713]
[30]
Munn, D.H.; Sharma, M.D.; Mellor, A.L. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol., 2004, 172(7), 4100-4110.
[http://dx.doi.org/10.4049/jimmunol.172.7.4100] [PMID: 15034022]
[31]
Weber, J. Overcoming immunologic tolerance to melanoma: targeting CTLA-4 with ipilimumab (MDX-010). Oncologist, 2008, 13(Suppl. 4), 16-25.
[http://dx.doi.org/10.1634/theoncologist.13-S4-16] [PMID: 19001147]
[32]
Peggs, K.S.; Quezada, S.A.; Chambers, C.A.; Korman, A.J.; Allison, J.P. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med., 2009, 206(8), 1717-1725.
[http://dx.doi.org/10.1084/jem.20082492] [PMID: 19581407]
[33]
Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol., 2016, 39(1), 98-106.
[http://dx.doi.org/10.1097/COC.0000000000000239] [PMID: 26558876]
[34]
Linsley, P.S.; Nadler, S.G.; Bajorath, J.; Peach, R.; Leung, H.T.; Rogers, J.; Bradshaw, J.; Stebbins, M.; Leytze, G.; Brady, W. Binding stoichiometry of the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4). A disulfide-linked homodimer binds two CD86 molecules. J. Biol. Chem., 1995, 270(25), 15417-15424.
[http://dx.doi.org/10.1074/jbc.270.25.15417] [PMID: 7541042]
[35]
Darlington, P.J.; Kirchhof, M.G.; Criado, G.; Sondhi, J.; Madrenas, J. Hierarchical regulation of CTLA-4 dimer-based lattice formation and its biological relevance for T cell inactivation. J. Immunol., 2005, 175(2), 996-1004.
[http://dx.doi.org/10.4049/jimmunol.175.2.996] [PMID: 16002699]
[36]
Chun, T.; Choi, H.J.; Chung, Y.H. Two different forms of human CTLA-4 proteins following peripheral T cell activation. Immunol. Lett., 2004, 91(2-3), 213-220.
[http://dx.doi.org/10.1016/j.imlet.2003.12.004] [PMID: 15019292]
[37]
Baroja, M.L.; Luxenberg, D.; Chau, T.; Ling, V.; Strathdee, C.A.; Carreno, B.M.; Madrenas, J. The inhibitory function of CTLA-4 does not require its tyrosine phosphorylation. J. Immunol., 2000, 164(1), 49-55.
[http://dx.doi.org/10.4049/jimmunol.164.1.49] [PMID: 10604992]
[38]
Krummel, M.F.; Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med., 1995, 182(2), 459-465.
[http://dx.doi.org/10.1084/jem.182.2.459] [PMID: 7543139]
[39]
Waterhouse, P.; Penninger, J.M.; Timms, E.; Wakeham, A.; Shahinian, A.; Lee, K.P.; Thompson, C.B.; Griesser, H.; Mak, T.W. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995, 270(5238), 985-988.
[http://dx.doi.org/10.1126/science.270.5238.985] [PMID: 7481803]
[40]
Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996, 271(5256), 1734-1736.
[http://dx.doi.org/10.1126/science.271.5256.1734] [PMID: 8596936]
[41]
van Elsas, A.; Hurwitz, A.A.; Allison, J.P. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med., 1999, 190(3), 355-366.
[http://dx.doi.org/10.1084/jem.190.3.355] [PMID: 10430624]
[42]
Hodi, F.S.; Mihm, M.C.; Soiffer, R.J.; Haluska, F.G.; Butler, M.; Seiden, M.V.; Davis, T.; Henry-Spires, R.; MacRae, S.; Willman, A.; Padera, R.; Jaklitsch, M.T.; Shankar, S.; Chen, T.C.; Korman, A.; Allison, J.P.; Dranoff, G. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl. Acad. Sci. USA, 2003, 100(8), 4712-4717.
[http://dx.doi.org/10.1073/pnas.0830997100] [PMID: 12682289]
[43]
Ribas, A. Clinical development of the anti-CTLA-4 antibody tremelimumab. Semin. Oncol., 2010, 37(5), 450-454.
[http://dx.doi.org/10.1053/j.seminoncol.2010.09.010] [PMID: 21074059]
[44]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[45]
Okazaki, T.; Honjo, T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol., 2006, 27(4), 195-201.
[http://dx.doi.org/10.1016/j.it.2006.02.001] [PMID: 16500147]
[46]
Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05481.x] [PMID: 1396582]
[47]
Francisco, L.M.; Salinas, V.H.; Brown, K.E.; Vanguri, V.K.; Freeman, G.J.; Kuchroo, V.K.; Sharpe, A.H. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med., 2009, 206(13), 3015-3029.
[http://dx.doi.org/10.1084/jem.20090847] [PMID: 20008522]
[48]
Jazirehi, A.R.; Lim, A.; Dinh, T. PD-1 inhibition and treatment of advanced melanoma-role of pembrolizumab. Am. J. Cancer Res., 2016, 6(10), 2117-2128.
[PMID: 27822406]
[49]
O’Donnell, J.S.; Long, G.V.; Scolyer, R.A.; Teng, M.W.; Smyth, M.J. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat. Rev., 2017, 52, 71-81.
[http://dx.doi.org/10.1016/j.ctrv.2016.11.007] [PMID: 27951441]
[50]
Dong, H.; Zhu, G.; Tamada, K.; Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med., 1999, 5(12), 1365-1369.
[http://dx.doi.org/10.1038/70932] [PMID: 10581077]
[51]
Latchman, Y.; Wood, C.R.; Chernova, T.; Chaudhary, D.; Borde, M.; Chernova, I.; Iwai, Y.; Long, A.J.; Brown, J.A.; Nunes, R.; Greenfield, E.A.; Bourque, K.; Boussiotis, V.A.; Carter, L.L.; Carreno, B.M.; Malenkovich, N.; Nishimura, H.; Okazaki, T.; Honjo, T.; Sharpe, A.H.; Freeman, G.J. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol., 2001, 2(3), 261-268.
[http://dx.doi.org/10.1038/85330] [PMID: 11224527]
[52]
Tseng, S.Y.; Otsuji, M.; Gorski, K.; Huang, X.; Slansky, J.E.; Pai, S.I.; Shalabi, A.; Shin, T.; Pardoll, D.M.; Tsuchiya, H. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med., 2001, 193(7), 839-846.
[http://dx.doi.org/10.1084/jem.193.7.839] [PMID: 11283156]
[53]
Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; Lennon, V.A.; Celis, E.; Chen, L. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med., 2002, 8(8), 793-800.
[http://dx.doi.org/10.1038/nm730] [PMID: 12091876]
[54]
Ahmadzadeh, M.; Johnson, L.A.; Heemskerk, B.; Wunderlich, J.R.; Dudley, M.E.; White, D.E.; Rosenberg, S.A. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 2009, 114(8), 1537-1544.
[http://dx.doi.org/10.1182/blood-2008-12-195792] [PMID: 19423728]
[55]
Sfanos, K.S.; Bruno, T.C.; Meeker, A.K.; De Marzo, A.M.; Isaacs, W.B.; Drake, C.G. Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate, 2009, 69(15), 1694-1703.
[http://dx.doi.org/10.1002/pros.21020] [PMID: 19670224]
[56]
Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; Rodig, S.J.; Chapuy, B.; Ligon, A.H.; Zhu, L.; Grosso, J.F.; Kim, S.Y.; Timmerman, J.M.; Shipp, M.A.; Armand, P. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med., 2015, 372(4), 311-319.
[http://dx.doi.org/10.1056/NEJMoa1411087] [PMID: 25482239]
[57]
Raimondi, G.; Zanoni, I.; Citterio, S.; Ricciardi-Castagnoli, P.; Granucci, F. Induction of peripheral T cell tolerance by antigen-presenting B cells. II. Chronic antigen presentation overrules antigen-presenting B cell activation. J. Immunol., 2006, 176(7), 4021-4028.
[http://dx.doi.org/10.4049/jimmunol.176.7.4021] [PMID: 16547237]
[58]
Merelli, B.; Massi, D.; Cattaneo, L.; Mandalà, M. Targeting the PD1/PD-L1 axis in melanoma: biological rationale, clinical challenges and opportunities. Crit. Rev. Oncol. Hematol., 2014, 89(1), 140-165.
[http://dx.doi.org/10.1016/j.critrevonc.2013.08.002] [PMID: 24029602]
[59]
Zhang, X.; Schwartz, J.C.; Guo, X.; Bhatia, S.; Cao, E.; Lorenz, M.; Cammer, M.; Chen, L.; Zhang, Z.Y.; Edidin, M.A.; Nathenson, S.G.; Almo, S.C. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity, 2004, 20(3), 337-347.
[http://dx.doi.org/10.1016/S1074-7613(04)00051-2] [PMID: 15030777]
[60]
Bardhan, K.; Anagnostou, T.; Boussiotis, V.A. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front. Immunol., 2016, 7, 550.
[http://dx.doi.org/10.3389/fimmu.2016.00550] [PMID: 28018338]
[61]
Sheppard, K.A.; Fitz, L.J.; Lee, J.M.; Benander, C.; George, J.A.; Wooters, J.; Qiu, Y.; Jussif, J.M.; Carter, L.L.; Wood, C.R.; Chaudhary, D. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett., 2004, 574(1-3), 37-41.
[http://dx.doi.org/10.1016/j.febslet.2004.07.083] [PMID: 15358536]
[62]
Yokosuka, T.; Takamatsu, M.; Kobayashi-Imanishi, W.; Hashimoto-Tane, A.; Azuma, M.; Saito, T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med., 2012, 209(6), 1201-1217.
[http://dx.doi.org/10.1084/jem.20112741] [PMID: 22641383]
[63]
Honda, T.; Egen, J.G.; Lämmermann, T.; Kastenmüller, W.; Torabi-Parizi, P.; Germain, R.N. Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity, 2014, 40(2), 235-247.
[http://dx.doi.org/10.1016/j.immuni.2013.11.017] [PMID: 24440150]
[64]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[65]
Zinselmeyer, B.H.; Heydari, S.; Sacristán, C.; Nayak, D.; Cammer, M.; Herz, J.; Cheng, X.; Davis, S.J.; Dustin, M.L.; McGavern, D.B. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J. Exp. Med., 2013, 210(4), 757-774.
[http://dx.doi.org/10.1084/jem.20121416] [PMID: 23530125]
[66]
Blank, C.; Brown, I.; Peterson, A.C.; Spiotto, M.; Iwai, Y.; Honjo, T.; Gajewski, T.F. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res., 2004, 64(3), 1140-1145.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3259] [PMID: 14871849]
[67]
Okudaira, K.; Hokari, R.; Tsuzuki, Y.; Okada, Y.; Komoto, S.; Watanabe, C.; Kurihara, C.; Kawaguchi, A.; Nagao, S.; Azuma, M.; Yagita, H.; Miura, S. Blockade of B7-H1 or B7-DC induces an anti-tumor effect in a mouse pancreatic cancer model. Int. J. Oncol., 2009, 35(4), 741-749.
[PMID: 19724910]
[68]
Strome, S.E.; Dong, H.; Tamura, H.; Voss, S.G.; Flies, D.B.; Tamada, K.; Salomao, D.; Cheville, J.; Hirano, F.; Lin, W.; Kasperbauer, J.L.; Ballman, K.V.; Chen, L. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res., 2003, 63(19), 6501-6505.
[PMID: 14559843]
[69]
Zang, X.; Allison, J.P. The B7 family and cancer therapy: costimulation and coinhibition. Clin. Cancer Res., 2007, 13(18 Pt 1), 5271-5279.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1030] [PMID: 17875755]
[70]
Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, 26, 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[71]
Barber, D.L.; Wherry, E.J.; Masopust, D.; Zhu, B.; Allison, J.P.; Sharpe, A.H.; Freeman, G.J.; Ahmed, R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439(7077), 682-687.
[http://dx.doi.org/10.1038/nature04444] [PMID: 16382236]
[72]
Brahmer, J.R.; Drake, C.G.; Wollner, I.; Powderly, J.D.; Picus, J.; Sharfman, W.H.; Stankevich, E.; Pons, A.; Salay, T.M.; McMiller, T.L.; Gilson, M.M.; Wang, C.; Selby, M.; Taube, J.M.; Anders, R.; Chen, L.; Korman, A.J.; Pardoll, D.M.; Lowy, I.; Topalian, S.L. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol., 2010, 28(19), 3167-3175.
[http://dx.doi.org/10.1200/JCO.2009.26.7609] [PMID: 20516446]
[73]
Ascierto, P.A.; Simeone, E.; Sznol, M.; Fu, Y.X.; Melero, I. Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin. Oncol., 2010, 37(5), 508-516.
[http://dx.doi.org/10.1053/j.seminoncol.2010.09.008] [PMID: 21074066]
[74]
Barbee, M.S.; Ogunniyi, A.; Horvat, T.Z.; Dang, T.O. Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. Ann. Pharmacother., 2015, 49(8), 907-937.
[http://dx.doi.org/10.1177/1060028015586218] [PMID: 25991832]
[75]
Postow, M.A.; Callahan, M.K.; Wolchok, J.D. Immune Checkpoint Blockade in Cancer Therapy. J. Clin. Oncol., 2015, 33(17), 1974-1982.
[http://dx.doi.org/10.1200/JCO.2014.59.4358] [PMID: 25605845]
[76]
Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity, 2007, 27(1), 111-122.
[http://dx.doi.org/10.1016/j.immuni.2007.05.016] [PMID: 17629517]
[77]
de Mello, R.A.; Veloso, A.F.; Esrom Catarina, P.; Nadine, S.; Antoniou, G. Potential role of immunotherapy in advanced non-small-cell lung cancer. OncoTargets Ther., 2016, 10, 21-30.
[http://dx.doi.org/10.2147/OTT.S90459] [PMID: 28031719]
[78]
Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol., 2012, 24(2), 207-212.
[http://dx.doi.org/10.1016/j.coi.2011.12.009] [PMID: 22236695]
[79]
Wu, C.; Zhu, Y.; Jiang, J.; Zhao, J.; Zhang, X.G.; Xu, N. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem., 2006, 108(1), 19-24.
[http://dx.doi.org/10.1016/j.acthis.2006.01.003] [PMID: 16530813]
[80]
Zhang, L.; Qiu, M.; Jin, Y.; Ji, J.; Li, B.; Wang, X.; Yan, S.; Xu, R.; Yang, D. Programmed cell death ligand 1 (PD-L1) expression on gastric cancer and its relationship with clinicopathologic factors. Int. J. Clin. Exp. Pathol., 2015, 8(9), 11084-11091.
[PMID: 26617827]
[81]
Liu, X.; Yang, Z.; Latchoumanin, O.; Qiao, L. Antagonizing programmed death-1 and programmed death ligand-1 as a therapeutic approach for gastric cancer. Therap. Adv. Gastroenterol., 2016, 9(6), 853-860.
[http://dx.doi.org/10.1177/1756283X16658251] [PMID: 27803740]
[82]
Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; Pitot, H.C.; Hamid, O.; Bhatia, S.; Martins, R.; Eaton, K.; Chen, S.; Salay, T.M.; Alaparthy, S.; Grosso, J.F.; Korman, A.J.; Parker, S.M.; Agrawal, S.; Goldberg, S.M.; Pardoll, D.M.; Gupta, A.; Wigginton, J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012, 366(26), 32, abstr 8021, 5s., 2455-2465.
[http://dx.doi.org/10.1056/NEJMoa1200694] [PMID: 22658128]
[83]
Brahmer, J.R.; Rizvi, N.A.; Lutzky, J. Clinical activity and biomarkers of MEDI4736, an anti-PD-L1 antibody, in patients with NSCLC J Clin Oncol, 2014.. 32 abstr 8021, 5s
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.8021]
[84]
Spigel, D.R.; Gettinger, S.N.; Horn, L. Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PDL1 antibody in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) J Clin Oncol, 2013, 31 abstr 8008.
[85]
Soria, J.C.; Cruz, C.; Bahleda, R. Clinical activity, safety, and biomarkers of PD-L1 blockade in non-small cell lung cancer (NSCLC): Additional analyses from a clinical study of the engineered antibody MPDL3280A (anti-PDL1 European J Cancer, 2013, 49 abstr 3408
[86]
Triebel, F.; Jitsukawa, S.; Baixeras, E.; Roman-Roman, S.; Genevee, C.; Viegas-Pequignot, E.; Hercend, T. LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med., 1990, 171(5), 1393-1405.
[http://dx.doi.org/10.1084/jem.171.5.1393] [PMID: 1692078]
[87]
Baixeras, E.; Huard, B.; Miossec, C.; Jitsukawa, S.; Martin, M.; Hercend, T.; Auffray, C.; Triebel, F.; Piatier-Tonneau, D. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J. Exp. Med., 1992, 176(2), 327-337.
[http://dx.doi.org/10.1084/jem.176.2.327] [PMID: 1380059]
[88]
Byun, H.J.; Jung, W.W.; Lee, D.S.; Kim, S.; Kim, S.J.; Park, C.G.; Chung, H.Y.; Chun, T. Proliferation of activated CD1d-restricted NKT cells is down-modulated by lymphocyte activation gene-3 signaling via cell cycle arrest in S phase. Cell Biol. Int., 2007, 31(3), 257-262.
[http://dx.doi.org/10.1016/j.cellbi.2006.11.002] [PMID: 17175182]
[89]
Kisielow, M.; Kisielow, J.; Capoferri-Sollami, G.; Karjalainen, K. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur. J. Immunol., 2005, 35(7), 2081-2088.
[http://dx.doi.org/10.1002/eji.200526090] [PMID: 15971272]
[90]
Grosso, J.F.; Kelleher, C.C.; Harris, T.J.; Maris, C.H.; Hipkiss, E.L.; De Marzo, A.; Anders, R.; Netto, G.; Getnet, D.; Bruno, T.C.; Goldberg, M.V.; Pardoll, D.M.; Drake, C.G. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J. Clin. Invest., 2007, 117(11), 3383-3392.
[http://dx.doi.org/10.1172/JCI31184] [PMID: 17932562]
[91]
Kozbor, D.; Finan, J.; Nowell, P.C.; Croce, C.M. The gene encoding the T4 antigen maps to human chromosome 12. J. Immunol., 1986, 136(4), 1141-1143.
[PMID: 3080518]
[92]
Isobe, M.; Huebner, K.; Maddon, P.J.; Littman, D.R.; Axel, R.; Croce, C.M. The gene encoding the T-cell surface protein T4 is located on human chromosome 12. Proc. Natl. Acad. Sci. USA, 1986, 83(12), 4399-4402.
[http://dx.doi.org/10.1073/pnas.83.12.4399] [PMID: 3086883]
[93]
Workman, C.J.; Dugger, K.J.; Vignali, D.A. Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J. Immunol., 2002, 169(10), 5392-5395.
[http://dx.doi.org/10.4049/jimmunol.169.10.5392] [PMID: 12421911]
[94]
Workman, C.J.; Vignali, D.A. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur. J. Immunol., 2003, 33(4), 970-979.
[http://dx.doi.org/10.1002/eji.200323382] [PMID: 12672063]
[95]
Workman, C.J.; Vignali, D.A. Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J. Immunol., 2005, 174(2), 688-695.
[http://dx.doi.org/10.4049/jimmunol.174.2.688] [PMID: 15634887]
[96]
Huang, C.T.; Workman, C.J.; Flies, D.; Pan, X.; Marson, A.L.; Zhou, G.; Hipkiss, E.L.; Ravi, S.; Kowalski, J.; Levitsky, H.I.; Powell, J.D.; Pardoll, D.M.; Drake, C.G.; Vignali, D.A. Role of LAG-3 in regulatory T cells. Immunity, 2004, 21(4), 503-513.
[http://dx.doi.org/10.1016/j.immuni.2004.08.010] [PMID: 15485628]
[97]
Liang, B.; Workman, C.; Lee, J.; Chew, C.; Dale, B.M.; Colonna, L.; Flores, M.; Li, N.; Schweighoffer, E.; Greenberg, S.; Tybulewicz, V.; Vignali, D.; Clynes, R. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J. Immunol., 2008, 180(9), 5916-5926.
[http://dx.doi.org/10.4049/jimmunol.180.9.5916] [PMID: 18424711]
[98]
Hannier, S.; Tournier, M.; Bismuth, G.; Triebel, F. CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling. J. Immunol., 1998, 161(8), 4058-4065.
[PMID: 9780176]
[99]
Huard, B.; Tournier, M.; Hercend, T.; Triebel, F.; Faure, F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur. J. Immunol., 1994, 24(12), 3216-3221.
[http://dx.doi.org/10.1002/eji.1830241246] [PMID: 7805750]
[100]
Huard, B.; Prigent, P.; Tournier, M.; Bruniquel, D.; Triebel, F. CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur. J. Immunol., 1995, 25(9), 2718-2721.
[http://dx.doi.org/10.1002/eji.1830250949] [PMID: 7589152]
[101]
Leen, A.M.; Rooney, C.M.; Foster, A.E. Improving T cell therapy for cancer. Annu. Rev. Immunol., 2007, 25, 243-265.
[http://dx.doi.org/10.1146/annurev.immunol.25.022106.141527] [PMID: 17129181]
[102]
Bae, J.; Lee, S.J.; Park, C.G.; Lee, Y.S.; Chun, T. Trafficking of LAG-3 to the surface on activated T cells via its cytoplasmic domain and protein kinase C signaling. J. Immunol., 2014, 193(6), 3101-3112.
[http://dx.doi.org/10.4049/jimmunol.1401025] [PMID: 25108024]
[103]
Annunziato, F.; Manetti, R.; Tomasévic, I.; Guidizi, M.G.; Biagiotti, R.; Giannò, V.; Germano, P.; Mavilia, C.; Maggi, E.; Romagnani, S. Expression and release of LAG-3-encoded protein by human CD4+ T cells are associated with IFN-gamma production. FASEB J., 1996, 10(7), 769-776.
[http://dx.doi.org/10.1096/fasebj.10.7.8635694] [PMID: 8635694]
[104]
Cappello, P.; Triebel, F.; Iezzi, M.; Caorsi, C.; Quaglino, E.; Lollini, P.L.; Amici, A.; Di Carlo, E.; Musiani, P.; Giovarelli, M.; Forni, G. LAG-3 enables DNA vaccination to persistently prevent mammary carcinogenesis in HER-2/neu transgenic BALB/c mice. Cancer Res., 2003, 63(10), 2518-2525.
[PMID: 12750275]
[105]
Brignone, C.; Grygar, C.; Marcu, M.; Schäkel, K.; Triebel, F. A soluble form of lymphocyte activation gene-3 (IMP321) induces activation of a large range of human effector cytotoxic cells. J. Immunol., 2007, 179(6), 4202-4211.
[http://dx.doi.org/10.4049/jimmunol.179.6.4202] [PMID: 17785860]
[106]
Brignone, C.; Gutierrez, M.; Mefti, F.; Brain, E.; Jarcau, R.; Cvitkovic, F.; Bousetta, N.; Medioni, J.; Gligorov, J.; Grygar, C.; Marcu, M.; Triebel, F. First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J. Transl. Med., 2010, 8, 71.
[http://dx.doi.org/10.1186/1479-5876-8-71] [PMID: 20653948]
[107]
Brignone, C.; Escudier, B.; Grygar, C.; Marcu, M.; Triebel, F. A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin. Cancer Res., 2009, 15(19), 6225-6231.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0068] [PMID: 19755389]
[108]
Wang-Gillam, A.; Plambeck-Suess, S.; Goedegebuure, P.; Simon, P.O.; Mitchem, J.B.; Hornick, J.R.; Sorscher, S.; Picus, J.; Suresh, R.; Lockhart, A.C.; Tan, B.; Hawkins, W.G. A phase I study of IMP321 and gemcitabine as the front-line therapy in patients with advanced pancreatic adenocarcinoma. Invest. New Drugs, 2013, 31(3), 707-713.
[http://dx.doi.org/10.1007/s10637-012-9866-y] [PMID: 22864469]
[109]
Romano, E.; Michielin, O.; Voelter, V.; Laurent, J.; Bichat, H.; Stravodimou, A.; Romero, P.; Speiser, D.E.; Triebel, F.; Leyvraz, S.; Harari, A. MART-1 peptide vaccination plus IMP321 (LAG-3Ig fusion protein) in patients receiving autologous PBMCs after lymphodepletion: results of a Phase I trial. J. Transl. Med., 2014, 12, 97.
[http://dx.doi.org/10.1186/1479-5876-12-97] [PMID: 24726012]
[110]
Chen, S.; Lee, L.F.; Fisher, T.S.; Jessen, B.; Elliott, M.; Evering, W.; Logronio, K.; Tu, G.H.; Tsaparikos, K.; Li, X.; Wang, H.; Ying, C.; Xiong, M.; VanArsdale, T.; Lin, J.C. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol. Res., 2015, 3(2), 149-160.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0118] [PMID: 25387892]
[111]
Monney, L.; Sabatos, C.A.; Gaglia, J.L.; Ryu, A.; Waldner, H.; Chernova, T.; Manning, S.; Greenfield, E.A.; Coyle, A.J.; Sobel, R.A.; Freeman, G.J.; Kuchroo, V.K. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature, 2002, 415(6871), 536-541.
[http://dx.doi.org/10.1038/415536a] [PMID: 11823861]
[112]
Zhu, C.; Anderson, A.C.; Schubart, A.; Xiong, H.; Imitola, J.; Khoury, S.J.; Zheng, X.X.; Strom, T.B.; Kuchroo, V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol., 2005, 6(12), 1245-1252.
[http://dx.doi.org/10.1038/ni1271] [PMID: 16286920]
[113]
Sabatos, C.A.; Chakravarti, S.; Cha, E.; Schubart, A.; Sánchez-Fueyo, A.; Zheng, X.X.; Coyle, A.J.; Strom, T.B.; Freeman, G.J.; Kuchroo, V.K. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat. Immunol., 2003, 4(11), 1102-1110.
[http://dx.doi.org/10.1038/ni988] [PMID: 14556006]
[114]
Sánchez-Fueyo, A.; Tian, J.; Picarella, D.; Domenig, C.; Zheng, X.X.; Sabatos, C.A.; Manlongat, N.; Bender, O.; Kamradt, T.; Kuchroo, V.K.; Gutiérrez-Ramos, J.C.; Coyle, A.J.; Strom, T.B. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat. Immunol., 2003, 4(11), 1093-1101.
[http://dx.doi.org/10.1038/ni987] [PMID: 14556005]
[115]
Hafler, D.A.; Kuchroo, V. TIMs: central regulators of immune responses. J. Exp. Med., 2008, 205(12), 2699-2701.
[http://dx.doi.org/10.1084/jem.20082429] [PMID: 19015312]
[116]
Takamura, S.; Tsuji-Kawahara, S.; Yagita, H.; Akiba, H.; Sakamoto, M.; Chikaishi, T.; Kato, M.; Miyazawa, M. Premature terminal exhaustion of Friend virus-specific effector CD8+ T cells by rapid induction of multiple inhibitory receptors. J. Immunol., 2010, 184(9), 4696-4707.
[http://dx.doi.org/10.4049/jimmunol.0903478] [PMID: 20351188]
[117]
Anderson, A.C.; Joller, N.; Kuchroo, V.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity, 2016, 44(5), 989-1004.
[http://dx.doi.org/10.1016/j.immuni.2016.05.001] [PMID: 27192565]
[118]
Nakayama, M.; Akiba, H.; Takeda, K.; Kojima, Y.; Hashiguchi, M.; Azuma, M.; Yagita, H.; Okumura, K. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood, 2009, 113(16), 3821-3830.
[http://dx.doi.org/10.1182/blood-2008-10-185884] [PMID: 19224762]
[119]
Tang, D.; Lotze, M.T. Tumor immunity times out: TIM-3 and HMGB1. Nat. Immunol., 2012, 13(9), 808-810.
[http://dx.doi.org/10.1038/ni.2396] [PMID: 22910384]
[120]
Huang, Y.H.; Zhu, C.; Kondo, Y.; Anderson, A.C.; Gandhi, A.; Russell, A.; Dougan, S.K.; Petersen, B.S.; Melum, E.; Pertel, T.; Clayton, K.L.; Raab, M.; Chen, Q.; Beauchemin, N.; Yazaki, P.J.; Pyzik, M.; Ostrowski, M.A.; Glickman, J.N.; Rudd, C.E.; Ploegh, H.L.; Franke, A.; Petsko, G.A.; Kuchroo, V.K.; Blumberg, R.S. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature, 2015, 517(7534), 386-390.
[http://dx.doi.org/10.1038/nature13848] [PMID: 25363763]
[121]
Du, W.; Yang, M.; Turner, A.; Xu, C.; Ferris, R.L.; Huang, J.; Kane, L.P.; Lu, B. TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action. Int. J. Mol. Sci., 2017, 18(3), E645
[http://dx.doi.org/10.3390/ijms18030645] [PMID: 28300768]
[122]
Li, X.; Hu, W.; Zheng, X.; Zhang, C.; Du, P.; Zheng, Z.; Yang, Y.; Wu, J.; Ji, M.; Jiang, J.; Wu, C.; Gao, X. Emerging immune checkpoints for cancer therapy. Acta Oncol., 2015, 54(10), 1706-1713.
[http://dx.doi.org/10.3109/0284186X.2015.1071918] [PMID: 26361073]
[123]
Gao, X.; Zhu, Y.; Li, G.; Huang, H.; Zhang, G.; Wang, F.; Sun, J.; Yang, Q.; Zhang, X.; Lu, B. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One, 2012, 7(2), e30676
[http://dx.doi.org/10.1371/journal.pone.0030676] [PMID: 22363469]
[124]
Gupta, S.; Thornley, T.B.; Gao, W.; Larocca, R.; Turka, L.A.; Kuchroo, V.K.; Strom, T.B. Allograft rejection is restrained by short-lived TIM-3+PD-1+Foxp3+ Tregs. J. Clin. Invest., 2012, 122(7), 2395-2404.
[http://dx.doi.org/10.1172/JCI45138] [PMID: 22684103]
[125]
Ottoboni, L.; Keenan, B.T.; Tamayo, P.; Kuchroo, M.; Mesirov, J.P.; Buckle, G.J.; Khoury, S.J.; Hafler, D.A.; Weiner, H.L.; De Jager, P.L. An RNA profile identifies two subsets of multiple sclerosis patients differing in disease activity. Sci. Transl. Med., 2012, 4(153), 153ra131
[http://dx.doi.org/10.1126/scitranslmed.3004186] [PMID: 23019656]
[126]
Sakuishi, K.; Apetoh, L.; Sullivan, J.M.; Blazar, B.R.; Kuchroo, V.K.; Anderson, A.C. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med., 2010, 207(10), 2187-2194.
[http://dx.doi.org/10.1084/jem.20100643] [PMID: 20819927]
[127]
Ngiow, S.F.; von Scheidt, B.; Akiba, H.; Yagita, H.; Teng, M.W.; Smyth, M.J. Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors. Cancer Res., 2011, 71(10), 3540-3551.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0096] [PMID: 21430066]
[128]
Fourcade, J.; Sun, Z.; Benallaoua, M.; Guillaume, P.; Luescher, I.F.; Sander, C.; Kirkwood, J.M.; Kuchroo, V.; Zarour, H.M. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med., 2010, 207(10), 2175-2186.
[http://dx.doi.org/10.1084/jem.20100637] [PMID: 20819923]
[129]
Yang, Z.Z.; Grote, D.M.; Ziesmer, S.C.; Niki, T.; Hirashima, M.; Novak, A.J.; Witzig, T.E.; Ansell, S.M. IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J. Clin. Invest., 2012, 122(4), 1271-1282.
[http://dx.doi.org/10.1172/JCI59806] [PMID: 22426209]
[130]
Wang, L.; Rubinstein, R.; Lines, J.L.; Wasiuk, A.; Ahonen, C.; Guo, Y.; Lu, L.F.; Gondek, D.; Wang, Y.; Fava, R.A.; Fiser, A.; Almo, S.; Noelle, R.J. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med., 2011, 208(3), 577-592.
[http://dx.doi.org/10.1084/jem.20100619] [PMID: 21383057]
[131]
Flies, D.B.; Wang, S.; Xu, H.; Chen, L. Cutting edge: A monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models. J. Immunol., 2011, 187(4), 1537-1541.
[http://dx.doi.org/10.4049/jimmunol.1100660] [PMID: 21768399]
[132]
Yoon, K.W.; Byun, S.; Kwon, E.; Hwang, S.Y.; Chu, K.; Hiraki, M.; Jo, S.H.; Weins, A.; Hakroush, S.; Cebulla, A.; Sykes, D.B.; Greka, A.; Mundel, P.; Fisher, D.E.; Mandinova, A.; Lee, S.W. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science, 2015, 349(6247), 1261669
[http://dx.doi.org/10.1126/science.1261669] [PMID: 26228159]
[133]
Sakr, M.A.; Takino, T.; Domoto, T.; Nakano, H.; Wong, R.W.; Sasaki, M.; Nakanuma, Y.; Sato, H. GI24 enhances tumor invasiveness by regulating cell surface membrane-type 1 matrix metalloproteinase. Cancer Sci., 2010, 101(11), 2368-2374.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01675.x] [PMID: 20666777]
[134]
Aloia, L.; Parisi, S.; Fusco, L.; Pastore, L.; Russo, T. Differentiation of embryonic stem cells 1 (Dies1) is a component of bone morphogenetic protein 4 (BMP4) signaling pathway required for proper differentiation of mouse embryonic stem cells. J. Biol. Chem., 2010, 285(10), 7776-7783.
[http://dx.doi.org/10.1074/jbc.M109.077156] [PMID: 20042595]
[135]
Nowak, E.C.; Lines, J.L.; Varn, F.S.; Deng, J.; Sarde, A.; Mabaera, R.; Kuta, A.; Le Mercier, I.; Cheng, C.; Noelle, R.J. Immunoregulatory functions of VISTA. Immunol. Rev., 2017, 276(1), 66-79.
[http://dx.doi.org/10.1111/imr.12525] [PMID: 28258694]
[136]
Lines, J.L.; Pantazi, E.; Mak, J.; Sempere, L.F.; Wang, L.; O’Connell, S.; Ceeraz, S.; Suriawinata, A.A.; Yan, S.; Ernstoff, M.S.; Noelle, R. VISTA is an immune checkpoint molecule for human T cells. Cancer Res., 2014, 74(7), 1924-1932.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1504] [PMID: 24691993]
[137]
Bharaj, P.; Chahar, H.S.; Alozie, O.K.; Rodarte, L.; Bansal, A.; Goepfert, P.A.; Dwivedi, A.; Manjunath, N.; Shankar, P. Characterization of programmed death-1 homologue-1 (PD-1H) expression and function in normal and HIV infected individuals. PLoS One, 2014, 9(10), e109103
[http://dx.doi.org/10.1371/journal.pone.0109103] [PMID: 25279955]
[138]
Battista, M.; Musto, A.; Navarra, A.; Minopoli, G.; Russo, T.; Parisi, S. miR-125b regulates the early steps of ESC differentiation through dies1 in a TGF-independent manner. Int. J. Mol. Sci., 2013, 14(7), 13482-13496.
[http://dx.doi.org/10.3390/ijms140713482] [PMID: 23807506]
[139]
Parisi, S.; Battista, M.; Musto, A.; Navarra, A.; Tarantino, C.; Russo, T. A regulatory loop involving Dies1 and miR-125a controls BMP4 signaling in mouse embryonic stem cells. FASEB J., 2012, 26(10), 3957-3968.
[http://dx.doi.org/10.1096/fj.12-211607] [PMID: 22751012]
[140]
Tang, T.; Li, L.; Tang, J.; Li, Y.; Lin, W.Y.; Martin, F.; Grant, D.; Solloway, M.; Parker, L.; Ye, W.; Forrest, W.; Ghilardi, N.; Oravecz, T.; Platt, K.A.; Rice, D.S.; Hansen, G.M.; Abuin, A.; Eberhart, D.E.; Godowski, P.; Holt, K.H.; Peterson, A.; Zambrowicz, B.P.; de Sauvage, F.J. A mouse knockout library for secreted and transmembrane proteins. Nat. Biotechnol., 2010, 28(7), 749-755.
[http://dx.doi.org/10.1038/nbt.1644] [PMID: 20562862]
[141]
Flies, D.B.; Han, X.; Higuchi, T.; Zheng, L.; Sun, J.; Ye, J.J.; Chen, L. Coinhibitory receptor PD-1H preferentially suppresses CD4+ T cell-mediated immunity. J. Clin. Invest., 2014, 124(5), 1966-1975.
[http://dx.doi.org/10.1172/JCI74589] [PMID: 24743150]
[142]
Wang, L.; Le Mercier, I.; Putra, J.; Chen, W.; Liu, J.; Schenk, A.D.; Nowak, E.C.; Suriawinata, A.A.; Li, J.; Noelle, R.J. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc. Natl. Acad. Sci. USA, 2014, 111(41), 14846-14851.
[http://dx.doi.org/10.1073/pnas.1407447111] [PMID: 25267631]
[143]
Flies, D.B.; Higuchi, T.; Chen, L. Mechanistic Assessment of PD-1H Coinhibitory Receptor-Induced T Cell Tolerance to Allogeneic Antigens. J. Immunol., 2015, 194(11), 5294-5304.
[http://dx.doi.org/10.4049/jimmunol.1402648] [PMID: 25917101]
[144]
Le Mercier, I.; Chen, W.; Lines, J.L.; Day, M.; Li, J.; Sergent, P.; Noelle, R.J.; Wang, L. VISTA Regulates the Development of Protective Antitumor Immunity. Cancer Res., 2014, 74(7), 1933-1944.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1506] [PMID: 24691994]
[145]
Kondo, Y.; Ohno, T.; Nishii, N.; Harada, K.; Yagita, H.; Azuma, M. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma. Oral Oncol., 2016, 57, 54-60.
[http://dx.doi.org/10.1016/j.oraloncology.2016.04.005] [PMID: 27208845]
[146]
Liu, J.; Yuan, Y.; Chen, W.; Putra, J.; Suriawinata, A.A.; Schenk, A.D.; Miller, H.E.; Guleria, I.; Barth, R.J.; Huang, Y.H.; Wang, L. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc. Natl. Acad. Sci. USA, 2015, 112(21), 6682-6687.
[http://dx.doi.org/10.1073/pnas.1420370112] [PMID: 25964334]
[147]
Mbongue, J.C.; Nicholas, D.A.; Torrez, T.W.; Kim, N.S.; Firek, A.F.; Langridge, W.H. The Role of Indoleamine 2, 3-Dioxygenase in Immune Suppression and Autoimmunity. Vaccines (Basel), 2015, 3(3), 703-729.
[http://dx.doi.org/10.3390/vaccines3030703] [PMID: 26378585]
[148]
Sordillo, P.P.; Sordillo, L.A.; Helson, L. The Kynurenine Pathway: A Primary Resistance Mechanism in Patients with Glioblastoma. Anticancer Res., 2017, 37(5), 2159-2171.
[http://dx.doi.org/10.21873/anticanres.11551] [PMID: 28476779]
[149]
Dempke, W.C.M.; Fenchel, K.; Uciechowski, P.; Dale, S.P. Second- and third-generation drugs for immuno-oncology treatment-The more the better? Eur. J. Cancer, 2017, 74, 55-72.
[http://dx.doi.org/10.1016/j.ejca.2017.01.001] [PMID: 28335888]
[150]
Ball, H.J.; Sanchez-Perez, A.; Weiser, S.; Austin, C.J.; Astelbauer, F.; Miu, J.; McQuillan, J.A.; Stocker, R.; Jermiin, L.S.; Hunt, N.H. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene, 2007, 396(1), 203-213.
[http://dx.doi.org/10.1016/j.gene.2007.04.010] [PMID: 17499941]
[151]
Godin-Ethier, J.; Hanafi, L.A.; Piccirillo, C.A.; Lapointe, R. Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin. Cancer Res., 2011, 17(22), 6985-6991.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1331] [PMID: 22068654]
[152]
Fatokun, A.A.; Hunt, N.H.; Ball, H.J. Indoleamine 2,3-dioxygenase 2 (IDO2) and the kynurenine pathway: characteristics and potential roles in health and disease. Amino Acids, 2013, 45(6), 1319-1329.
[http://dx.doi.org/10.1007/s00726-013-1602-1] [PMID: 24105077]
[153]
Curti, A.; Trabanelli, S.; Salvestrini, V.; Baccarani, M.; Lemoli, R.M. The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood, 2009, 113(11), 2394-2401.
[http://dx.doi.org/10.1182/blood-2008-07-144485] [PMID: 19023117]
[154]
Munn, D.H.; Zhou, M.; Attwood, J.T.; Bondarev, I.; Conway, S.J.; Marshall, B.; Brown, C.; Mellor, A.L. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science, 1998, 281(5380), 1191-1193.
[http://dx.doi.org/10.1126/science.281.5380.1191] [PMID: 9712583]
[155]
Schröcksnadel, K.; Wirleitner, B.; Winkler, C.; Fuchs, D. Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta, 2006, 364(1-2), 82-90.
[http://dx.doi.org/10.1016/j.cca.2005.06.013] [PMID: 16139256]
[156]
Hainz, U.; Jürgens, B.; Wekerle, T.; Seidel, M.G.; Heitger, A. Indoleamine 2,3-dioxygenase in hematopoietic stem cell transplantation. Curr. Drug Metab., 2007, 8(3), 267-272.
[http://dx.doi.org/10.2174/138920007780362554] [PMID: 17430114]
[157]
Moon, Y.W.; Hajjar, J.; Hwu, P.; Naing, A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J. Immunother. Cancer, 2015, 3, 51.
[http://dx.doi.org/10.1186/s40425-015-0094-9] [PMID: 26674411]
[158]
Zhang, X.; Zhu, S.; Li, T.; Liu, Y.J.; Chen, W.; Chen, J. Targeting immune checkpoints in malignant glioma. Oncotarget, 2017, 8(4), 7157-7174.
[http://dx.doi.org/10.18632/oncotarget.12702] [PMID: 27756892]
[159]
Maleki Vareki, S.; Rytelewski, M.; Figueredo, R.; Chen, D.; Ferguson, P.J.; Vincent, M.; Min, W.; Zheng, X.; Koropatnick, J. Indoleamine 2,3-dioxygenase mediates immune-independent human tumor cell resistance to olaparib, gamma radiation, and cisplatin. Oncotarget, 2014, 5(9), 2778-2791.
[http://dx.doi.org/10.18632/oncotarget.1916] [PMID: 24784564]
[160]
Vilgelm, A.E.; Johnson, D.B.; Richmond, A. Combinatorial approach to cancer immunotherapy: strength in numbers. J. Leukoc. Biol., 2016, 100(2), 275-290.
[http://dx.doi.org/10.1189/jlb.5RI0116-013RR] [PMID: 27256570]
[161]
Uyttenhove, C.; Pilotte, L.; Théate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med., 2003, 9(10), 1269-1274.
[http://dx.doi.org/10.1038/nm934] [PMID: 14502282]
[162]
Hanihara, M.; Kawataki, T.; Oh-Oka, K.; Mitsuka, K.; Nakao, A.; Kinouchi, H. Synergistic antitumor effect with indoleamine 2,3-dioxygenase inhibition and temozolomide in a murine glioma model. J. Neurosurg., 2016, 124(6), 1594-1601.
[http://dx.doi.org/10.3171/2015.5.JNS141901] [PMID: 26636389]
[163]
Antonioli, L.; Pacher, P.; Vizi, E.S.; Haskó, G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med., 2013, 19(6), 355-367.
[http://dx.doi.org/10.1016/j.molmed.2013.03.005] [PMID: 23601906]
[164]
Zhi, X.; Chen, S.; Zhou, P.; Shao, Z.; Wang, L.; Ou, Z.; Yin, L. RNA interference of ecto-5′-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clin. Exp. Metastasis, 2007, 24(6), 439-448.
[http://dx.doi.org/10.1007/s10585-007-9081-y] [PMID: 17587186]
[165]
Allard, D.; Turcotte, M.; Stagg, J. Targeting A2 adenosine receptors in cancer. Immunol. Cell Biol., 2017, 95(4), 333-339.
[http://dx.doi.org/10.1038/icb.2017.8] [PMID: 28174424]
[166]
Allard, D.; Allard, B.; Gaudreau, P.O.; Chrobak, P.; Stagg, J. CD73-adenosine: a next-generation target in immuno-oncology. Immunotherapy, 2016, 8(2), 145-163.
[http://dx.doi.org/10.2217/imt.15.106] [PMID: 26808918]
[167]
Blay, J.; White, T.D.; Hoskin, D.W. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res., 1997, 57(13), 2602-2605.
[PMID: 9205063]
[168]
Synnestvedt, K.; Furuta, G.T.; Comerford, K.M.; Louis, N.; Karhausen, J.; Eltzschig, H.K.; Hansen, K.R.; Thompson, L.F.; Colgan, S.P. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest., 2002, 110(7), 993-1002.
[http://dx.doi.org/10.1172/JCI0215337] [PMID: 12370277]
[169]
Eltzschig, H.K.; Thompson, L.F.; Karhausen, J.; Cotta, R.J.; Ibla, J.C.; Robson, S.C.; Colgan, S.P. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood, 2004, 104(13), 3986-3992.
[http://dx.doi.org/10.1182/blood-2004-06-2066] [PMID: 15319286]
[170]
Sevigny, C.P.; Li, L.; Awad, A.S.; Huang, L.; McDuffie, M.; Linden, J.; Lobo, P.I.; Okusa, M.D. Activation of adenosine 2A receptors attenuates allograft rejection and alloantigen recognition. J. Immunol., 2007, 178(7), 4240-4249.
[http://dx.doi.org/10.4049/jimmunol.178.7.4240] [PMID: 17371980]
[171]
Ohta, A.; Kini, R.; Ohta, A.; Subramanian, M.; Madasu, M.; Sitkovsky, M. The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front. Immunol., 2012, 3, 190.
[http://dx.doi.org/10.3389/fimmu.2012.00190] [PMID: 22783261]
[172]
Zarek, P.E.; Huang, C.T.; Lutz, E.R.; Kowalski, J.; Horton, M.R.; Linden, J.; Drake, C.G.; Powell, J.D. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood, 2008, 111(1), 251-259.
[http://dx.doi.org/10.1182/blood-2007-03-081646] [PMID: 17909080]
[173]
Haskó, G.; Kuhel, D.G.; Chen, J.F.; Schwarzschild, M.A.; Deitch, E.A.; Mabley, J.G.; Marton, A.; Szabó, C. Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J., 2000, 14(13), 2065-2074.
[http://dx.doi.org/10.1096/fj.99-0508com] [PMID: 11023991]
[174]
Panther, E.; Corinti, S.; Idzko, M.; Herouy, Y.; Napp, M.; la Sala, A.; Girolomoni, G.; Norgauer, J. Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood, 2003, 101(10), 3985-3990.
[http://dx.doi.org/10.1182/blood-2002-07-2113] [PMID: 12446452]
[175]
Hoskin, D.W.; Reynolds, T.; Blay, J. Adenosine as a possible inhibitor of killer T-cell activation in the microenvironment of solid tumours. Int. J. Cancer, 1994, 59(6), 854-855.
[http://dx.doi.org/10.1002/ijc.2910590625] [PMID: 7989130]
[176]
Ohta, A.; Gorelik, E.; Prasad, S.J.; Ronchese, F.; Lukashev, D.; Wong, M.K.; Huang, X.; Caldwell, S.; Liu, K.; Smith, P.; Chen, J.F.; Jackson, E.K.; Apasov, S.; Abrams, S.; Sitkovsky, M. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl. Acad. Sci. USA, 2006, 103(35), 13132-13137.
[http://dx.doi.org/10.1073/pnas.0605251103] [PMID: 16916931]
[177]
Stagg, J.; Divisekera, U.; McLaughlin, N.; Sharkey, J.; Pommey, S.; Denoyer, D.; Dwyer, K.M.; Smyth, M.J. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc. Natl. Acad. Sci. USA, 2010, 107(4), 1547-1552.
[http://dx.doi.org/10.1073/pnas.0908801107] [PMID: 20080644]
[178]
Stagg, J.; Divisekera, U.; Duret, H.; Sparwasser, T.; Teng, M.W.; Darcy, P.K.; Smyth, M.J. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res., 2011, 71(8), 2892-2900.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4246] [PMID: 21292811]
[179]
Mittal, D.; Young, A.; Stannard, K.; Yong, M.; Teng, M.W.; Allard, B.; Stagg, J.; Smyth, M.J. Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res., 2014, 74(14), 3652-3658.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0957] [PMID: 24986517]
[180]
Stagg, J.; Loi, S.; Divisekera, U.; Ngiow, S.F.; Duret, H.; Yagita, H.; Teng, M.W.; Smyth, M.J. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc. Natl. Acad. Sci. USA, 2011, 108(17), 7142-7147.
[http://dx.doi.org/10.1073/pnas.1016569108] [PMID: 21482773]
[181]
Stagg, J.; Beavis, P.A.; Divisekera, U.; Liu, M.C.; Möller, A.; Darcy, P.K.; Smyth, M.J. CD73-deficient mice are resistant to carcinogenesis. Cancer Res., 2012, 72(9), 2190-2196.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0420] [PMID: 22396496]
[182]
Serra, S.; Horenstein, A.L.; Vaisitti, T.; Brusa, D.; Rossi, D.; Laurenti, L.; D’Arena, G.; Coscia, M.; Tripodo, C.; Inghirami, G.; Robson, S.C.; Gaidano, G.; Malavasi, F.; Deaglio, S. CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death. Blood, 2011, 118(23), 6141-6152.
[http://dx.doi.org/10.1182/blood-2011-08-374728] [PMID: 21998208]
[183]
Quezada, C.; Garrido, W.; Oyarzún, C.; Fernández, K.; Segura, R.; Melo, R.; Casanello, P.; Sobrevia, L.; San Martín, R. 5′-ectonucleotidase mediates multiple-drug resistance in glioblastoma multiforme cells. J. Cell. Physiol., 2013, 228(3), 602-608.
[http://dx.doi.org/10.1002/jcp.24168] [PMID: 22833450]
[184]
Wirsdörfer, F.; de Leve, S.; Cappuccini, F.; Eldh, T.; Meyer, A.V.; Gau, E.; Thompson, L.F.; Chen, N.Y.; Karmouty-Quintana, H.; Fischer, U.; Kasper, M.; Klein, D.; Ritchey, J.W.; Blackburn, M.R.; Westendorf, A.M.; Stuschke, M.; Jendrossek, V. Extracellular Adenosine Production by ecto-5′-Nucleotidase (CD73) Enhances Radiation-Induced Lung Fibrosis. Cancer Res., 2016, 76(10), 3045-3056.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2310] [PMID: 26921334]
[185]
Mediavilla-Varela, M.; Luddy, K.; Noyes, D.; Khalil, F.K.; Neuger, A.M.; Soliman, H.; Antonia, S.J. Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biol. Ther., 2013, 14(9), 860-868.
[http://dx.doi.org/10.4161/cbt.25643] [PMID: 23917542]
[186]
Jin, D.; Fan, J.; Wang, L.; Thompson, L.F.; Liu, A.; Daniel, B.J.; Shin, T.; Curiel, T.J.; Zhang, B. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res., 2010, 70(6), 2245-2255.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3109] [PMID: 20179192]
[187]
Loi, S.; Pommey, S.; Haibe-Kains, B.; Beavis, P.A.; Darcy, P.K.; Smyth, M.J.; Stagg, J. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(27), 11091-11096.
[http://dx.doi.org/10.1073/pnas.1222251110] [PMID: 23776241]
[188]
Lukashev, D.; Ohta, A.; Sitkovsky, M. Hypoxia-dependent anti-inflammatory pathways in protection of cancerous tissues. Cancer Metastasis Rev., 2007, 26(2), 273-279.
[http://dx.doi.org/10.1007/s10555-007-9054-2] [PMID: 17404693]
[189]
Wang, L.; Fan, J.; Thompson, L.F.; Zhang, Y.; Shin, T.; Curiel, T.J.; Zhang, B. CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J. Clin. Invest., 2011, 121(6), 2371-2382.
[http://dx.doi.org/10.1172/JCI45559] [PMID: 21537079]
[190]
Sun, X.; Wu, Y.; Gao, W.; Enjyoji, K.; Csizmadia, E.; Müller, C.E.; Murakami, T.; Robson, S.C. CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology, 2010, 139(3), 1030-1040.
[http://dx.doi.org/10.1053/j.gastro.2010.05.007] [PMID: 20546740]
[191]
Bastid, J.; Regairaz, A.; Bonnefoy, N.; Déjou, C.; Giustiniani, J.; Laheurte, C.; Cochaud, S.; Laprevotte, E.; Funck-Brentano, E.; Hemon, P.; Gros, L.; Bec, N.; Larroque, C.; Alberici, G.; Bensussan, A.; Eliaou, J.F. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol. Res., 2015, 3(3), 254-265.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0018] [PMID: 25403716]
[192]
Ohta, A.; Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature, 2001, 414(6866), 916-920.
[http://dx.doi.org/10.1038/414916a] [PMID: 11780065]
[193]
Yao, S.Q.; Li, Z.Z.; Huang, Q.Y.; Li, F.; Wang, Z.W.; Augusto, E.; He, J.C.; Wang, X.T.; Chen, J.F.; Zheng, R.Y. Genetic inactivation of the adenosine A(2A) receptor exacerbates brain damage in mice with experimental autoimmune encephalomyelitis. J. Neurochem., 2012, 123(1), 100-112.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07807.x] [PMID: 22639925]
[194]
Waickman, A.T.; Alme, A.; Senaldi, L.; Zarek, P.E.; Horton, M.; Powell, J.D. Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor. Cancer Immunol. Immunother., 2012, 61(6), 917-926.
[http://dx.doi.org/10.1007/s00262-011-1155-7] [PMID: 22116345]
[195]
Beavis, P.A.; Milenkovski, N.; Henderson, M.A.; John, L.B.; Allard, B.; Loi, S.; Kershaw, M.H.; Stagg, J.; Darcy, P.K. Adenosine Receptor 2A Blockade Increases the Efficacy of Anti-PD-1 through Enhanced Antitumor T-cell Responses. Cancer Immunol. Res., 2015, 3(5), 506-517.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0211] [PMID: 25672397]
[196]
Iannone, R.; Miele, L.; Maiolino, P.; Pinto, A.; Morello, S. Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia, 2013, 15(12), 1400-1409.
[http://dx.doi.org/10.1593/neo.131748] [PMID: 24403862]
[197]
Ohta, A. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment. Front. Immunol., 2016, 7, 109.
[http://dx.doi.org/10.3389/fimmu.2016.00109] [PMID: 27066002]
[198]
Zhang, B. CD73: a novel target for cancer immunotherapy. Cancer Res., 2010, 70(16), 6407-6411.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1544] [PMID: 20682793]
[199]
Willingham, S.; Hotson, A.; Ho, P.; Choy, C.; Laport, G.; McCaffery, I.; Miller, R. A potent and selective inhibitor of A2AR induces antitumor responses alone and in combination with anti-PD-L1 in preclinical and clinical studies Cancer Immunology Research, 2016. 4: abstr PR04.
[200]
Watanabe, N.; Gavrieli, M.; Sedy, J.R.; Yang, J.; Fallarino, F.; Loftin, S.K.; Hurchla, M.A.; Zimmerman, N.; Sim, J.; Zang, X.; Murphy, T.L.; Russell, J.H.; Allison, J.P.; Murphy, K.M. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat. Immunol., 2003, 4(7), 670-679.
[http://dx.doi.org/10.1038/ni944] [PMID: 12796776]
[201]
Hurchla, M.A.; Sedy, J.R.; Gavrieli, M.; Drake, C.G.; Murphy, T.L.; Murphy, K.M. B and T lymphocyte attenuator exhibits structural and expression polymorphisms and is highly Induced in anergic CD4+ T cells. J. Immunol., 2005, 174(6), 3377-3385.
[http://dx.doi.org/10.4049/jimmunol.174.6.3377] [PMID: 15749870]
[202]
Han, P.; Goularte, O.D.; Rufner, K.; Wilkinson, B.; Kaye, J. An inhibitory Ig superfamily protein expressed by lymphocytes and APCs is also an early marker of thymocyte positive selection. J. Immunol., 2004, 172(10), 5931-5939.
[http://dx.doi.org/10.4049/jimmunol.172.10.5931] [PMID: 15128774]
[203]
Sedy, J.R.; Gavrieli, M.; Potter, K.G.; Hurchla, M.A.; Lindsley, R.C.; Hildner, K.; Scheu, S.; Pfeffer, K.; Ware, C.F.; Murphy, T.L.; Murphy, K.M. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat. Immunol., 2005, 6(1), 90-98.
[http://dx.doi.org/10.1038/ni1144] [PMID: 15568026]
[204]
Loyet, K.M.; Ouyang, W.; Eaton, D.L.; Stults, J.T. Proteomic profiling of surface proteins on Th1 and Th2 cells. J. Proteome Res., 2005, 4(2), 400-409.
[http://dx.doi.org/10.1021/pr049810q] [PMID: 15822916]
[205]
Murphy, K.M.; Nelson, C.A.; Sedý, J.R. Balancing co-stimulation and inhibition with BTLA and HVEM. Nat. Rev. Immunol., 2006, 6(9), 671-681.
[http://dx.doi.org/10.1038/nri1917] [PMID: 16932752]
[206]
Gonzalez, L.C.; Loyet, K.M.; Calemine-Fenaux, J.; Chauhan, V.; Wranik, B.; Ouyang, W.; Eaton, D.L. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc. Natl. Acad. Sci. USA, 2005, 102(4), 1116-1121.
[http://dx.doi.org/10.1073/pnas.0409071102] [PMID: 15647361]
[207]
Compaan, D.M.; Gonzalez, L.C.; Tom, I.; Loyet, K.M.; Eaton, D.; Hymowitz, S.G. Attenuating lymphocyte activity: the crystal structure of the BTLA-HVEM complex. J. Biol. Chem., 2005, 280(47), 39553-39561.
[http://dx.doi.org/10.1074/jbc.M507629200] [PMID: 16169851]
[208]
Gavrieli, M.; Watanabe, N.; Loftin, S.K.; Murphy, T.L.; Murphy, K.M. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochem. Biophys. Res. Commun., 2003, 312(4), 1236-1243.
[http://dx.doi.org/10.1016/j.bbrc.2003.11.070] [PMID: 14652006]
[209]
Chemnitz, J.M.; Lanfranco, A.R.; Braunstein, I.; Riley, J.L. B and T lymphocyte attenuator-mediated signal transduction provides a potent inhibitory signal to primary human CD4 T cells that can be initiated by multiple phosphotyrosine motifs. J. Immunol., 2006, 176(11), 6603-6614.
[http://dx.doi.org/10.4049/jimmunol.176.11.6603] [PMID: 16709818]
[210]
Gavrieli, M.; Murphy, K.M. Association of Grb-2 and PI3K p85 with phosphotyrosile peptides derived from BTLA. Biochem. Biophys. Res. Commun., 2006, 345(4), 1440-1445.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.036] [PMID: 16725108]
[211]
Hurchla, M.A.; Sedy, J.R.; Murphy, K.M. Unexpected role of B and T lymphocyte attenuator in sustaining cell survival during chronic allostimulation. J. Immunol., 2007, 178(10), 6073-6082.
[http://dx.doi.org/10.4049/jimmunol.178.10.6073] [PMID: 17475832]
[212]
Wu, T.H.; Zhen, Y.; Zeng, C.; Yi, H.F.; Zhao, Y. B and T lymphocyte attenuator interacts with CD3zeta and inhibits tyrosine phosphorylation of TCRzeta complex during T-cell activation. Immunol. Cell Biol., 2007, 85(8), 590-595.
[http://dx.doi.org/10.1038/sj.icb.7100087] [PMID: 17607320]
[213]
Vendel, A.C.; Calemine-Fenaux, J.; Izrael-Tomasevic, A.; Chauhan, V.; Arnott, D.; Eaton, D.L. B and T lymphocyte attenuator regulates B cell receptor signaling by targeting Syk and BLNK. J. Immunol., 2009, 182(3), 1509-1517.
[http://dx.doi.org/10.4049/jimmunol.182.3.1509] [PMID: 19155498]
[214]
Stecher, C.; Battin, C.; Leitner, J.; Zettl, M.; Grabmeier-Pfistershammer, K.; Höller, C.; Zlabinger, G.J.; Steinberger, P. PD-1 Blockade Promotes Emerging Checkpoint Inhibitors in Enhancing T Cell Responses to Allogeneic Dendritic Cells. Front. Immunol., 2017, 8, 572.
[http://dx.doi.org/10.3389/fimmu.2017.00572] [PMID: 28588576]
[215]
Laux, G.; König, W. Long-term use of benzodiazepines in psychiatric inpatients. Acta Psychiatr. Scand., 1987, 76(1), 64-70.
[http://dx.doi.org/10.1111/j.1600-0447.1987.tb02863.x] [PMID: 2888262]
[216]
Leitner, J.; Klauser, C.; Pickl, W.F.; Stöckl, J.; Majdic, O.; Bardet, A.F.; Kreil, D.P.; Dong, C.; Yamazaki, T.; Zlabinger, G.; Pfistershammer, K.; Steinberger, P. B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction. Eur. J. Immunol., 2009, 39(7), 1754-1764.
[http://dx.doi.org/10.1002/eji.200839028] [PMID: 19544488]
[217]
Chen, C.; Shen, Y.; Qu, Q.X.; Chen, X.Q.; Zhang, X.G.; Huang, J.A. Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response. Exp. Cell Res., 2013, 319(1), 96-102.
[http://dx.doi.org/10.1016/j.yexcr.2012.09.006] [PMID: 22999863]
[218]
Zhang, G.; Wang, J.; Kelly, J.; Gu, G.; Hou, J.; Zhou, Y.; Redmond, H.P.; Wang, J.H.; Zhang, X. B7-H3 augments the inflammatory response and is associated with human sepsis. J. Immunol., 2010, 185(6), 3677-3684.
[http://dx.doi.org/10.4049/jimmunol.0904020] [PMID: 20696859]
[219]
Veenstra, R.G.; Flynn, R.; Kreymborg, K.; McDonald-Hyman, C.; Saha, A.; Taylor, P.A.; Osborn, M.J.; Panoskaltsis-Mortari, A.; Schmitt-Graeff, A.; Lieberknecht, E.; Murphy, W.J.; Serody, J.S.; Munn, D.H.; Freeman, G.J.; Allison, J.P.; Mak, T.W.; van den Brink, M.; Zeiser, R.; Blazar, B.R. B7-H3 expression in donor T cells and host cells negatively regulates acute graft-versus-host disease lethality. Blood, 2015, 125(21), 3335-3346.
[http://dx.doi.org/10.1182/blood-2014-09-603357] [PMID: 25814530]
[220]
Steinberger, P.; Majdic, O.; Derdak, S.V.; Pfistershammer, K.; Kirchberger, S.; Klauser, C.; Zlabinger, G.; Pickl, W.F.; Stöckl, J.; Knapp, W. Molecular characterization of human 4Ig-B7-H3, a member of the B7 family with four Ig-like domains. J. Immunol., 2004, 172(4), 2352-2359.
[http://dx.doi.org/10.4049/jimmunol.172.4.2352] [PMID: 14764704]
[221]
Zhao, X.; Li, D.C.; Zhu, X.G.; Gan, W.J.; Li, Z.; Xiong, F.; Zhang, Z.X.; Zhang, G.B.; Zhang, X.G.; Zhao, H. B7-H3 overexpression in pancreatic cancer promotes tumor progression. Int. J. Mol. Med., 2013, 31(2), 283-291.
[http://dx.doi.org/10.3892/ijmm.2012.1212] [PMID: 23242015]
[222]
Janakiram, M.; Shah, U.A.; Liu, W.; Zhao, A.; Schoenberg, M.P.; Zang, X. The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3. Immunol. Rev., 2017, 276(1), 26-39.
[http://dx.doi.org/10.1111/imr.12521] [PMID: 28258693]
[223]
Lee, Y.H.; Martin-Orozco, N.; Zheng, P.; Li, J.; Zhang, P.; Tan, H.; Park, H.J.; Jeong, M.; Chang, S.H.; Kim, B.S.; Xiong, W.; Zang, W.; Guo, L.; Liu, Y.; Dong, Z.J.; Overwijk, W.W.; Hwu, P.; Yi, Q.; Kwak, L.; Yang, Z.; Mak, T.W.; Li, W.; Radvanyi, L.G.; Ni, L.; Liu, D.; Dong, C. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res., 2017, 27(8), 1034-1045.
[http://dx.doi.org/10.1038/cr.2017.90] [PMID: 28685773]
[224]
Picarda, E.; Ohaegbulam, K.C.; Zang, X. Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy. Clin. Cancer Res., 2016, 22(14), 3425-3431.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2428] [PMID: 27208063]
[225]
Cheng, C.; Qu, Q.X.; Shen, Y.; Lv, Y.T.; Zhu, Y.B.; Zhang, X.G.; Huang, J.A. Overexpression of B7-H4 in tumor infiltrated dendritic cells. J. Immunoassay Immunochem., 2011, 32(4), 353-364.
[http://dx.doi.org/10.1080/15321819.2011.578190] [PMID: 21728826]
[226]
Smith, J.B.; Stashwick, C.; Powell, D.J. B7-H4 as a potential target for immunotherapy for gynecologic cancers: a closer look. Gynecol. Oncol., 2014, 134(1), 181-189.
[http://dx.doi.org/10.1016/j.ygyno.2014.03.553] [PMID: 24657487]
[227]
Wang, L.; Heng, X.; Lu, Y.; Cai, Z.; Yi, Q.; Che, F. Could B7-H4 serve as a target to activate anti-cancer immunity? Int. Immunopharmacol., 2016, 38, 97-103.
[http://dx.doi.org/10.1016/j.intimp.2016.05.020] [PMID: 27258187]
[228]
Jeon, H.; Ohaegbulam, K.C.; Abadi, Y.M.; Zang, X. B7x and myeloid-derived suppressor cells in the tumor microenvironment: A tale of two cities. OncoImmunology, 2013, 2(7), e24744
[http://dx.doi.org/10.4161/onci.24744] [PMID: 24073367]
[229]
Sica, G.L.; Choi, I.H.; Zhu, G.; Tamada, K.; Wang, S.D.; Tamura, H.; Chapoval, A.I.; Flies, D.B.; Bajorath, J.; Chen, L. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity, 2003, 18(6), 849-861.
[http://dx.doi.org/10.1016/S1074-7613(03)00152-3] [PMID: 12818165]
[230]
Kryczek, I.; Wei, S.; Zhu, G.; Myers, L.; Mottram, P.; Cheng, P.; Chen, L.; Coukos, G.; Zou, W. Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res., 2007, 67(18), 8900-8905.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1866] [PMID: 17875732]
[231]
Chen, C.; Qu, Q.X.; Shen, Y.; Mu, C.Y.; Zhu, Y.B.; Zhang, X.G.; Huang, J.A. Induced expression of B7-H4 on the surface of lung cancer cell by the tumor-associated macrophages: a potential mechanism of immune escape. Cancer Lett., 2012, 317(1), 99-105.
[http://dx.doi.org/10.1016/j.canlet.2011.11.017] [PMID: 22108530]
[232]
Xu, Y.; Zhu, S.; Song, M.; Liu, W.; Liu, C.; Li, Y.; Wang, M. B7-H4 expression and its role in interleukin-2/interferon treatment of clear cell renal cell carcinoma. Oncol. Lett., 2014, 7(5), 1474-1478.
[http://dx.doi.org/10.3892/ol.2014.1961] [PMID: 24765159]
[233]
Prasad, D.V.; Richards, S.; Mai, X.M.; Dong, C. B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity, 2003, 18(6), 863-873.
[http://dx.doi.org/10.1016/S1074-7613(03)00147-X] [PMID: 12818166]
[234]
Hansen, J.D.; Du Pasquier, L.; Lefranc, M.P.; Lopez, V.; Benmansour, A.; Boudinot, P. The B7 family of immunoregulatory receptors: a comparative and evolutionary perspective. Mol. Immunol., 2009, 46(3), 457-472.
[http://dx.doi.org/10.1016/j.molimm.2008.10.007] [PMID: 19081138]
[235]
Formenti, S.C.; Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol., 2009, 10(7), 718-726.
[http://dx.doi.org/10.1016/S1470-2045(09)70082-8] [PMID: 19573801]
[236]
Tang, C.; Wang, X.; Soh, H.; Seyedin, S.; Cortez, M.A.; Krishnan, S.; Massarelli, E.; Hong, D.; Naing, A.; Diab, A.; Gomez, D.; Ye, H.; Heymach, J.; Komaki, R.; Allison, J.P.; Sharma, P.; Welsh, J.W. Combining radiation and immunotherapy: a new systemic therapy for solid tumors? Cancer Immunol. Res., 2014, 2(9), 831-838.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0069] [PMID: 25187273]
[237]
Postow, M.A.; Callahan, M.K.; Barker, C.A.; Yamada, Y.; Yuan, J.; Kitano, S.; Mu, Z.; Rasalan, T.; Adamow, M.; Ritter, E.; Sedrak, C.; Jungbluth, A.A.; Chua, R.; Yang, A.S.; Roman, R.A.; Rosner, S.; Benson, B.; Allison, J.P.; Lesokhin, A.M.; Gnjatic, S.; Wolchok, J.D. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med., 2012, 366(10), 925-931.
[http://dx.doi.org/10.1056/NEJMoa1112824] [PMID: 22397654]
[238]
Rodriguez-Ruiz, M.E.; Rodriguez, I.; Garasa, S.; Barbes, B.; Solorzano, J.L.; Perez-Gracia, J.L.; Labiano, S.; Sanmamed, M.F.; Azpilikueta, A.; Bolaños, E.; Sanchez-Paulete, A.R.; Aznar, M.A.; Rouzaut, A.; Schalper, K.A.; Jure-Kunkel, M.; Melero, I. Abscopal Effects of Radiotherapy Are Enhanced by Combined Immunostimulatory mAbs and Are Dependent on CD8 T Cells and Crosspriming. Cancer Res., 2016, 76(20), 5994-6005.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0549] [PMID: 27550452]
[239]
Wang, Y.; Deng, W.; Li, N.; Neri, S.; Sharma, A.; Jiang, W.; Lin, S.H. Combining Immunotherapy and Radiotherapy for Cancer Treatment: Current Challenges and Future Directions. Front. Pharmacol., 2018, 9, 185.
[http://dx.doi.org/10.3389/fphar.2018.00185] [PMID: 29556198]
[240]
Schmidberger, H.; Rapp, M.; Ebersberger, A.; Hey-Koch, S.; Loquai, C.; Grabbe, S.; Mayer, A. Long-term survival of patients after ipilimumab and hypofractionated brain radiotherapy for brain metastases of malignant melanoma: sequence matters. Strahlenther. Onkol., 2018, 194(12), 1144-1151.
[http://dx.doi.org/10.1007/s00066-018-1356-5] [PMID: 30298365]
[241]
Gandhi, A.K.; Kang, J.; Havens, C.G.; Conklin, T.; Ning, Y.; Wu, L.; Ito, T.; Ando, H.; Waldman, M.F.; Thakurta, A.; Klippel, A.; Handa, H.; Daniel, T.O.; Schafer, P.H.; Chopra, R. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br. J. Haematol., 2014, 164(6), 811-821.
[http://dx.doi.org/10.1111/bjh.12708] [PMID: 24328678]
[242]
Henry, J.Y.; Labarthe, M.C.; Meyer, B.; Dasgupta, P.; Dalgleish, A.G.; Galustian, C. Enhanced cross-priming of naive CD8+ T cells by dendritic cells treated by the IMiDs® immunomodulatory compounds lenalidomide and pomalidomide. Immunology, 2013, 139(3), 377-385.
[http://dx.doi.org/10.1111/imm.12087] [PMID: 23374145]
[243]
Ramsay, A.G.; Clear, A.J.; Fatah, R.; Gribben, J.G. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood, 2012, 120(7), 1412-1421.
[http://dx.doi.org/10.1182/blood-2012-02-411678] [PMID: 22547582]
[244]
Maffei, R.; Fiorcari, S.; Bulgarelli, J.; Rizzotto, L.; Martinelli, S.; Rigolin, G. M.; Debbia, G.; Castelli, I.; Bonacorsi, G.; Santachiara, R.; Forconi, F.; Rossi, D.; Laurenti, L.; Palumbo, G. A.; Vallisa, D.; Cuneo, A.; Gaidano, G.; Luppi, M.; Marasca, R. Endothelium-mediated survival of leukemic cells and angiogenesis-related factors are affected by lenalidomide treatment in chronic lymphocytic leukemia Exp Hematol, 2014, 42(2), 126-36.: e1
[http://dx.doi.org/10.1016/j.exphem.2013.10.007]
[245]
Görgün, G.; Samur, M.K.; Cowens, K.B.; Paula, S.; Bianchi, G.; Anderson, J.E.; White, R.E.; Singh, A.; Ohguchi, H.; Suzuki, R.; Kikuchi, S.; Harada, T.; Hideshima, T.; Tai, Y.T.; Laubach, J.P.; Raje, N.; Magrangeas, F.; Minvielle, S.; Avet-Loiseau, H.; Munshi, N.C.; Dorfman, D.M.; Richardson, P.G.; Anderson, K.C. Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma. Clin. Cancer Res., 2015, 21(20), 4607-4618.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0200] [PMID: 25979485]
[246]
Koya, R.C.; Mok, S.; Otte, N.; Blacketor, K.J.; Comin-Anduix, B.; Tumeh, P.C.; Minasyan, A.; Graham, N.A.; Graeber, T.G.; Chodon, T.; Ribas, A. BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Res., 2012, 72(16), 3928-3937.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2837] [PMID: 22693252]
[247]
Harding, J.J.; Pulitzer, M.; Chapman, P.B. Vemurafenib sensitivity skin reaction after ipilimumab. N. Engl. J. Med., 2012, 366(9), 866-868.
[http://dx.doi.org/10.1056/NEJMc1114329] [PMID: 22375995]
[248]
Minor, D.R.; Puzanov, I.; Callahan, M.K.; Hug, B.A.; Hoos, A. Severe gastrointestinal toxicity with administration of trametinib in combination with dabrafenib and ipilimumab. Pigment Cell Melanoma Res., 2015, 28(5), 611-612.
[http://dx.doi.org/10.1111/pcmr.12383] [PMID: 25996827]
[249]
West, A.C.; Smyth, M.J.; Johnstone, R.W. The anticancer effects of HDAC inhibitors require the immune system. OncoImmunology, 2014, 3(1), e27414
[http://dx.doi.org/10.4161/onci.27414] [PMID: 24701376]
[250]
Li, H.; Chiappinelli, K.B.; Guzzetta, A.A.; Easwaran, H.; Yen, R.W.; Vatapalli, R.; Topper, M.J.; Luo, J.; Connolly, R.M.; Azad, N.S.; Stearns, V.; Pardoll, D.M.; Davidson, N.; Jones, P.A.; Slamon, D.J.; Baylin, S.B.; Zahnow, C.A.; Ahuja, N. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget, 2014, 5(3), 587-598.
[http://dx.doi.org/10.18632/oncotarget.1782] [PMID: 24583822]
[251]
Kim, K.; Skora, A.D.; Li, Z.; Liu, Q.; Tam, A.J.; Blosser, R.L.; Diaz, L.A., Jr; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B.; Zhou, S. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl. Acad. Sci. USA, 2014, 111(32), 11774-11779.
[http://dx.doi.org/10.1073/pnas.1410626111] [PMID: 25071169]
[252]
Sagiv-Barfi, I.; Kohrt, H.E.; Czerwinski, D.K.; Ng, P.P.; Chang, B.Y.; Levy, R. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc. Natl. Acad. Sci. USA, 2015, 112(9), E966-E972.
[http://dx.doi.org/10.1073/pnas.1500712112] [PMID: 25730880]
[253]
Kelderman, S.; Heemskerk, B.; van Tinteren, H.; van den Brom, R.R.; Hospers, G.A.; van den Eertwegh, A.J.; Kapiteijn, E.W.; de Groot, J.W.; Soetekouw, P.; Jansen, R.L.; Fiets, E.; Furness, A.J.; Renn, A.; Krzystanek, M.; Szallasi, Z.; Lorigan, P.; Gore, M.E.; Schumacher, T.N.; Haanen, J.B.; Larkin, J.M.; Blank, C.U. Lactate dehydrogenase as a selection criterion for ipilimumab treatment in metastatic melanoma. Cancer Immunol. Immunother., 2014, 63(5), 449-458.
[http://dx.doi.org/10.1007/s00262-014-1528-9] [PMID: 24609989]
[254]
Yuan, J.; Zhou, J.; Dong, Z.; Tandon, S.; Kuk, D.; Panageas, K.S.; Wong, P.; Wu, X.; Naidoo, J.; Page, D.B.; Wolchok, J.D.; Hodi, F.S. Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab. Cancer Immunol. Res., 2014, 2(2), 127-132.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0163] [PMID: 24778276]
[255]
Simeone, E.; Gentilcore, G.; Giannarelli, D.; Grimaldi, A.M.; Caracò, C.; Curvietto, M.; Esposito, A.; Paone, M.; Palla, M.; Cavalcanti, E.; Sandomenico, F.; Petrillo, A.; Botti, G.; Fulciniti, F.; Palmieri, G.; Queirolo, P.; Marchetti, P.; Ferraresi, V.; Rinaldi, G.; Pistillo, M.P.; Ciliberto, G.; Mozzillo, N.; Ascierto, P.A. Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma. Cancer Immunol. Immunother., 2014, 63(7), 675-683.
[http://dx.doi.org/10.1007/s00262-014-1545-8] [PMID: 24695951]
[256]
Hannani, D.; Vétizou, M.; Enot, D.; Rusakiewicz, S.; Chaput, N.; Klatzmann, D.; Desbois, M.; Jacquelot, N.; Vimond, N.; Chouaib, S.; Mateus, C.; Allison, J.P.; Ribas, A.; Wolchok, J.D.; Yuan, J.; Wong, P.; Postow, M.; Mackiewicz, A.; Mackiewicz, J.; Schadendorff, D.; Jaeger, D.; Zörnig, I.; Hassel, J.; Korman, A.J.; Bahjat, K.; Maio, M.; Calabro, L.; Teng, M.W.; Smyth, M.J.; Eggermont, A.; Robert, C.; Kroemer, G.; Zitvogel, L. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res., 2015, 25(2), 208-224.
[http://dx.doi.org/10.1038/cr.2015.3] [PMID: 25582080]
[257]
Berman, D.; Wolchok, J.D.; Weber, J. Association of peripheral blood absolute lymphocyte count (ALC) and clinical activity in patients (pts) with advanced melanoma treated with ipilimumab J Clin Oncol, 2009, 27(15s) Suppl; abstr 3020.
[258]
Wolchok, J.D.; Neyns, B.; Linette, G.; Negrier, S.; Lutzky, J.; Thomas, L.; Waterfield, W.; Schadendorf, D.; Smylie, M.; Guthrie, T., Jr; Grob, J.J.; Chesney, J.; Chin, K.; Chen, K.; Hoos, A.; O’Day, S.J.; Lebbé, C. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol., 2010, 11(2), 155-164.
[http://dx.doi.org/10.1016/S1470-2045(09)70334-1] [PMID: 20004617]
[259]
Santegoets, S.J.; Stam, A.G.; Lougheed, S.M.; Gall, H.; Scholten, P.E.; Reijm, M.; Jooss, K.; Sacks, N.; Hege, K.; Lowy, I.; Cuillerot, J.M.; von Blomberg, B.M.; Scheper, R.J.; van den Eertwegh, A.J.; Gerritsen, W.R.; de Gruijl, T.D. T cell profiling reveals high CD4+CTLA-4 + T cell frequency as dominant predictor for survival after prostate GVAX/ipilimumab treatment. Cancer Immunol. Immunother., 2013, 62(2), 245-256.
[http://dx.doi.org/10.1007/s00262-012-1330-5] [PMID: 22878899]
[260]
Phan, G.Q.; Yang, J.C.; Sherry, R.M.; Hwu, P.; Topalian, S.L.; Schwartzentruber, D.J.; Restifo, N.P.; Haworth, L.R.; Seipp, C.A.; Freezer, L.J.; Morton, K.E.; Mavroukakis, S.A.; Duray, P.H.; Steinberg, S.M.; Allison, J.P.; Davis, T.A.; Rosenberg, S.A. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8372-8377.
[http://dx.doi.org/10.1073/pnas.1533209100] [PMID: 12826605]
[261]
Attia, P.; Phan, G.Q.; Maker, A.V.; Robinson, M.R.; Quezado, M.M.; Yang, J.C.; Sherry, R.M.; Topalian, S.L.; Kammula, U.S.; Royal, R.E.; Restifo, N.P.; Haworth, L.R.; Levy, C.; Mavroukakis, S.A.; Nichol, G.; Yellin, M.J.; Rosenberg, S.A. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J. Clin. Oncol., 2005, 23(25), 6043-6053.
[http://dx.doi.org/10.1200/JCO.2005.06.205] [PMID: 16087944]
[262]
Maker, A.V.; Yang, J.C.; Sherry, R.M.; Topalian, S.L.; Kammula, U.S.; Royal, R.E.; Hughes, M.; Yellin, M.J.; Haworth, L.R.; Levy, C.; Allen, T.; Mavroukakis, S.A.; Attia, P.; Rosenberg, S.A. Intrapatient dose escalation of anti-CTLA-4 antibody in patients with metastatic melanoma. J. Immunother., 2006, 29(4), 455-463.
[http://dx.doi.org/10.1097/01.cji.0000208259.73167.58] [PMID: 16799341]
[263]
Maker, A.V.; Phan, G.Q.; Attia, P.; Yang, J.C.; Sherry, R.M.; Topalian, S.L.; Kammula, U.S.; Royal, R.E.; Haworth, L.R.; Levy, C.; Kleiner, D.; Mavroukakis, S.A.; Yellin, M.; Rosenberg, S.A. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann. Surg. Oncol., 2005, 12(12), 1005-1016.
[http://dx.doi.org/10.1245/ASO.2005.03.536] [PMID: 16283570]
[264]
Weber, J.S.; Hamid, O.; Chasalow, S.D.; Wu, D.Y.; Parker, S.M.; Galbraith, S.; Gnjatic, S.; Berman, D. Ipilimumab increases activated T cells and enhances humoral immunity in patients with advanced melanoma. J. Immunother., 2012, 35(1), 89-97.
[http://dx.doi.org/10.1097/CJI.0b013e31823aa41c] [PMID: 22130166]
[265]
Calabrò, L.; Maio, M. Immune checkpoint blockade in malignant mesothelioma: A novel therapeutic strategy against a deadly disease? OncoImmunology, 2014, 3(1), e27482
[http://dx.doi.org/10.4161/onci.27482] [PMID: 24734215]
[266]
Carthon, B.C.; Wolchok, J.D.; Yuan, J.; Kamat, A.; Ng Tang, D.S.; Sun, J.; Ku, G.; Troncoso, P.; Logothetis, C.J.; Allison, J.P.; Sharma, P. Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin. Cancer Res., 2010, 16(10), 2861-2871.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0569] [PMID: 20460488]
[267]
Hodi, F.S.; Lee, S.; McDermott, D.F.; Rao, U.N.; Butterfield, L.H.; Tarhini, A.A.; Leming, P.; Puzanov, I.; Shin, D.; Kirkwood, J.M. Ipilimumab plus sargramostim vs ipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial. JAMA, 2014, 312(17), 1744-1753.
[http://dx.doi.org/10.1001/jama.2014.13943] [PMID: 25369488]
[268]
Ng Tang, D.; Shen, Y.; Sun, J.; Wen, S.; Wolchok, J.D.; Yuan, J.; Allison, J.P.; Sharma, P. Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy. Cancer Immunol. Res., 2013, 1(4), 229-234.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0020] [PMID: 24777852]
[269]
Meyer, C.; Cagnon, L.; Costa-Nunes, C.M.; Baumgaertner, P.; Montandon, N.; Leyvraz, L.; Michielin, O.; Romano, E.; Speiser, D.E. Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol. Immunother., 2014, 63(3), 247-257.
[http://dx.doi.org/10.1007/s00262-013-1508-5] [PMID: 24357148]
[270]
Hodi, F.S.; Butler, M.; Oble, D.A.; Seiden, M.V.; Haluska, F.G.; Kruse, A.; Macrae, S.; Nelson, M.; Canning, C.; Lowy, I.; Korman, A.; Lautz, D.; Russell, S.; Jaklitsch, M.T.; Ramaiya, N.; Chen, T.C.; Neuberg, D.; Allison, J.P.; Mihm, M.C.; Dranoff, G. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc. Natl. Acad. Sci. USA, 2008, 105(8), 3005-3010.
[http://dx.doi.org/10.1073/pnas.0712237105] [PMID: 18287062]
[271]
Fong, L.; Kwek, S.S.; O’Brien, S.; Kavanagh, B.; McNeel, D.G.; Weinberg, V.; Lin, A.M.; Rosenberg, J.; Ryan, C.J.; Rini, B.I.; Small, E.J. Potentiating endogenous antitumor immunity to prostate cancer through combination immunotherapy with CTLA4 blockade and GM-CSF. Cancer Res., 2009, 69(2), 609-615.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3529] [PMID: 19147575]
[272]
Duraturo, F.; Liccardo, R.; Cavallo, A.; De Rosa, M.; Rossi, G.B.; Izzo, P. Multivariate analysis as a method for evaluating the pathogenicity of novel genetic MLH1 variants in patients with colorectal cancer and microsatellite instability. Int. J. Mol. Med., 2015, 36(2), 511-517.
[http://dx.doi.org/10.3892/ijmm.2015.2255] [PMID: 26096739]
[273]
De Rosa, M.; Pace, U.; Rega, D.; Costabile, V.; Duraturo, F.; Izzo, P.; Delrio, P. Genetics, diagnosis and management of colorectal cancer (Review). Oncol. Rep., 2015, 34(3), 1087-1096. [Review]. [Review].
[http://dx.doi.org/10.3892/or.2015.4108] [PMID: 26151224]
[274]
Whiteside, T.L. The role of regulatory T cells in cancer immunology. ImmunoTargets Ther., 2015, 4, 159-171.
[http://dx.doi.org/10.2147/ITT.S55415] [PMID: 27471721]
[275]
Pabbisetty, S.K.; Rabacal, W.; Maseda, D.; Cendron, D.; Collins, P.L.; Hoek, K.L.; Parekh, V.V.; Aune, T.M.; Sebzda, E. KLF2 is a rate-limiting transcription factor that can be targeted to enhance regulatory T-cell production. Proc. Natl. Acad. Sci. USA, 2014, 111(26), 9579-9584.
[http://dx.doi.org/10.1073/pnas.1323493111] [PMID: 24979767]
[276]
O’Mahony, D.; Morris, J.C.; Quinn, C.; Gao, W.; Wilson, W.H.; Gause, B.; Pittaluga, S.; Neelapu, S.; Brown, M.; Fleisher, T.A.; Gulley, J.L.; Schlom, J.; Nussenblatt, R.; Albert, P.; Davis, T.A.; Lowy, I.; Petrus, M.; Waldmann, T.A.; Janik, J.E. A pilot study of CTLA-4 blockade after cancer vaccine failure in patients with advanced malignancy. Clin. Cancer Res., 2007, 13(3), 958-964.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1974] [PMID: 17289891]
[277]
Kavanagh, B.; O’Brien, S.; Lee, D.; Hou, Y.; Weinberg, V.; Rini, B.; Allison, J.P.; Small, E.J.; Fong, L. CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion. Blood, 2008, 112(4), 1175-1183.
[http://dx.doi.org/10.1182/blood-2007-11-125435] [PMID: 18523152]
[278]
Romano, S.; Simeone, E.; D’Angelillo, A.; D’Arrigo, P.; Russo, M.; Capasso, M.; Lasorsa, V.A.; Zambrano, N.; Ascierto, P.A.; Romano, M.F. FKBP51s signature in peripheral blood mononuclear cells of melanoma patients as a possible predictive factor for immunotherapy. Cancer Immunol. Immunother., 2017, 66(9), 1143-1151.
[http://dx.doi.org/10.1007/s00262-017-2004-0] [PMID: 28434031]
[279]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[280]
Romano, S.; D’Angelillo, A.; Staibano, S.; Simeone, E.; D’Arrigo, P.; Ascierto, P.A.; Scalvenzi, M.; Mascolo, M.; Ilardi, G.; Merolla, F.; Jovarauskaite, E.; Romano, M.F. Immunomodulatory pathways regulate expression of a spliced FKBP51 isoform in lymphocytes of melanoma patients. Pigment Cell Melanoma Res., 2015, 28(4), 442-452.
[http://dx.doi.org/10.1111/pcmr.12378] [PMID: 25895097]
[281]
D’Arrigo, P.; Russo, M.; Rea, A.; Tufano, M.; Guadagno, E.; Del Basso De Caro, M.L.; Pacelli, R.; Hausch, F.; Staibano, S.; Ilardi, G.; Parisi, S.; Romano, M.F.; Romano, S. A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma. Oncotarget, 2017, 8(40), 68291-68304.
[http://dx.doi.org/10.18632/oncotarget.19309] [PMID: 28978117]
[282]
Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; Kohrt, H.E.; Horn, L.; Lawrence, D.P.; Rost, S.; Leabman, M.; Xiao, Y.; Mokatrin, A.; Koeppen, H.; Hegde, P.S.; Mellman, I.; Chen, D.S.; Hodi, F.S. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 2014, 515(7528), 563-567.
[http://dx.doi.org/10.1038/nature14011] [PMID: 25428504]
[283]
Wolchok, J.D.; Kluger, H.; Callahan, M.K.; Postow, M.A.; Rizvi, N.A.; Lesokhin, A.M.; Segal, N.H.; Ariyan, C.E.; Gordon, R.A.; Reed, K.; Burke, M.M.; Caldwell, A.; Kronenberg, S.A.; Agunwamba, B.U.; Zhang, X.; Lowy, I.; Inzunza, H.D.; Feely, W.; Horak, C.E.; Hong, Q.; Korman, A.J.; Wigginton, J.M.; Gupta, A.; Sznol, M. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med., 2013, 369(2), 122-133.
[http://dx.doi.org/10.1056/NEJMoa1302369] [PMID: 23724867]
[284]
Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H.; Chen, L.; Pardoll, D.M.; Topalian, S.L.; Anders, R.A. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res., 2014, 20(19), 5064-5074.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3271] [PMID: 24714771]
[285]
Powles, T.; Eder, J.P.; Fine, G.D.; Braiteh, F.S.; Loriot, Y.; Cruz, C.; Bellmunt, J.; Burris, H.A.; Petrylak, D.P.; Teng, S.L.; Shen, X.; Boyd, Z.; Hegde, P.S.; Chen, D.S.; Vogelzang, N.J. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature, 2014, 515(7528), 558-562.
[http://dx.doi.org/10.1038/nature13904] [PMID: 25428503]
[286]
Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; Biedrzycki, B.; Donehower, R.C.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Duffy, S.M.; Goldberg, R.M.; de la Chapelle, A.; Koshiji, M.; Bhaijee, F.; Huebner, T.; Hruban, R.H.; Wood, L.D.; Cuka, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Zhou, S.; Cornish, T.C.; Taube, J.M.; Anders, R.A.; Eshleman, J.R.; Vogelstein, B.; Diaz, L.A., Jr PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med., 2015, 372(26), 2509-2520.
[http://dx.doi.org/10.1056/NEJMoa1500596] [PMID: 26028255]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 15
Year: 2020
Page: [2402 - 2448]
Pages: 47
DOI: 10.2174/0929867325666181106114421
Price: $65

Article Metrics

PDF: 61
HTML: 1