Onion-Like Carbon Nanostructures: An Overview of Bio-Applications

Author(s): Diana M. Bobrowska, Piotr Olejnik, Luis Echegoyen, Marta E. Plonska-Brzezinska*

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 38 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor


This article presents a brief review of the knowledge concerning onion-like carbons (OLCs). These nanostructures are some of the most fascinating carbon forms due to their unusual structure and physico-chemical properties. Generally, OLCs consist of a hollowspherical fullerene core surrounded by concentric graphitic layers with increasing diameter. Nevertheless, they can have different size, shape and type of core, which determine their physicochemical properties. In this article, we review the most important literature reports in this area and briefly describe these nanostructures, their physical and chemical properties and their potential uses with a focus on biomedicine.

Keywords: Onion-like nanostructures, multi-layered fullerenes, composites, functionalization, physicochemical properties, bioapplications.

Gu, W.; Yushin, G. Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene: nanostructured carbon materials for electrochemical capacitor applications. Wiley Interdiscip. Rev. Energy Environ., 2014, 3, 424-473.
Al-Jumaili, A.; Alancherry, S.; Bazaka, K.; Jacob, M.V. Review on the antimicrobial properties of carbon nanostructures. Materials (Basel), 2017, 10, 1066.
[http://dx.doi.org/10.3390/ma10091066] [PMID: 28892011]
Froudakis, G.E. Hydrogen storage in nanotubes & nanostructures. Mater. Today, 2011, 14, 324-328.
Han, J.Z.; Rider, A.E.; Ishaq, M.; Kumar, S.; Kondyurin, A.; Bilek, M.M.M.; Levchenko, I.; Ostrikov, K. (Ken). Carbon nanostructures for hard tissue engineering. RSC Advances, 2013, 3, 11058-11072.
Kumar, S.; Rani, R.; Dilbaghi, N.; Tankeshwar, K.; Kim, K-H. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev., 2017, 46, 158-196.
[http://dx.doi.org/10.1039/C6CS00517A] [PMID: 27841412]
Torres, T. Graphene chemistry. Chem. Soc. Rev., 2017, 46, 4385-4386.
[http://dx.doi.org/10.1039/C7CS90061A] [PMID: 28661520]
Solís-Fernández, P.; Bissett, M.; Ago, H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev., 2017, 46, 4572-4613.
[http://dx.doi.org/10.1039/C7CS00160F] [PMID: 28691726]
Falcao, E.H.; Wudl, F. Carbon allotropes: beyond graphite and diamond. J. Chem. Technol. Biotechnol., 2007, 82, 524-531.
Ruoff, R.S., Ed.; Ed.; Kadish, K.M., Ed.Fullerenes: Chemistry, Physics, and Technology; Wiley-Interscience: New York, 2000.
Mykhailiv, O.; Zubyk, H.; Plonska-Brzezinska, M.E. Carbon nano-onions: unique carbon nanostructures with fascinating properties and their potential applications. Inorg. Chim. Acta, 2017, 468, 49-66.
Kharisov, B.I.; Kharissova, O.V.; Ortiz Méndez, U., Eds.; CRC Concise Encyclopedia of Nanotechnology, 1st ed; CRC Press: Boca Raton, 2016.
Sattler, K.D., Ed.; Carbon Nanomaterials Sourcebook; CRC Press, Taylor & Francis Group, CRC Press: Boca Raton,. , 2016.
Bacon, R. Growth, structure, and properties of graphite whiskers. J. Appl. Phys., 1960, 31, 283.
Bates, K.R.; Scuseria, G.E. Why are buckyonions round? Theor. Chem. Acc., 1998, 99, 29-33.
Kuznetsov, V.L.; Chuvilin, A.L.; Butenko, Y.V.; Mal’kov, I.Y.; Titov, V.M. Onion-like carbon from ultra-disperse diamond. Chem. Phys. Lett., 1994, 222, 343-348.
Santiago, D.; Rodríguez-Calero, G.G.; Palkar, A.; Barraza-Jimenez, D.; Galvan, D.H.; Casillas, G.; Mayoral, A.; Jose-Yacamán, M.; Echegoyen, L.; Cabrera, C.R. Platinum electrodeposition on unsupported carbon nano-onions. Langmuir, 2012, 28, 17202-17210.
[http://dx.doi.org/10.1021/la3031396] [PMID: 23145813]
Wang, B-C.; Wang, H-W.; Chang, J-C.; Tso, H-C.; Chou, Y-M. More spherical large fullerenes and multi-layer fullerene cages. J. Mol. Struct. THEOCHEM, 2001, 540, 171-176.
Saxby, J.D.; Chatfield, S.P.; Palmisano, A.J.; Vassallo, A.M.; Wilson, M.A.; Pang, L.S.K. Thermogravimetric analysis of buckminsterfullerene and related materials in air. J. Phys. Chem., 1992, 96, 17-18.
Sano, N.; Wang, H.; Chhowalla, M.; Alexandrou, I.; Amaratunga, G.A.J. Synthesis of carbon ‘onions’ in water. Nature, 2001, 414(6863), 506-507.
[http://dx.doi.org/10.1038/35107141] [PMID: 11734841]
Sano, N.; Wang, H.; Alexandrou, I.; Chhowalla, M.; Teo, K.B.K.; Amaratunga, G.A.J.; Iimura, K. Properties of carbon onions produced by an arc discharge in water. J. Appl. Phys., 2002, 92, 2783-2788.
Chen, X.; Deng, F.; Wang, J.; Yang, H.; Wu, G.; Zhang, X.; Peng, J.; Li, W. New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chem. Phys. Lett., 2001, 336, 201-204.
Gao, Y.; Zhou, Y.S.; Park, J.B.; Wang, H.; He, X.N.; Luo, H.F.; Jiang, L.; Lu, Y.F. Resonant excitation of precursor molecules in improving the particle crystallinity, growth rate and optical limiting performance of carbon nano-onions. Nanotechnology, 2011, 22165604
[http://dx.doi.org/10.1088/0957-4484/22/16/165604] [PMID: 21393817]
Zhao, M.; Song, H.; Chen, X.; Lian, W. Large-scale synthesis of onion-like carbon nanoparticles by carbonization of phenolic resin. Acta Mater., 2007, 55, 6144-6150.
Palkar, A.; Melin, F.; Cardona, C.M.; Elliott, B.; Naskar, A.K.; Edie, D.D.; Kumbhar, A.; Echegoyen, L. Reactivity differences between carbon nano onions (CNOs) prepared by different methods. Chem. Asian J., 2007, 2(5), 625-633.
[http://dx.doi.org/10.1002/asia.200600426] [PMID: 17465408]
Andersson, O.E.; Prasad, B.L.V.; Sato, H.; Enoki, T.; Hishiyama, Y.; Kaburagi, Y.; Yoshikawa, M.; Bandow, S. Structure and electronic properties of graphite nanoparticles. Phys. Rev. B Condens. Matter Mater. Phys., 1998, 58, 16387-16395.
Rettenbacher, A.S.; Elliott, B.; Hudson, J.S.; Amirkhanian, A.; Echegoyen, L. Preparation and functionalization of multilayer fullerenes (carbon nano-onions). Chemistry, 2005, 12(2), 376-387.
[http://dx.doi.org/10.1002/chem.200500517] [PMID: 16189840]
Zeiger, M.; Jäckel, N.; Mochalin, V.N.; Presser, V. Review: carbon onions for electrochemical energy storage. J. Mater. Chem. A , 2016, 4, 3172-3196.
Tomita, S.; Sakurai, T.; Ohta, H.; Fujii, M.; Hayashi, S. Structure and electronic properties of carbon onions. J. Chem. Phys., 2001, 114, 7477.
Roy, D.; Chhowalla, M.; Wang, H.; Sano, N.; Alexandrou, I.; Clyne, T.; Amaratunga, G.A. Characterisation of carbon nano-onions using raman spectroscopy. Chem. Phys. Lett., 2003, 373, 52-56.
Gan, Y.; Banhart, F. The mobility of carbon atoms in graphitic nanoparticles studied by the relaxation of strain in carbon onions. Adv. Mater., 2008, 20, 4751-4754.
Banhart, F.; Redlich, P.; Ajayan, P.M. The migration of metal atoms through carbon onions. Chem. Phys. Lett., 1998, 292, 554-560.
Wajs, E.; Molina-Ontoria, A.; Nielsen, T.T.; Echegoyen, L.; Fragoso, A. Supramolecular solubilization of cyclodextrin-modified carbon nano-onions by host-guest interactions. Langmuir, 2015, 31(1), 535-541.
[http://dx.doi.org/10.1021/la504065r] [PMID: 25496567]
Bogdanov, K.; Fedorov, A.; Osipov, V.; Enoki, T.; Takai, K.; Hayashi, T.; Ermakov, V.; Moshkalev, S.; Baranov, A. Annealing-induced structural changes of carbon onions: high-resolution transmission electron microscopy and Raman studies. Carbon, 2014, 73, 78-86.
Ferrari, A.C. Raman Spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun., 2007, 143, 47-57.
Mykhaylyk, O.O.; Solonin, Y.M.; Batchelder, D.N.; Brydson, R. Transformation of nanodiamond into carbon onions: a comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, X-Ray diffraction, small-angle X-Ray scattering, and ultraviolet raman spectroscopy. J. Appl. Phys., 2005, 97074302
Crestani, M.G.; Puente-Lee, I.; Rendón-Vazquez, L.; Santiago, P.; del Rio, F.; Morales-Morales, D.; García, J.J. The catalytic reduction of carbon dioxide to carbon onion particles by platinum catalysts. Carbon, 2005, 43, 2621-2624.
Panich, A.M.; Shames, A.I.; Sergeev, N.A.; Olszewski, M.; McDonough, J.K.; Mochalin, V.N.; Gogotsi, Y. Nanodiamond graphitization: a magnetic resonance study. J. Phys. Condens. Matter, 2013, 25(24)245303
[http://dx.doi.org/10.1088/0953-8984/25/24/245303] [PMID: 23709490]
Butenko, Y.V.; Kuznetsov, V.L.; Chuvilin, A.L.; Kolomiichuk, V.N.; Stankus, S.V.; Khairulin, R.A.; Segall, B. Kinetics of the graphitization of dispersed diamonds at “low” temperatures. J. Appl. Phys., 2000, 88, 4380.
Portet, C.; Yushin, G.; Gogotsi, Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon, 2007, 45, 2511-2518.
Tomita, S.; Burian, A.; Dore, J.C.; LeBolloch, D.; Fujii, M.; Hayashi, S. Diamond nanoparticles to carbon onions transformation: X-Ray diffraction studies. Carbon, 2002, 40, 1469-1474.
Okotrub, A.V.; Bulusheva, L.G.; Kuznetsov, V.L.; Butenko, Y.V.; Chuvilin, A.L.; Heggie, M.I. X-Ray emission studies of the valence band of nanodiamonds annealed at different temperatures. J. Phys. Chem. A, 2001, 105, 9781-9787.
Kuznetsov, V.L.; Moseenkov, S.I.; Elumeeva, K.V.; Larina, T.V.; Anufrienko, V.F.; Romanenko, A.I.; Anikeeva, O.B.; Tkachev, E.N. Comparative study of reflectance properties of nanodiamonds, onion-like carbon and multiwalled carbon nanotubes. Phys. Status Solidi, B Basic Res., 2011, 248, 2572-2576.
Mykhailiv, O.; Brzezinski, K.; Sulikowski, B.; Olejniczak, Z.; Gras, M.; Lota, G.; Molina-Ontoria, A.; Jakubczyk, M.; Echegoyen, L.; Plonska-Brzezinska, M.E. Boron-doped polygonal carbon nano-onions: synthesis and applications in electrochemical energy storage. Chemistry, 2017, 23(29), 7132-7141.
[http://dx.doi.org/10.1002/chem.201700914] [PMID: 28339126]
Mykhailiv, O.; Zubyk, H.; Brzezinski, K.; Gras, M.; Lota, G.; Gniadek, M.; Romero, E.; Echegoyen, L.; Plonska-Brzezinska, M.E. Improvement of the structural and chemical properties of carbon nano-onions for electrocatalysis. ChemNanoMat, 2017, 3, 583-590.
Breczko, J.; Plonska-Brzezinska, M.E.; Echegoyen, L. Electrochemical oxidation and determination of dopamine in the presence of uric and ascorbic acids using a carbon nano-onion and poly(diallyldimethylammonium chloride) composite. Electrochim. Acta, 2012, 72, 61-67.
Pech, D.; Brunet, M.; Durou, H.; Huang, P.; Mochalin, V.; Gogotsi, Y.; Taberna, P-L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol., 2010, 5(9), 651-654.
[http://dx.doi.org/10.1038/nnano.2010.162] [PMID: 20711179]
Macutkevic, J.; Adomavicius, R.; Krotkus, A.; Seliuta, D.; Valusis, G.; Maksimenko, S.; Kuzhir, P.; Batrakov, K.; Kuznetsov, V.; Moseenkov, S.; Shenderova, O.; Okotrub, A.V.; Langlet, R.; Lambin, P. Terahertz probing of onion-like carbon-PMMA composite films. Diamond Related Materials, 2008, 17, 1608-1612.
Shenderova, O.; Grishko, V.; Cunningham, G.; Moseenkov, S.; McGuire, G.; Kuznetsov, V. Onion-like carbon for terahertz electromagnetic shielding. Diamond Related Materials, 2008, 17, 462-466.
Su, X.; Zhang, J.; Jia, Y.; Liu, Y.; Xu, J.; Wang, J. Preparation and microwave absorption property of nano onion-like carbon in the frequency range of 8.2-12.4 GHz. J. Alloys Compd., 2017, 695, 1420-1425.
Hirsch, A. Principles of fullerene reactivity In: Fullerenes and related structures; Topics in Current Chemistry; Hirsch A. Ed.; Springer: Berlin, Heidelberg,. , 1999; Vol. 199, pp. 1-65.
Hamon, M.A.; Hu, H.; Bhowmik, P.; Niyogi, S.; Zhao, B.; Itkis, M.E.; Haddon, R.C. End-group and defect analysis of soluble single-walled carbon nanotubes. Chem. Phys. Lett., 2001, 347, 8-12.
David, W.I.F.; Ibberson, R.M.; Matthewman, J.C.; Prassides, K.; Dennis, T.J.S.; Hare, J.P.; Kroto, H.W.; Taylor, R.; Walton, D.R.M. Crystal structure and bonding of ordered C60. Nature, 1991, 353, 147-149.
Klein, D.J.; Seitz, W.A.; Schmalz, T.G. Icosahedral symmetry carbon cage molecules. Nature, 1986, 323, 703-706.
Thilgen, C.; Herrmann, A.; Diederich, F. The covalent chemistry of higher fullerenes: C70 and beyond. Angew. Chem. Int. Ed. Engl., 1997, 36, 2268-2280.
Cataldo, F. Polymeric fullerene oxide (fullerene ozopolymers) produced by prolonged ozonation of C60 and C70 fullerenes. Carbon, 2002, 40, 1457-1467.
Palkar, A.; Kumbhar, A.; Athans, A.J.; Echegoyen, L. Pyridyl-functionalized and water-soluble carbon nano onions: first supramolecular complexes of carbon nano onions. Chem. Mater., 2008, 20, 1685-1687.
Plonska-Brzezinska, M.E.; Dubis, A.T.; Lapinski, A.; Villalta-Cerdas, A.; Echegoyen, L. Electrochemical properties of oxidized carbon nano-onions: DRIFTS-FTIR and raman spectroscopic analyses. ChemPhysChem, 2011, 12(14), 2659-2668.
[http://dx.doi.org/10.1002/cphc.201100198] [PMID: 21853513]
Plonska-Brzezinska, M.E.; Lapinski, A.; Wilczewska, A.Z.; Dubis, A.T.; Villalta-Cerdas, A.; Winkler, K.; Echegoyen, L. The synthesis and characterization of carbon nano-onions produced by solution ozonolysis. Carbon, 2011, 49, 5079-5089.
Georgakilas, V.; Guldi, D.M.; Signorini, R.; Bozio, R.; Prato, M. Organic functionalization and optical properties of carbon onions. J. Am. Chem. Soc., 2003, 125(47), 14268-14269.
[http://dx.doi.org/10.1021/ja0342805] [PMID: 14624562]
Cioffi, C.T.; Palkar, A.; Melin, F.; Kumbhar, A.; Echegoyen, L.; Melle-Franco, M.; Zerbetto, F.; Rahman, G.M.A.; Ehli, C.; Sgobba, V.; Guldi, D.M.; Prato, M. A carbon nano-onion-ferrocene donor-acceptor system: synthesis, characterization and properties. Chemistry, 2009, 15(17), 4419-4427.
[http://dx.doi.org/10.1002/chem.200801818] [PMID: 19263442]
Zhou, L.; Gao, C.; Zhu, D.; Xu, W.; Chen, F.F.; Palkar, A.; Echegoyen, L.; Kong, E.S-W. Facile functionalization of multilayer fullerenes (carbon nano-onions) by nitrene chemistry and “grafting from” strategy. Chemistry, 2009, 15(6), 1389-1396.
[http://dx.doi.org/10.1002/chem.200801642] [PMID: 19115308]
Molina-Ontoria, A.; Chaur, M.N.; Plonska-Brzezinska, M.E.; Echegoyen, L. Preparation and characterization of soluble carbon nano-onions by covalent functionalization, employing a Na-K alloy. Chem. Commun. (Camb.), 2013, 49(24), 2406-2408.
[http://dx.doi.org/10.1039/c3cc39077b] [PMID: 23411670]
Flavin, K.; Chaur, M.N.; Echegoyen, L.; Giordani, S. Functionalization of multilayer fullerenes (carbon nano-onions) using diazonium compounds and “click” chemistry. Org. Lett., 2010, 12(4), 840-843.
[http://dx.doi.org/10.1021/ol902939f] [PMID: 20092266]
Liu, Y.; Vander Wal, R.L.; Khabashesku, V.N. Functionalization of carbon nano-onions by direct fluorination. Chem. Mater., 2007, 19, 778-786.
Rettenbacher, A.S.; Perpall, M.W.; Echegoyen, L.; Hudson, J.; Smith, D.W. Radical addition of a conjugated polymer to multilayer fullerenes (carbon nano-onions). Chem. Mater., 2007, 19, 1411-1417.
Luszczyn, J.; Plonska-Brzezinska, M.E.; Palkar, A.; Dubis, A.T.; Simionescu, A.; Simionescu, D.T.; Kalska-Szostko, B.; Winkler, K.; Echegoyen, L. Small noncytotoxic carbon nano-onions: first covalent functionalization with biomolecules. Chemistry, 2010, 16(16), 4870-4880.
[http://dx.doi.org/10.1002/chem.200903277] [PMID: 20340115]
Bartelmess, J.; Giordani, S. Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein J. Nanotechnol., 2014, 5, 1980-1998.
[http://dx.doi.org/10.3762/bjnano.5.207] [PMID: 25383308]
D’ Amora, M.; Rodio, M.; Bartelmess, J.; Sancataldo, G.; Brescia, R.; Cella Zanacchi, F.; Diaspro, A.; Giordani, S. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model. Sci. Rep., 2016, 6, 33923.
[http://dx.doi.org/10.1038/srep33923] [PMID: 27671377]
Bartelmess, J.; De Luca, E.; Signorelli, A.; Baldrighi, M.; Becce, M.; Brescia, R.; Nardone, V.; Parisini, E.; Echegoyen, L.; Pompa, P.P.; Giordani, S. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging. Nanoscale, 2014, 6(22), 13761-13769.
[http://dx.doi.org/10.1039/C4NR04533E] [PMID: 25286147]
Giordani, S.; Bartelmess, J.; Frasconi, M.; Biondi, I.; Cheung, S.; Grossi, M.; Wu, D.; Echegoyen, L.; O’Shea, D.F. NIR fluorescence labelled carbon nano-onions: synthesis, analysis and cellular imaging. J. Mater. Chem. B , 2014, 2, 7459-7463.
Lettieri, S.; Camisasca, A.; d’Amora, M.; Diaspro, A.; Uchida, T.; Nakajima, Y.; Yanagisawa, K.; Maekawa, T.; Giordani, S. Far-red fluorescent carbon nano-onions as a biocompatible platform for cellular imaging. RSC Advances, 2017, 7, 45676-45681.
Bartelmess, J.; Frasconi, M.; Balakrishnan, P.B.; Signorelli, A.; Echegoyen, L.; Pellegrino, T.; Giordani, S. Non-covalent functionalization of carbon nano-onions with pyrene-BODIPY dyads for biological imaging. RSC Advances, 2015, 5, 50253-50258.
Yang, M.; Flavin, K.; Kopf, I.; Radics, G.; Hearnden, C.H.A.; McManus, G.J.; Moran, B.; Villalta-Cerdas, A.; Echegoyen, L.A.; Giordani, S.; Lavelle, E.C. Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation. Small, 2013, 9(24), 4194-4206.
[http://dx.doi.org/10.1002/smll.201300481] [PMID: 23839951]
Frasconi, M.; Marotta, R.; Markey, L.; Flavin, K.; Spampinato, V.; Ceccone, G.; Echegoyen, L.; Scanlan, E.M.; Giordani, S. Multi-functionalized carbon nano-onions as imaging probes for cancer cells. Chemistry, 2015, 21(52), 19071-19080.
[http://dx.doi.org/10.1002/chem.201503166] [PMID: 26577582]
Bobrowska, D.M.; Czyrko, J.; Brzezinski, K.; Echegoyen, L.; Plonska-Brzezinska, M.E. Carbon nano-onion composites: physicochemical characteristics and biological activity. Fuller. Nanotub. Carbon Nanostruct., 2017, 25, 185-192.
Bobrowska, D.M.; Brzezinski, K.; Plonska-Brzezinska, M.E. PEGylated carbon nano-onions composite as a carrier of polyphenolic compounds: a promising system for medical applications and biological sensors. Colloid Interface Sci. Commun., 2017, 21, 6-9.
Plonska-Brzezinska, M.E.; Brus, D.M.; Breczko, J.; Echegoyen, L. Carbon nano-onions and biocompatible polymers for flavonoid incorporation. Chemistry, 2013, 19(16), 5019-5024.
[http://dx.doi.org/10.1002/chem.201300009] [PMID: 23468115]
Zhang, Y.; Reed, A.; Kim, D.Y. Nitrogen doped carbon nano-onions as efficient and robust electrocatalysts for oxygen reduction reactions. Curr. Appl. Phys., 2018, 18, 417-423.
Chatterjee, K.; Ashokkumar, M.; Gullapalli, H.; Gong, Y.; Vajtai, R.; Thanikaivelan, P.; Ajayan, P.M. Nitrogen-rich carbon nano-onions for oxygen reduction reaction. Carbon, 2018, 130, 645-651.
Papathanassiou, A.N.; Plonska-Brzezinska, M.E.; Mykhailiv, O.; Echegoyen, L.; Sakellis, I. Combined high permittivity and high electrical conductivity of carbon nano-onion/polyaniline composites. Synth. Met., 2015, 209, 583-587.
Plonska-Brzezinska, M.E.; Breczko, J.; Palys, B.; Echegoyen, L. The electrochemical properties of nanocomposite films obtained by chemical in situ polymerization of aniline and carbon nanostructures. ChemPhysChem, 2013, 14(1), 116-124.
[http://dx.doi.org/10.1002/cphc.201200759] [PMID: 23203943]
Plonska‐Brzezinska Marta, E. Mazurczyk Julita; Palys Barbara; Breczko Joanna; Lapinski Andrzej; Dubis Alina T.; Echegoyen Luis. Preparation and characterization of composites that contain small carbon nano‐onions and conducting polyaniline. Chemistry, 2012, 18, 2600-2608.
Papathanassiou, A.N.; Mykhailiv, O.; Echegoyen, L.; Sakellis, I.; Plonska-Brzezinska, M.E. Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study. J. Phys. Appl. Phys.,, 2016, 49285305.
Zhang, C.; Li, J.; Shi, C.; He, C.; Liu, E.; Zhao, N. Self-anchored catalysts for substrate-free synthesis of metal-encapsulated carbon nano-onions and study of their magnetic properties. Nano Res., 2016, 9, 1159-1172.
Seymour, M.B.; Su, C.; Gao, Y.; Lu, Y.; Li, Y. Characterization of carbon nano-onions for heavy metal ion remediation. J. Nanopart. Res., 2012, 14, 1087.
Ding, L.; Stilwell, J.; Zhang, T.; Elboudwarej, O.; Jiang, H.; Selegue, J.P.; Cooke, P.A.; Gray, J.W.; Chen, F.F. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett., 2005, 5(12), 2448-2464.
[http://dx.doi.org/10.1021/nl051748o] [PMID: 16351195]
Xu, Y.; Wang, S-Y.; Yang, J.; Gu, X.; Zhang, J.; Zheng, Y-F.; Yang, J.; Xu, L.; Zhu, X-Q. Multiwall carbon nano-onions induce DNA damage and apoptosis in human umbilical vein endothelial cells. Environ. Toxicol., 2013, 28(8), 442-450.
[http://dx.doi.org/10.1002/tox.20736] [PMID: 21656646]
Kang, S.; Kim, J-E.; Kim, D.; Woo, C.G.; Pikhitsa, P.V.; Cho, M-H.; Choi, M. Comparison of cellular toxicity between multi-walled carbon nanotubes and onion-like shell-shaped carbon nanoparticles. J. Nanopart. Res., 2015, 17, 378.
Malich, G.; Markovic, B.; Winder, C. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology, 1997, 124(3), 179-192.
[http://dx.doi.org/10.1016/S0300-483X(97)00151-0] [PMID: 9482120]
Berridge, M.V.; Tan, A.S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys., 1993, 303(2), 474-482.
[http://dx.doi.org/10.1006/abbi.1993.1311] [PMID: 8390225]
Debnam, P.M.; Shearer, G. Colorimetric assay for substrates of NADP+-dependent dehydrogenases based on reduction of a tetrazolium dye to its soluble formazan. Anal. Biochem., 1997, 250(2), 253-255.
[http://dx.doi.org/10.1006/abio.1997.2245] [PMID: 9245447]
Ghosh, M.; Sonkar, S.K.; Saxena, M.; Sarkar, S. Carbon nano-onions for imaging the life cycle of Drosophila melanogaster. Small, 2011, 7(22), 3170-3177.
[http://dx.doi.org/10.1002/smll.201101158] [PMID: 22012886]
Pakhira, B.; Ghosh, M.; Allam, A.; Sarkar, S. Carbon nano onions cross the blood brain barrier. RSC Advances, 2016, 6, 29779-29782.
Sonkar, S.K.; Ghosh, M.; Roy, M.; Begum, A.; Sarkar, S. Carbon nano-onions as nontoxic and high-fluorescence bioimaging agent in food chain-an in vivo study from unicellular E. coli to multicellular C. Elegans. Mater. Express, 2012, 2, 105-114.
Revuri, V.; Cherukula, K.; Nafiujjaman, M.; Cho, K.J.; Park, I-K.; Lee, Y. White-light-emitting carbon nano-onions: a tunable multi-channel fluorescent nanoprobe for glutathione-responsive bioimaging. ACS Appl. Nano Mater, 2018, 1, 662-674.
Yang, J.; Kim, S.H.; Kwak, S.K.; Song, H-K. Curvature-induced metal-support interaction of an islands-by-islands composite of platinum catalyst and carbon nano-onion for durable oxygen reduction. ACS Appl. Mater. Interfaces, 2017, 9(28), 23302-23308.
[http://dx.doi.org/10.1021/acsami.7b04410] [PMID: 28665110]
Rizwan, M.; Elma, S.; Lim, S.A.; Ahmed, M.U. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen. Biosens. Bioelectron., 2018, 107, 211-217.
[http://dx.doi.org/10.1016/j.bios.2018.02.037] [PMID: 29471282]
Bartolome, J.P.; Echegoyen, L.; Fragoso, A. Reactive carbon nano-onion modified glassy carbon surfaces as DNA sensors for human papillomavirus oncogene detection with enhanced sensitivity. Anal. Chem., 2015, 87(13), 6744-6751.
[http://dx.doi.org/10.1021/acs.analchem.5b00924] [PMID: 26067834]
Bartolome, J.P.; Fragoso, A. Electrochemical detection of nitrite and ascorbic acid at glassy carbon electrodes modified with carbon nano-onions bearing electroactive moieties. Inorg. Chim. Acta, 2017, 468, 223-231.
Yang, J.; Zhang, Y.; Kim, D.Y. Electrochemical sensing performance of nanodiamond-derived carbon nano-onions: comparison with multiwalled carbon nanotubes, graphite nanoflakes, and glassy carbon. Carbon, 2016, 98, 74-82.
Tripathi, K.M.; Tran, T.S.; Kim, Y.J.; Kim, T. Green fluorescent onion-like carbon nanoparticles from flaxseed oil for visible light induced photocatalytic applications and label-free detection of al(III). Ions. ACS Sustain. Chem. Eng., 2017, 5, 3982-3992.
Tripathi, K.M.; Bhati, A.; Singh, A.; Gupta, N.R.; Verma, S.; Sarkar, S.; Sonkar, S.K. From the traditional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Advances, 2016, 6, 37319-37329.
Sprague, J.; Bayraktaroglu, L.; Clements, D.; Conlin, T.; Fashena, D.; Frazer, K.; Haendel, M.; Howe, D.G.; Mani, P.; Ramachandran, S.; Schaper, K.; Segerdell, E.; Song, P.; Sprunger, B.; Taylor, S.; Van Slyke, C.E.; Westerfield, M. The zebrafish information network: The Zebrafish model organism database. Nucleic Acids Res., 2006, 34(Database issue), D581-D585.
[http://dx.doi.org/10.1093/nar/gkj086] [PMID: 16381936]
Marchesano, V.; Ambrosone, A.; Bartelmess, J.; Strisciante, F.; Tino, A.; Echegoyen, L.; Tortiglione, C.; Giordani, S. Impact of carbon nano-onions on Hydra vulgaris as a model organism for nanoecotoxicology. Nanomaterials (Basel), 2015, 5(3), 1331-1350.
[http://dx.doi.org/10.3390/nano5031331] [PMID: 28347067]
McDonough, J.K.; Frolov, A.I.; Presser, V.; Niu, J.; Miller, C.H.; Ubieto, T.; Fedorov, M.V.; Gogotsi, Y. Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon, 2012, 50, 3298-3309.
Mykhailiv, O.; Lapinski, A.; Molina-Ontoria, A.; Regulska, E.; Echegoyen, L.; Dubis, A.T.; Plonska-Brzezinska, M.E. Influence of the synthetic conditions on the structural and electrochemical properties of carbon nano-onions. ChemPhysChem, 2015, 16(10), 2182-2191.
[http://dx.doi.org/10.1002/cphc.201500061] [PMID: 26017555]
Plonska-Brzezinska, M.E.; Molina-Ontoria, A.; Echegoyen, L. Post-modification by low-temperature annealing of carbon nano-onions in the presence of carbohydrates. Carbon, 2014, 67, 304-317.
Sek, S.; Breczko, J.; Plonska-Brzezinska, M.E.; Wilczewska, A.Z.; Echegoyen, L. STM-based molecular junction of carbon nano-onion. ChemPhysChem, 2013, 14(1), 96-100.
[http://dx.doi.org/10.1002/cphc.201200624] [PMID: 23129103]
Mykhailiv, O.; Imierska, M.; Petelczyc, M.; Echegoyen, L.; Plonska-Brzezinska, M.E. Chemical versus electrochemical synthesis of carbon nano-onion/polypyrrole composites for supercapacitor electrodes. Chemistry, 2015, 21(15), 5783-5793.
[http://dx.doi.org/10.1002/chem.201406126] [PMID: 25736714]
Bowman, T.; Walter, A.; Shenderova, O.; Nunn, N.; McGuire, G.; El-Shenawee, M. A phantom study of terahertz spectroscopy and imaging of micro- and nano-diamonds and nano-onions as contrast agents for breast cancer. Biomed. Phys. Eng. Express, 2017, 3(5)055001
Kausar, A. Carbon nano onion as versatile contender in polymer compositing and advance application. Fuller. Nanotub. Carbon Nanostruct., 2017, 25, 109-123.
Sok, V.; Fragoso, A. Preparation and characterization of alkaline phosphatase, horseradish peroxidase, and glucose oxidase conjugates with carboxylated carbon nano-onions. Prep. Biochem. Biotechnol., 2017, 0, 1-8.
[PMID: 29215950]
Bartelmess, J.; Baldrighi, M.; Nardone, V.; Parisini, E.; Buck, D.; Echegoyen, L.; Giordani, S. Synthesis and characterization of far-red/NIR-fluorescent BODIPY dyes, solid-state fluorescence, and application as fluorescent tags attached to carbon nano-onions. Chemistry, 2015, 21(27), 9727-9732.
[http://dx.doi.org/10.1002/chem.201500877] [PMID: 26015289]
Kuzhir, P.P.; Paddubskaya, A.G.; Maksimenko, S.A.; Kuznetsov, V.L.; Moseenkov, S.; Romanenko, A.I.; Shenderova, O.A.; Macutkevic, J.; Valušis, G.; Lambin, P. Carbon onion composites for EMC applications. IEEE Trans. Electromagn. Compat., 2012, 54, 6-16.
Shuba, M.V.; Slepyan, G.Y.; Maksimenko, S.A.; Hanson, G.W. Radiofrequency field absorption by carbon nanotubes embedded in a conductive host. J. Appl. Phys., 2010, 108114302
Han, F-D.; Yao, B.; Bai, Y-J. Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries. J. Phys. Chem. C, 2011, 115, 8923-8927.
Koudoumas, E.; Kokkinaki, O.; Konstantaki, M.; Couris, S.; Korovin, S.; Detkov, P.; Kuznetsov, V.; Pimenov, S.; Pustovoi, V. Onion-like carbon and diamond nanoparticles for optical limiting. Chem. Phys. Lett., 2002, 357, 336-340.
Tomita, S.; Fujii, M.; Hayashi, S. Optical extinction properties of carbon onions prepared from diamond nanoparticles. Phys. Rev. B , 2002, 66245424
Mohapatra, D.; Badrayyana, S.; Parida, S. In: A Facile Method for High Yield Synthesis of Carbon Nano Onions for Designing Binder-Free Flexible Supercapacitor, AIP Conf. Proc.,; , 2017, p. 1832(1), p. 050069..
Plonska-Brzezinska, M.E.; Echegoyen, L. Carbon nano-onions for supercapacitor electrodes: recent developments and applications. J. Mater. Chem. A., 2013, 1, 13703-13714.
Gao, Y.; Zhou, Y.S.; Qian, M.; He, X.N.; Redepenning, J.; Goodman, P.; Li, H.M.; Jiang, L.; Lu, Y.F. Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon, 2013, 51, 52-58.
Suryawanshi, S.R.; Kaware, V.; Chakravarty, D.; Walke, P.S.; More, M.A.; Joshi, K.; Rout, C.S.; Late, D.J. Pt-nanoparticle functionalized carbon nano-onions for ultra-high energy supercapacitors and enhanced field emission behaviour. RSC Advances, 2015, 5, 80990-80997.
Zhang, C.; Li, J.; Shi, C.; He, C.; Liu, E.; Zhao, N. Effect of Ni, Fe and Fe-Ni alloy catalysts on the synthesis of metal contained carbon nano-onions and studies of their electrochemical hydrogen storage properties. J. Energy Chem., 2014, 23, 324-330.
Grądzka, E.; Winkler, K.; Borowska, M.; Plonska-Brzezinska, M.E.; Echegoyen, L. Comparison of the electrochemical properties of thin films of MWCNTs/C60-Pd, SWCNTs/C60-Pd and Ox-CNOs/C60-Pd. Electrochim. Acta, 2013, 96, 274-284.
Mohapatra, D.; Parida, S.; Singh, B.K.; Sutar, D.S. Importance of microstructure and interface in designing metal oxide nanocomposites for supercapacitor electrodes. J. Electroanal. Chem. (Lausanne Switz.), 2017, 803, 30-39.
Mohapatra, D.; Parida, S.; Badrayyana, S.; Singh, B.K. High performance flexible asymmetric CNO-ZnO//ZnO supercapacitor with an operating voltage of 1.8V in aqueous medium. Appl. Mater. Today, 2017, 7, 212-221.
Bobrowska, D.M.; Brzezinski, K.; Echegoyen, L.; Plonska-Brzezinska, M.E. A new perspective on carbon nano-onion/nickel hydroxide/oxide composites: physicochemical properties and application in hybrid electrochemical systems. Fuller. Nanotub. Carbon Nanostruct., 2017, 25, 193-203.
Muniraj, V.K.A.; Kamaja, C.K.; Shelke, M.V. RuO2•nH2O nanoparticles anchored on carbon nano-onions: an efficient electrode for solid state flexible electrochemical supercapacitor. ACS Sustain. Chem.& Eng., 2016, 4, 2528-2534.
Borgohain, R.; Selegue, J.P.; Cheng, Y-T. Ternary composites of delaminated-MnO2/PDDA/functionalized-CNOs for high-capacity supercapacitor electrodes. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 20367-20373.
Azhagan, M.V.K.; Vaishampayan, M.V.; Shelke, M.V. Synthesis and electrochemistry of pseudocapacitive multilayer fullerenes and MnO2 nanocomposites. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 2152-2159.
Borgohain, R.; Li, J.; Selegue, J.P.; Cheng, Y-T. Electrochemical study of functionalized carbon nano-onions for high-performance supercapacitor electrodes. J. Phys. Chem. C, 2012, 116, 15068-15075.
Plonska-Brzezinska, M.E.; Brus, D.M.; Molina-Ontoria, A.; Echegoyen, L. Synthesis of carbon nano-onion and nickel hydroxide/oxide composites as supercapacitor electrodes. RSC Advances, 2013, 3, 25891-25901.
Plonska-Brzezinska, M.E.; Lewandowski, M.; Błaszyk, M.; Molina-Ontoria, A.; Luciński, T.; Echegoyen, L. Preparation and characterization of carbon nano‐onion/PEDOT:PSS composites. ChemPhysChem, 2012, 13, 4134-4141.
Breczko, J.; Winkler, K.; Plonska-Brzezinska, M.E.; Villalta-Cerdas, A.; Echegoyen, L. Electrochemical properties of composites containing small carbon nano-onions and solid polyelectrolytes. J. Mater. Chem., 2010, 20, 7761-7768.
Liu, Y.; Kim, D.Y. Enhancement of capacitance by electrochemical oxidation of nanodiamond derived carbon nano-onions. Electrochim. Acta, 2014, 139, 82-87.
Zhou, M.; Li, Q.; Zhong, S.; Chen, J.; Lin, H.; Wu, X-L. Facile large scale fabrication of magnetic carbon nano-onions for efficient removal of bisphenol A. Mater. Chem. Phys., 2017, 198, 186-192.
Dubey, P.; Tripathi, K.M.; Sonkar, S.K. Gram scale synthesis of green fluorescent water-soluble onion-like carbon nanoparticles from camphor and polystyrene foam. RSC Advances, 2014, 4, 5838.
Gu, X.; She, Z.; Ma, T.; Tian, S.; Kraatz, H-B. Electrochemical detection of carcinoembryonic antigen. Biosens. Bioelectron., 2018, 102, 610-616.
[http://dx.doi.org/10.1016/j.bios.2017.12.014] [PMID: 29247972]
Yu, Y.; Zhang, Q.; Buscaglia, J.; Chang, C-C.; Liu, Y.; Yang, Z.; Guo, Y.; Wang, Y.; Levon, K.; Rafailovich, M. Quantitative real-time detection of carcinoembryonic antigen (CEA) from pancreatic cyst fluid using 3-D surface molecular imprinting. Analyst (Lond.), 2016, 141(14), 4424-4431.
[http://dx.doi.org/10.1039/C6AN00375C] [PMID: 27193921]
Peng, J.; Lai, Y.; Chen, Y.; Xu, J.; Sun, L.; Weng, J. Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir. Small, 2017, 13(15)1603589
[http://dx.doi.org/10.1002/smll.201603589] [PMID: 28112857]
Su, B-B.; Shi, H.; Wan, J. Role of serum carcinoembryonic antigen in the detection of colorectal cancer before and after surgical resection. World J. Gastroenterol., 2012, 18(17), 2121-2126.
[http://dx.doi.org/10.3748/wjg.v18.i17.2121] [PMID: 22563201]
Kabel, A.M. Tumor Markers of Breast Cancer: New Prospectives. J. Oncol. Sci., 2017, 3, 5-11.
Hampton, R.; Walker, M.; Marshall, J.; Juhl, H. Differential expression of carcinoembryonic antigen (CEA) splice variants in whole blood of colon cancer patients and healthy volunteers: implication for the detection of circulating colon cancer cells. Oncogene, 2002, 21(51), 7817-7823.
[http://dx.doi.org/10.1038/sj.onc.1205906] [PMID: 12420218]
Gopalsamy, K.; Xu, Z.; Gao, C.; Kong, E.S.W. The functionalization of carbon nanotubes and nano-onions. In: Nanomaterials, Polymers, and Devices; Kong, E.S.W., Ed.; John Wiley & Sons, Inc., 2015; pp. 1-18.
Mohapatra, J.; Ananthoju, B.; Nair, V.; Mitra, A.; Bahadur, D.; Medhekar, N.V.; Aslam, M. Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Appl. Surf. Sci., 2018, 442, 332-341.
Nita, M.; Grzybowski, A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longev., 2016, 20163164734
[http://dx.doi.org/10.1155/2016/3164734] [PMID: 26881021]
Prasad, T.K.; Anderson, M.D.; Martin, B.A.; Stewart, C.R. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 1994, 6(1), 65-74.
[http://dx.doi.org/10.2307/3869675] [PMID: 12244221]
de Haan, J.B.; Bladier, C.; Griffiths, P.; Kelner, M.; O’Shea, R.D.; Cheung, N.S.; Bronson, R.T.; Silvestro, M.J.; Wild, S.; Zheng, S.S.; Beart, P.M.; Hertzog, P.J.; Kola, I. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J. Biol. Chem., 1998, 273(35), 22528-22536.
[http://dx.doi.org/10.1074/jbc.273.35.22528] [PMID: 9712879]
Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol., 2017, 11, 613-619.
[http://dx.doi.org/10.1016/j.redox.2016.12.035] [PMID: 28110218]
Smith, S.B.; Shute, J.M. Separation and detection of the aluminum ion in qualitative analysis. J. Chem. Educ., 1955, 32, 380.
Vallejos, S.; Muñoz, A.; Ibeas, S.; Serna, F.; García, F.C.; García, J.M. Selective and sensitive detection of aluminium ions in water via fluorescence “turn-on” with both solid and water soluble sensory polymer substrates. J. Hazard. Mater., 2014, 276, 52-57.
[http://dx.doi.org/10.1016/j.jhazmat.2014.05.017] [PMID: 24862468]
Kawahara, M.; Kato-Negishi, M. Link between aluminum and the pathogenesis of alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int. J. Alzheimers Dis., 2011, 2011276393
[http://dx.doi.org/10.4061/2011/276393] [PMID: 21423554]
Di Lorenzo, F.; Di Lorenzo, B. Iron and aluminum in Alzheimer’s disease. Neuroendocrinol. Lett., 2013, 34(6), 504-507.
[PMID: 24378455]
Mannello, F.; Ligi, D.; Canale, M. Aluminium, carbonyls and cytokines in human nipple aspirate fluids: possible relationship between inflammation, oxidative stress and breast cancer microenvironment. J. Inorg. Biochem., 2013, 128, 250-256.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.07.003] [PMID: 23916117]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 03 January, 2019
Page: [6896 - 6914]
Pages: 19
DOI: 10.2174/0929867325666181101105535
Price: $65

Article Metrics

PDF: 18