Xiao-Chai-Hu-Tang (XCHT) Intervening Irinotecan’s Disposition: The Potential of XCHT in Alleviating Irinotecan-Induced Diarrhea

Author(s): Rongjin Sun, Sumit Basu, Min Zeng, Robin Sunsong, Li Li, Romi Ghose, Wei Wang, Zhongqiu Liu, Ming Hu*, Song Gao*

Journal Name: Current Cancer Drug Targets

Volume 19 , Issue 7 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Diarrhea is a severe side effect of irinotecan, a pro-drug of SN-38 used for the treatment of many types of cancers. Pre-clinical and clinical studies showed that decreasing the colonic exposure of SN-38 can mitigate irinotecan-induced diarrhea.

Objective: The purpose of this study is to evaluate the anti-diarrhea potential of Xiao-Chai-Hu-Tang (XCHT), a traditional Chinese herbal formula, against irinotecan-induced diarrhea by determining if and how XCHT alters the disposition of SN-38.

Methods: LC-MS/MS was used to quantify the concentrations of irinotecan and its major metabolites (i.e., SN-38, SN-38G). An Intestinal perfusion model was used to determine the effect of XCHT on the biliary and intestinal secretions of irinotecan, SN-38, and SN-38G. Pharmacokinetic (PK) studies were performed to determine the impact of XCHT on the blood and fecal concentrations of irinotecan, SN-38, and SN-38G.

Results: The results showed that XCHT significantly inhibits both biliary and intestinal excretions of irinotecan, SN-38, and SN-38G (range: 35% to 95%). PK studies revealed that the fecal concentrations of irinotecan and SN-38 were significantly decreased from 818.35 ± 120.2 to 411.74 ± 138.83 µg/g or from 423.95 ± 76.44 to 245.63 ± 56.72 µg/g (p<0.05) by XCHT, respectively, suggesting the colonic exposure of SN-38 is significantly decreased by XCHT. PK studies also showed that the plasma concentrations of irinotecan, SN-38, and SN-38G were not affected by XCHT.

Conclusion: In conclusion, XCHT significantly decreased the exposure of SN-38 in the gut without affecting its plasma level, thereby possessing the potential of alleviating irinotecan-induced diarrhea without negatively impacting its therapeutic efficacy.

Keywords: Xiao-Chai-Hu-Tang, alleviating, Irinotecan, SN-38, disposition, diarrhea.

Vincent, R.M.; Lopez-Meyer, M.; McKnight, T.D.; Nessler, C.L. Sustained harvest of camptothecin from the leaves of Camptotheca acuminata. J. Nat. Prod., 1997, 60, 618-619.
Farhat, F.S. A general review of the role of irinotecan (CPT11) in the treatment of gastric cancer. Med. Oncol., 2007, 24, 137-146.
Pizzolato, J.F.; Saltz, L.B. Irinotecan (Campto) in the treatment of pancreatic cancer. Expert Rev. Anticancer Ther., 2003, 3, 587-593.
Gershenson, D.M. Irinotecan in epithelial ovarian cancer. Oncology, (Williston Park) 2002, 16, 29-31.
Verschraegen, C.F. Irinotecan for the treatment of cervical cancer. Oncology (Williston Park), 2002, 16, 32-34.
Reese, D.M.; Tchekmedyian, S.; Chapman, Y.; Prager, D.; Rosen, P.J. A phase II trial of irinotecan in hormone-refractory prostate cancer. Invest. New Drugs, 1998, 16, 353-359.
Mathijssen, R.H.; Loos, W.J.; Verweij, J.; Sparreboom, A. Pharmacology of topoisomerase I inhibitors irinotecan (CPT-11) and topotecan. Curr. Cancer Drug Targets, 2002, 2, 103-123.
Yumuk, P.F.; Aydin, S.Z.; Dane, F.; Gumus, M.; Ekenel, M.; Aliustaoglu, M.; Karamanoglu, A.; Sengoz, M.; Turhal, S.N. The absence of early diarrhea with atropine premedication during irinotecan therapy in metastatic colorectal patients. Int. J. Colorectal Dis., 2004, 19, 609-610.
Cheng, C.; Lau, J.E.; Earl, M.A. Use of atropine-diphenoxylate compared with hyoscyamine to decrease rates of irinotecan-related cholinergic syndrome. J. Community Support. Oncol., 2015, 13, 3-7.
Richardson, G.; Dobish, R. Chemotherapy induced diarrhea. J. Oncol. Pharm. Pract., 2007, 13, 181-198.
Smith, N.F.; Figg, W.D.; Sparreboom, A. Pharmacogenetics of irinotecan metabolism and transport: An update. Toxicol. In Vitro, 2006, 20, 163-175.
Lam, W.; Bussom, S.; Guan, F.; Jiang, Z.; Zhang, W.; Gullen, E.A.; Liu, S.H.; Cheng, Y.C. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci. Transl. Med., 2010, 2, 45ra59.
Conti, J.A.; Kemeny, N.E.; Saltz, L.B.; Huang, Y.; Tong, W.P.; Chou, T.C.; Sun, M.; Pulliam, S.; Gonzalez, C. Irinotecan is an active agent in untreated patients with metastatic colorectal cancer. J. Clin. Oncol., 1996, 14, 709-715.
Hecht, J.R. Gastrointestinal toxicity or irinotecan. Oncology (Williston Park), 1998, 12, 72-78.
Andreyev, J.; Ross, P.; Donnellan, C.; Lennan, E.; Leonard, P.; Waters, L. Wedlake, J. Bridgewater, R. Glynne-Jones, W. Allum, I. Chau, C.; Wilson, R.; Ferry, D. Guidance on the management of diarrhoea during cancer chemotherapy. Lancet Oncol., 2014, 15, e447-e460.
Stein, A.; Voigt, W.; Jordan, K. Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther. Adv. Med. Oncol., 2010, 2, 51-63.
Lenfers, B.H.; Loeffler, T.M.; Droege, C.M.; Hausamen, T.U. Substantial activity of budesonide in patients with irinotecan (CPT-11) and 5-fluorouracil induced diarrhea and failure of loperamide treatment. Ann. Oncol., 1999, 10, 1251-1253.
Hoff, P.M.; Saragiotto, D.F.; Barrios, C.H.; del Giglio, A.; Coutinho, A.K.; Andrade, A.C.; Dutra, C.; Forones, N.M.; Correa, M.; Portella Mdo, S.; Passos, V.Q.; Chinen, R.N.; van Eyll, B. Randomized phase III trial exploring the use of long-acting release octreotide in the prevention of chemotherapy-induced diarrhea in patients with colorectal cancer: the LARCID trial. J. Clin. Oncol., 2014, 32, 1006-1011.
Lima-Junior, R.C.; Figueiredo, A.A.; Freitas, H.C.; Melo, M.L.; Wong, D.V.; Leite, C.A.; Medeiros, R.P.; Marques-Neto, R.D.; Vale, M.L.; Brito, G.A.; Oria, R.B.; Souza, M.H.; Cunha, F.Q.; Ribeiro, R.A. Involvement of nitric oxide on the pathogenesis of irinotecan-induced intestinal mucositis: role of cytokines on inducible nitric oxide synthase activation. Cancer Chemother. Pharmacol., 2012, 69, 931-942.
Ribeiro, R.A.; Wanderley, C.W.; Wong, D.V.; Mota, J.M.; Leite, C.A.; Souza, M.H.; Cunha, F.Q.; Lima-Junior, R.C. Irinotecan- and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives. Cancer Chemother. Pharmacol., 2016, 78, 881-893.
Wallace, B.D.; Wang, H.; Lane, K.T.; Scott, J.E.; Orans, J.; Koo, J.S.; Venkatesh, M.; Jobin, C.; Yeh, L.A.; Mani, S.; Redinbo, M.R. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science, 2010, 330, 831-835.
Kurita, A.; Kado, S.; Matsumoto, T.; Asakawa, N.; Kaneda, N.; Kato, I.; Uchida, K.; Onoue, M.; Yokokura, T. Streptomycin alleviates irinotecan-induced delayed-onset diarrhea in rats by a mechanism other than inhibition of beta-glucuronidase activity in intestinal lumen. Cancer Chemother. Pharmacol., 2011, 67, 201-213.
Yokooji, T.; Kawabe, Y.; Mori, N.; Murakami, T. Effect of genistein, a natural soy isoflavone, on the pharmacokinetics and intestinal toxicity of irinotecan hydrochloride in rats. J. Pharm. Pharmacol., 2013, 65, 280-291.
Valenti Moreno, V.; Brunet Vidal, J.; Manzano Alemany, H.; Salud Salvia, A.; Llobera Serentill, M.; Cabezas Montero, I.; Servitja, S.; Tormo, E.; Bert, S.; Guma Padro, J. Prevention of irinotecan associated diarrhea by intestinal alkalization. A pilot study in gastrointestinal cancer patients. Clin. Transl. Oncol., 2006, 8, 208-212.
Gupta, E.; Wang, X.; Ramirez, J.; Ratain, M.J. Modulation of glucuronidation of SN-38, the active metabolite of irinotecan, by valproic acid and phenobarbital. Cancer Chemother. Pharmacol., 1997, 39, 440-444.
Desai, A.A.; Kindler, H.L.; Taber, D.; Agamah, E.; Mani, S.; Wade-Oliver, K.; Ratain, M.J.; Vokes, E.E. Modulation of irinotecan with cyclosporine: A phase II trial in advanced colorectal cancer. Cancer Chemother. Pharmacol., 2005, 56, 421-426.
Horikawa, M.; Kato, Y.; Sugiyama, Y. Reduced gastrointestinal toxicity following inhibition of the biliary excretion of irinotecan and its metabolites by probenecid in rats. Pharm. Res., 2002, 19, 1345-1353.
Chester, J.D.; Joel, S.P.; Cheeseman, S.L.; Hall, G.D.; Braun, M.S.; Perry, J.; Davis, T.; Button, C.J.; Seymour, M.T. Phase I and pharmacokinetic study of intravenous irinotecan plus oral ciclosporin in patients with fuorouracil-refractory metastatic colon cancer. J. Clin. Oncol., 2003, 21, 1125-1132.
Vasudev, N.S.; Jagdev, S.; Anthoney, D.A.; Seymour, M.T. Intravenous irinotecan plus oral ciclosporin. Clin. Oncol., (R Coll Radiol), 2005, 17, 646-649.
Mori, K.; Kondo, T.; Kamiyama, Y.; Kano, Y.; Tominaga, K. Preventive effect of Kampo medicine (Hangeshashin-to) against irinotecan-induced diarrhea in advanced non-small-cell lung cancer. Cancer Chemother. Pharmacol., 2003, 51, 403-406.
Kummar, S.; Copur, M.S.; Rose, M.; Wadler, S.; Stephenson, J.; O’Rourke, M.; Brenckman, W.; Tilton, R.; Liu, S.H.; Jiang, Z.; Su, T.; Cheng, Y.C.; Chu, E. A phase I study of the chinese herbal medicine PHY906 as a modulator of irinotecan-based chemotherapy in patients with advanced colorectal cancer. Clin. Colorectal Cancer, 2011, 10, 85-96.
Deng, C.; Deng, B.; Jia, L.; Tan, H.; Zhang, P.; Liu, S.; Zhang, Y.; Song, A.; Pan, L. Preventive effects of a chinese herbal formula, shengjiang xiexin decoction, on irinotecan-induced delayed-onset diarrhea in rats. Evid. Based Complement. Alternat. Med., 2017, 2017, 7350251.
Fujiwara, K.; Mochida, S.; Nagoshi, S.; Iijima, O.; Matsuzaki, Y.; Takeda, S.; Aburada, M. Regulation of hepatic macrophage function by oral administration of xiao-chai-hu-tang (sho-saiko-to, TJ-9) in rats. J. Ethnopharmacol., 1995, 46, 107-114.
Zheng, N.; Dai, J.; Cao, H.; Sun, S.; Fang, J.; Li, Q.; Su, S.; Zhang, Y.; Qiu, M.; Huang, S. Current understanding on antihepatocarcinoma effects of xiao chai hu tang and its constituents. Evid. Based Complement. Alternat. Med., 2013, 2013, 529458.
Qin, X.K.; Li, P.; Han, M.; Liu, J.P. Xiaochaihu Tang for treatment of chronic hepatitis B: A systematic review of randomized trials. Zhong Xi Yi Jie He Xue Bao, 2010, 8, 312-320.
Ohtake, N.; Nakai, Y.; Yamamoto, M.; Sakakibara, I.; Takeda, S.; Amagaya, S.; Aburada, M. Separation and isolation methods for analysis of the active principles of Sho-saiko-to (SST) oriental medicine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 812, 135-148.
Hernandez-Boussard, T.; Whirl-Carrillo, M.; Hebert, J.M.; Gong, L.; Owen, R.; Gong, M.; Gor, W.; Liu, F.; Truong, C.; Whaley, R.; Woon, M.; Zhou, T.; Altman, R.B.; Klein, T.E. The pharmacogenetics and pharmacogenomics knowledge base: Accentuating the knowledge. Nucleic Acids Res., 2008, 36, D913-D918.
Innocenti, F.; Undevia, S.D.; Ramirez, J.; Mani, S.; Schilsky, R.L.; Vogelzang, N.J.; Prado, M.; Ratain, M.J. A phase I trial of pharmacologic modulation of irinotecan with cyclosporine and phenobarbital. Clin. Pharmacol. Ther., 2004, 76, 490-502.
Kaur, M.; Badhan, R.K. Phytoestrogens modulate breast cancer resistance protein expression and function at the blood-cerebrospinal fluid barrier. J. Pharm. Pharm. Sci., 2015, 18, 132-154.
Stappaerts, J.; Brouwers, J.; Annaert, P.; Augustijns, P. In situ perfusion in rodents to explore intestinal drug absorption: Challenges and opportunities. Int. J. Pharm., 2015, 478, 665-681.
Gao, Y.; Shao, J.; Jiang, Z.; Chen, J.; Gu, S.; Yu, S.; Zheng, K.; Jia, L. Drug enterohepatic circulation and disposition: constituents of systems pharmacokinetics. Drug Discov. Today, 2014, 19, 326-340.
Sun, R.; Zeng, M.; Du, T.; Li, L.; Yang, G.; Hu, M.; Gao, S. Simultaneous determinations of 17 marker compounds in Xiao-Chai-Hu-Tang by LC-MS/MS: Application to its pharmacokinetic studies in mice. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1003, 12-21.
Basu, S.; Zeng, M.; Yin, T.; Gao, S.; Hu, M. Development and validation of an UPLC-MS/MS method for the quantification of irinotecan, SN-38 and SN-38 glucuronide in plasma, urine, feces, liver and kidney: Application to a pharmacokinetic study of irinotecan in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1015-1016, 34-41.
Xia, B.; Zhou, Q.; Zheng, Z.; Ye, L.; Hu, M.; Liu, Z. A novel local recycling mechanism that enhances enteric bioavailability of flavonoids and prolongs their residence time in the gut. Mol. Pharm., 2012, 9, 3246-3258.
Kulkarni, K.H.; Yang, Z.; Niu, T.; Hu, M. Effects of estrogen and estrus cycle on pharmacokinetics, absorption, and disposition of genistein in female Sprague-Dawley rats. J. Agric. Food Chem., 2012, 60, 7949-7956.
Chen, J.; Lin, H.; Hu, M. Metabolism of flavonoids via enteric recycling: Role of intestinal disposition. J. Pharmacol. Exp. Ther., 2003, 304, 1228-1235.
Yeh, Y.S.; Tsai, H.L.; Huang, C.W.; Wang, J.H.; Lin, Y.W.; Tang, H.C.; Sung, Y.C.; Wu, C.C.; Lu, C.Y.; Wang, J.Y. Prospective analysis of UGT1A1 promoter polymorphism for irinotecan dose escalation in metastatic colorectal cancer patients treated with bevacizumab plus FOLFIRI as the first-line setting: study protocol for a randomized controlled trial. Trials, 2016, 17, 46.
Mathijssen, R.H.; Verweij, J.; Loos, W.J.; de Bruijn, P.; Nooter, K.; Sparreboom, A. Irinotecan pharmacokinetics-pharmacodynamics: the clinical relevance of prolonged exposure to SN-38. Br. J. Cancer, 2002, 87, 144-150.
Canal, P.; Gay, C.; Dezeuze, A.; Douillard, J.Y.; Bugat, R.; Brunet, R.; Adenis, A.; Herait, P.; Lokiec, F.; Mathieu-Boue, A. Pharmacokinetics and pharmacodynamics of irinotecan during a phase II clinical trial in colorectal cancer. Pharmacology and Molecular Mechanisms Group of the European Organization for Research and Treatment of Cancer. J. Clin. Oncol., 1996, 14, 2688-2695.
Daniella Lowenberg, C.F.T. Michelle Whirl-Carrillo., https://www. pharmgkb.org/pathway/PA20012017.
Takemoto, I.; Itagaki, S.; Chiba, M.; Itoh, T.; Hirano, T.; Iseki, K. Characterization of secretory intestinal transport of the lactone form of CPT-11. Cancer Chemother. Pharmacol., 2006, 57, 129-133.
Arimori, K.; Kuroki, N.; Kumamoto, A.; Tanoue, N.; Nakano, M.; Kumazawa, E.; Tohgo, A.; Kikuchi, M. Excretion into gastrointestinal tract of irinotecan lactone and carboxylate forms and their pharmacodynamics in rodents. Pharm. Res., 2001, 18, 814-822.
Enomoto, R.; Koshiba, C.; Suzuki, C.; Lee, E. Wogonin potentiates the antitumor action of etoposide and ameliorates its adverse effects. Cancer Chemother. Pharmacol., 2011, 67, 1063-1072.
Abdallah, H.M.; Al-Abd, A.M.; El-Dine, R.S.; El-Halawany, A.M. P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A review. J. Adv. Res., 2015, 6, 45-62.
Yu, C.P.; Hsieh, Y.C.; Shia, C.S.; Hsu, P.W.; Chen, J.Y.; Hou, Y.C.; Hsieh, Y.W. Increased systemic exposure of methotrexate by a polyphenol-rich herb via modulation on efflux transporters multidrug resistance-associated protein 2 and breast cancer resistance protein. J. Pharm. Sci., 2016, 105, 343-349.
Itoh, T.; Itagaki, S.; Sumi, Y.; Hirano, T.; Takemoto, I.; Iseki, K. Uptake of irinotecan metabolite SN-38 by the human intestinal cell line Caco-2. Cancer Chemother. Pharmacol., 2005, 55, 420-424.
Ueno, Y.; Matsuda, H.; Mizutani, H.; Iwamoto, T.; Okuda, M. Involvement of specific transport system on uptake of lactone form of SN-38 in human intestinal epithelial cell line Caco-2. Biol. Pharm. Bull., 2012, 35, 54-58.
Kitagawa, S.; Takahashi, T.; Nabekura, T.; Tachikawa, E.; Hasegawa, H. Inhibitory effects of ginsenosides and their hydrolyzed metabolites on daunorubicin transport in KB-C2 cells. Biol. Pharm. Bull., 2007, 30, 1979-1981.
Yu, C.P.; Wu, P.P.; Hou, Y.C.; Lin, S.P.; Tsai, S.Y.; Chen, C.T.; Chao, P.D. Quercetin and rutin reduced the bioavailability of cyclosporine from Neoral, an immunosuppressant, through activating P-glycoprotein and CYP 3A4. J. Agric. Food Chem., 2011, 59, 4644-4648.
Hyatt, J.L.; Tsurkan, L.; Wierdl, M.; Edwards, C.C.; Danks, M.K.; Potter, P.M. Intracellular inhibition of carboxylesterases by benzil: modulation of CPT-11 cytotoxicity. Mol. Cancer Ther., 2006, 5, 2281-2288.
Prados, M.D.; Yung, W.K.; Jaeckle, K.A.; Robins, H.I.; Mehta, M.P.; Fine, H.A.; Wen, P.Y.; Cloughesy, T.F.; Chang, S.M.; Nicholas, M.K.; Schiff, D.; Greenberg, H.S.; Junck, L.; Fink, K.L.; Hess, K.R.; Kuhn, J. North American brain tumor consortium, phase 1 trial of irinotecan (cpt-11) in patients with recurrent malignant glioma: A North American brain tumor consortium study. Neuro-oncol., 2004, 6, 44-54.
Takasuna, K.; Kasai, Y.; Kitano, Y.; Mori, K.; Kobayashi, R.; Hagiwara, T.; Kakihata, K.; Hirohashi, M.; Nomura, M.; Nagai, E.; Kamataki, T. Protective effects of kampo medicines and baicalin against intestinal toxicity of a new anticancer camptothecin derivative, irinotecan hydrochloride (CPT-11), in rats. Jpn. J. Cancer Res., 1995, 86, 978-984.
Flieger, D.; Klassert, C.; Hainke, S.; Keller, R.; Kleinschmidt, R.; Fischbach, W. Phase II clinical trial for prevention of delayed diarrhea with cholestyramine/levofloxacin in the second-line treatment with irinotecan biweekly in patients with metastatic colorectal carcinoma. Oncology, 2007, 72, 10-16.
Mego, M.; Chovanec, J.; Vochyanova-Andrezalova, I.; Konkolovsky, P.; Mikulova, M.; Reckova, M.; Miskovska, V.; Bystricky, B.; Beniak, J.; Medvecova, L.; Lagin, A.; Svetlovska, D.; Spanik, S.; Zajac, V.; Mardiak, J.; Drgona, L. Prevention of irinotecan induced diarrhea by probiotics: A randomized double blind, placebo controlled pilot study. Complement. Ther. Med., 2015, 23, 356-362.
Deng, G.; Kurtz, R.C.; Vickers, A.; Lau, N.; Yeung, K.S.; Shia, J.; Cassileth, B. A single arm phase II study of a Far-Eastern traditional herbal formulation (sho-sai-ko-to or xiao-chai-hu-tang) in chronic hepatitis C patients. J. Ethnopharmacol., 2011, 136, 83-87.
Tajiri, H.; Kozaiwa, K.; Ozaki, Y.; Miki, K.; Shimuzu, K.; Okada, S. Effect of sho-saiko-to(xiao-chai-hu-tang) on HBeAg clearance in children with chronic hepatitis B virus infection and with sustained liver disease. Am. J. Chin. Med., 1991, 19, 121-129.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 01 August, 2019
Page: [551 - 560]
Pages: 10
DOI: 10.2174/1568009618666181029153255
Price: $65

Article Metrics

PDF: 45
PRC: 3