**Author(s):**
Rahul Jaiswal*,
Anshul Agarwal,
Vineeta Agarwal,
Badre Bossoufi

**Journal Name:** Recent Advances in Electrical & Electronic Engineering

Formerly Recent Patents on Electrical & Electronic Engineering

**Volume 13 , Issue 1 , 2020**

Background: This paper presents a decoupled control technique for balancing the power and voltage through grid side converter using a solid state transformer.

Methods: Decoupling control is essentially a voltage oriented control technique with the objective of eliminating cross-coupling elements. Use of this decouple technique, allows bi-directional power flow control for both active and reactive power, thereby maintaining steady state DC interference voltage.

Results: The performance of this scheme is analyzed & the results are obtained from the Matlab/Simulink model.

Conclusion: From the above analysis, it can be concluded that the decoupled control strategy can easily eliminate the cross- coupled element of a solid state transformer for the grid side converter.

**Keywords: **Grid side converter (GSC), solid state transformer (SST), voltage oriented control (VOC), dual active bridge
(DAB), direct power control (DPC), decoupled controller (DC).

[1]

R. Hassan, and G. Radman, "Survey on Smart Grid , IEEE Southeast Con 2010 (Southeast Con.)", *Proceedings of the power electronic application conference**, *pp. 210-213 2010

[2]

J.L. Brooks, *“Solid state transformer concept development”, Report of Naval Material Command.**, *Civil Engineering Laboratory, Naval Construction Battalion Center: Port Hueneme, CA, 1980.

[4]

E.R. Ronan, S.D. Sudhoff, S.F. Glover, and D.L. Galloway, "Application of power electronics to the distribution transformer In: APEC 2000", *Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition* New Orleans, LA, USA 2000, pp. 861-867.,

[5]

M. Kang, P.N. Enjeti, and I.J. Pitel, "Analysis and Design of Electronic Transformers for Electric Power Distribution System", *IEEE Trans. Power Electron.**, *vol. 14, no. 2, pp. 1133-1141, 1999.

[6]

X. She, X. Yu, F. Wang, and A.Q. Huang, "Design and demonstrate of a 3.6-kV 120-V/10-kVA solid-state transformer for smart grid application", *IEEE Trans. Power Electron.**, *vol. 29, no. 8, pp. 3982-3996, 2014.

[7]

X. Yu, X. She, X. Ni, and A.Q. Huang, "System integration and hierarchical power management strategy for a solid-state transformer interfaced microgrid system", *IEEE Trans. Power Electron.**, *vol. 29, no. 8, pp. 4414-4425, 2014.

[8]

B.M. Han, N.S. Choi, and J.Y. Lee, "New bidirectional intelligent semiconductor transformer for smart grid application", *IEEE Trans. Power Electron.**, *vol. 29, no. 8, pp. 4058-4066, 2014.

[9]

X. She, A.Q. Huang, S. Lukic, and M.E. Baran, "On integration of solid-state transformer with zonal DC microgrid", *IEEE Trans. Smart Grid**, *vol. 3, no. 2, pp. 975-985, 2012.

[10]

X. She, A.Q. Huang, and R. Burgos, "Review of solid-state transformer technologies and their application in power distribution systems", *IEEE J. Emerg. Sel. Top. Power Electron.**, *vol. 1, no. 3, pp. 186-198, 2013.

[11]

J.E. Huber, and J.W. Kolar, "Solid-state transformers: On the origins and evolution of key concepts", *IEEE Ind. Electron. Mag.**, *vol. 10, no. 3, pp. 19-28, 2016.

[12]

M. Leibl, G. Ortiz, and J.W. Kolar, "“Design and experimental analysis of a medium-frequency transformer for solid-state transformer applications”, IEEE Trans. Emerg. Sel", *Topics Power Electron.**, *vol. 5, no. 1, pp. 110-123, 2017.

[13]

K. Basu, A. Shahani, A.K. Sahoo, and N. Mohan, "A single-stage solid-state transformer for PWM AC drive with source-based commutation of leakage energy", *IEEE Trans. Power Electron.**, *vol. 30, no. 3, pp. 1734-1746, 2015.

[14]

H. Chen, A. Prasai, and D. Divan, "Dyna-C: A minimal topology for bidirectional solid state transformers", *IEEE Trans. Power Electron.**, *vol. 32, no. 2, pp. 995-1005, 2017.

[15]

H. Chen, A. Prasai, R. Moghe, K. Chintakrinda, and D. Divan, "A 50 kVA three-phase solid state transformer based on the minimal topology: Dyna-C", *IEEE Trans. Power Electron.*. Vol. 31, no. 12, pp. 8216-8137, Dec. 2016.

[16]

E.R. Ronan, S.D. Sudhoff, S.F. Glover, and D.L. Galloway, "A power electronic-based distribution transformer", *IEEE Trans. Power Deliv.**, *vol. 17, no. 2, pp. 537-543, 2002.

[17]

D.G. Shah, and M.L. Crow, "Stability design criteria for distribution systems with solid-state transformers", *IEEE Trans. Power Deliv.**, *vol. 29, no. 6, pp. 2588-2595, 2014.

[18]

A.A. Milani, M.T.A. Khan, A. Chakraborty, and I. Husain, *Equilibrium point analysis and power sharing methods for distribution systems driven by solid-state transformers*. IEEE Trans. Power Syst., Vol. 33 no. 2, pp., 1473-1483, 2018

[19]

J.S. Lai, "Designing the next generation distribution transformers: New power electronic-based hybrid and solid-state design approaches In:", *Proceedings of IASTED Power and Energy Systems* Palm Spring, CA, USA, 2003, pp. 262-267.

[20]

M. Kang, P.N. Enjeti, and I.J. Pitel, "Analysis and design of electronic transformers for electric power distribution system", * In: IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting* New Orleans, LA, USA, USA, 1997, pp. 1689-1694.

[21]

J. Kolar, and G. Ortiz, "Solid-state transformers: Key components of future traction and smart grid systems In:", *Proceedings of the International Power Electronics Conference - ECCE Asia (IPEC 2014)* Hiroshima, Japan pp. 1-15, 2014.

[22]

H. Chen, and D. Divan, "Soft-switching solid-state transformer (S4T)", *IEEE Trans. Power Electron.**, *vol. 33, no. 4, pp. 2933-2947, 2018.

[23]

A.Q. Huang, Q. Zhu, L. Wang, and L. Zhang, "15 kV SiC MOSFET: An enabling technology for medium voltage solid state transformers", *CPSS Transact. Power Electron. Appl.**, *vol. 2, no. 2, pp. 118-130, 2017.

[24]

M.T.A. Khan, A.A. Milani, A. Chakrabortty, and I. Husain, "Dynamic modeling and feasibility analysis of a solid-state transformer-based power distribution system", *IEEE Trans. Ind. Appl.**, *vol. 54, no. 1, pp. 551-562, 2018.

[25]

H. Zhao, T. Zhu, D. Cheng, B. Li, J. Ding, and Y. Li, "Research on the smart modular cascaded solid state transformer interfaced to distributed photovoltaic power generation system", * The 6th International Conference on Renewable Power Generation (RPG), Wuhan, China, 2017. pp. 1872-1879*

[26]

A.Q. Huang, "Medium-voltage solid-state transformer: Technology for a smarter and resilient grid", *IEEE Trans. Ind. Electron.**, *vol. 10, no. 3, pp. 29-42, 2016.

[27]

[28]

L. Heinemann, and G. Mauthe, "The universal power electronics based distribution transformer, an unified approach In:", *IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230) * Vancouver, BC, Canada, 2001, pp. 504-509.

[29]

B. Liu, Y. Zha, and T. Zhang, "D-Q frame predictive current control methods for inverter stage of solid state transformer", *IET Power Electron.**, *vol. 10, no. 6, pp. 687-696, 2017.

[30]

X. She, R. Burgos, G. Wang, F. Wang, and A.Q. Huang, Review of solid state transformer in the distribution system: From components to field application.In:*IEEE Energy Conversion Congress and Exposition.**, *ECCE, 2012, pp. 4077-4084.

[31]

J.W. Kolar, and J.E. Huber, "Solid-state transformer key design challenges, applicability, and future concepts , presented at the IEEE", *Appl. Power Electron. Conf. Expo.* Varna, Bulgaria 2016

[32]

J.E. Huber, D. Rothmund, L. Wang, and J.W. Kolar, Full-ZVS modulation for all-SiC ISOP-type isolation front end (IFE) solid-state transformer In:* IEEE Energy Conversion Congress and Exposition (ECCE)*. Milwaukee, WI, USA, 2016, pp. 1-8.

[33]

H. Qin, and J.W. Kimball, "Solid-state transformer architecture using AC-AC dual-active-bridge converter", *IEEE Trans. Ind. Electron.**, *vol. 60, no. 9, pp. 3720-3730, 2013.

[34]

Q. Zhu, L. Wang, L. Zhang, W. Yu, and A.Q. Huang, Improved medium voltage AC-DC rectifier based on 10kV SiC MOSFET for solid state transformer (SST) application In:* IEEE Applied Power Electronics Conference and Exposition (APEC)*. Long Beach, CA, USA, 2016, pp. 2365-2369.

[35]

I. Syed, and V. Khadkikar, "Replacing the grid interface transformer in wind energy conversion system with solid-state transformer", *IEEE Trans. Power Syst.*. , Vol. 32, no. 3, 2017, pp. 2152-2160.

[36]

S. Madhusoodhanan, "Solid-state transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters", *IEEE Trans. Ind. Appl.**, *vol. 51, no. 4, pp. 3343-3360, 2015.

[37]

F. Wang, G. Wang, A. Huang, W. Yu, and X. Ni, Design and operation of A 3.6 kV high performance solid state transformer based on 13kV SiC MOSFET and JBS diode. In:*IEEE Energy Conversion Congress and Exposition.**, *ECCE: Pittsburgh, PA, USA, 2014, pp. 4553-4560.

[38]

P. Dey, M. Datta, and N. Fernando, "A coordinated control of grid connected PMSG based wind energy conversion system under grid faults In:", 3rd IEEE International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia), Kaohsiung, Taiwan, 2017, pp. 597-602.

[39]

M.V. Gururaj, and N.P. Padhy, "A novel decentralized coordinated voltage control scheme for distribution system with DC microgrid", *IEEE Trans. Industr. Inform.**, *vol. 14, no. 5, pp. 1962-1973, 2018.

[40]

S.I. Ganesan, D. Pattabiraman, R.K. Govindarajan, M. Rajan, and C. Nagamani, "Control scheme for a bidirectional converter in a selfsustaining low-voltage dc nanogrid", *IEEE Trans. Ind. Electron.**, *vol. 62, no. 10, pp. 6317-6326, 2015.

[41]

F. Blaabjerg, R. Teodorescu, M. Liserre, and A.V. Timbus, "Overview of control and grid synchronization for distributed power generation systems", *IEEE Trans. Ind. Electron.**, *vol. 53, no. 5, pp. 1398-1409, 2006.

[42]

J. Shi, W. Gou, H. Yuan, T. Zhao, and A.Q. Huang, "Research on voltage and power balance control for cascaded modular solid-state transformer", *IEEE Trans. Power Electron.**, *vol. 26, no. 4, pp. 1154-1166, 2011.

[43]

A.R. Choudhury, S. Pati, A. Choudhury, and K.B. Mohanty, "Control of voltage & frequency of a hybrid microgrid using a FLC based bidirectional converter equipped with BESS In:", *IEEE International Conference on Technologies for Smart-City Energy Security and Power (ICSESP-2018)* Bhubaneswar, India 2018, pp. 1-6.

[44]

T. Zhao, G. Wang, S. Bhattacharya, and A.Q. Huang, "Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer", *IEEE Trans. Power Electron.**, *vol. 28, no. 4, pp. 1523-1532, 2013.

[45]

H. Iman-Eini, J-L. Schanen, S. Farhangi, and J. Roudet, "A modular strategy for control and voltage balancing of cascaded H-bridge rectifiers", *IEEE Trans. Power Electron.**, *vol. 23, no. 5, pp. 2428-2442, 2008.

[46]

J. Dannehl, C. Wessels, and F. Fuchs, "Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters", *IEEE Trans. Ind. Electron.**, *vol. 56, no. 2, pp. 380-388, 2009.

[47]

S.A. Khajehoddin, M.K. Ghartemani, P.K. Jain, and A. Bakhshai, "A control design approach for three-phase grid-connected renewable energy resources", *IEEE Transact. Sustain. Energy**, *vol. 2, no. 4, pp. 423-432, 2011.

[48]

M.P. Kazmierkowski, and L. Malesani, "Current control techniques for three‐phase voltage‐source PWM converters: A survey", *IEEE Trans. Ind. Electron.**, *vol. 45, no. 5, pp. 691-703, 1998.

[49]

F. Wang, J. Duarte, and M. Hendrix, "“Pliant active and reactive power control for grid-interactive converters under unbalanced voltage dips”, Power Electronics", *IEEE Trans. Power Electron.**, *vol. 26, no. 5, pp. 1511-1521, 2011.

[50]

J. Mohammadi, S. Vaez-Zadeh, E. Ebrahimzadeh, and F. Blaabjerg, "Combined control method for grid-side converter of doubly fed induction generator based wind energy conversion systems", *IET Renew. Power Gener.**, *vol. 12, no. 8, pp. 943-952, 2018.

[51]

E.M. Adzic, D.P. Marcetic, V.A. Katic, and M.S. Dzic, "Grid-connected voltage source converter operation under distorted grid voltage In:", *14*^{th} International Power Electronics and Motion Control Conference (EPE/PEMC) Ohrid, Macedonia 2010, pp. T11- 44-T11-51.

[52]

M. Liang, and T.Q. Zheng, "Synchronous PI control for three-phase grid-connected photovoltaic inverter In:", *Chinese Control and Decision Conference (CCDC) Xuzhou, China, 2010, pp. 2302- 2307.*

[53]

M.N.N. Amin, and O.A. Mohammed, "Vector oriented control of voltage source PWM inverter as dynamic VAR compensator for wind energy conversion system connected to utility grid In: ", *Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC)* Palm Springs, CA, USA 2010, pp. 1640- 1650.

[54]

T.C.Y. Wang, and X. Yuan, "Design of multiple-reference- frame PI controller for power convertersIn: ", * IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), * Aachen, Germany, 2004, pp. 3331- 3335.

[55]

M.P. Kazmierkowski, F. Blaabjerg, and R. Krishnan, *“Control in power electronics”, selected problem.**, *Elsevier Science: USA, 2002,518p.. ISBN: 0-12-402772-5.

[56]

L. Li, H. Nian, L. Ding, and B. Zhou, "Direct power control of DFIG system without phase-locked loop under unbalanced and harmonically distorted voltage", *IEEE Trans. Energ. Convers.**, *vol. 33, no. 1, pp. 395-405, 2018.

[57]

T. Noguchi, "Direct power control of PWM Converter without power source Voltage Sensors", *IEEE Trans. Ind. Appl.**, *vol. 34, no. 3, pp. 473-479, 1998.

Rights & PermissionsPrintExport Cite as

**Article Details**

VOLUME: 13

ISSUE: 1

Year: 2020

ISSUE: 1

Year: 2020

Pages: 9

DOI: 10.2174/2352096511666181029123631

Price: $25

**Article Metrics**

PDF: 18

HTML: 4