Snake Venom Disintegrins: An Overview of their Interaction with Integrins

Author(s): Pedro Henrique Souza Cesar, Mariana Aparecida Braga, Marcus Vinicius Cardoso Trento, Danilo Luccas Menaldo, Silvana Marcussi*

Journal Name: Current Drug Targets

Volume 20 , Issue 4 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Disintegrins are non-enzymatic proteins that interfere on cell–cell interactions and signal transduction, contributing to the toxicity of snake venoms and play an essential role in envenomations. Most of their pharmacological and toxic effects are the result of the interaction of these molecules with cell surface ligands, which has been widely described and studied. These proteins may act on platelets, leading to hemorrhage, and may also induce apoptosis and cytotoxicity, which highlights a high pharmacological potential for the development of thrombolytic and antitumor agents. Additionally, these molecules interfere with the functions of integrins by altering various cellular processes such as migration, adhesion and proliferation. This review gathers information on functional characteristics of disintegrins isolated from snake venoms, emphasizing a comprehensive view of the possibility of direct use of these molecules in the development of new drugs, or even indirectly as structural models.

Keywords: Disintegrins, hemostasis, antitumor, cell specificity, integrins, pharmacological applications.

[1]
Jimenez R, Ikonomopoulou MP, Lopez JA, Miles JJ. Immune drug discovery from venoms. Toxicon 2018; 141: 18-24.
[2]
Sánchez EE, Rodríguez-Acosta A, Palomar R, et al. Colombistatin: A disintegrin isolated from the venom of the South American snake (Bothrops colombiensis) that effectively inhibits platelet aggregation and SK-Mel-28 cell adhesion. Arch Toxicol 2009; 83(3): 271-9.
[3]
Juárez P, Comas I, González-Candelas F, Calvete JJ. Evolution of snake venom disintegrins by positive darwinian selection. Mol Biol Evol 2008; 25(11): 2391-407.
[4]
Sajevic T, Leonardi A, Križaj I. Haemostatically active proteins in snake venoms. Toxicon 2011; 57(5): 627-45.
[5]
Calvete JJ. The continuing saga of snake venom disintegrins. Toxicon 2013; 62: 40-9.
[6]
Du XY, Sim DS, Lee WH, Zhang Y. Blood cells as targets of snake toxins. Blood Cells Mol Dis 2006; 36(3): 414-21.
[7]
Lima-dos-Santos I, Della-Casa MS, Portes-Junior JA, et al. Characterization of Neuwiedin, a new disintegrin from Bothrops neuwiedi venom gland with distinct cysteine pattern. Toxicon 2015; 104: 57-64.
[8]
Calvete JJ, Marcinkiewicz C, Monleón D, et al. Snake venom disintegrins: Evolution of structure and function. Toxicon 2005; 45(8): 1063-74.
[9]
Calvete JJ, Moreno-Murciano MP, Theakston RDG, Kisiel DG, Marcinkiewicz C. Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering. Biochem J 2003; 372(Pt 3): 725-34.
[10]
Walsh EM, Marcinkiewicz C. Non-RGD-containing snake venom disintegrins, functional and structural relations. Toxicon 2011; 58(4): 355-62.
[11]
Tolomelli A, Galletti P, Baiula M, Giacomini D. Can integrin agonists have cards to play against cancer? A literature survey of small molecules integrin activators. Cancers (Basel) 2017; 9(7): 1-18.
[12]
Angulo Y, Castro A, Lomonte B, et al. Isolation and characterization of four medium-size disintegrins from the venoms of Central American viperid snakes of the genera Atropoides, Bothrops, Cerrophidion and Crotalus. Biochimie 2014; 107: 376-84.
[13]
Carbajo RJ, Sanz L, Perez A, Calvete JJ. NMR structure of bitistatin - a missing piece in the evolutionary pathway of snake venom disintegrins. FEBS J 2015; 282(2): 341-60.
[14]
Pfaff M, Tangemann K, Müller B, et al. Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V beta 3, and alpha 5 beta 1 integrins. J Biol Chem 1994; 269(32): 20233-8.
[15]
Brown MC, Eble JA, Calvete JJ, Marcinkiewicz C. Structural requirements of KTS-disintegrins for inhibition of alpha(1)beta(1) integrin. Biochem J 2009; 417(1): 95-101.
[16]
Wierzbicka-Patynowski I, Niewiarowski S, Marcinkiewicz C, et al. Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. J Biol Chem 1999; 274(53): 37809-14.
[17]
Rahman S, Aitken A, Flynn G, Formstone C, Savidge GF. Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation. Biochem J 1998; 335(Pt 2): 247-57.
[18]
Bazan-Socha S, Kisiel DG, Young B, et al. Structural requirements of MLD-containing disintegrins for functional interaction with alpha 4 beta 1 and alpha 9 beta1 integrins. Biochem 2004; 43(6): 1639-47.
[19]
Lu Q, Clemetson JM, Clemetson KJ. Snake venoms and hemostasis. J Thromb Haemost 2005; 3(8): 1791-9.
[20]
Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010; 10(1): 9-22.
[21]
Monti M, Iommelli F, Rosa V, et al. Integrin-dependent cell adhesion to neutrophil extracellular traps through engagement of fibronectin in neutrophil-like cells. PLoS One 2017; 12(2): 1-15.
[22]
Caswell PT, Vadrevu S, Norman JC. Integrins: masters and slaves of endocytic transport. Nat Rev Mol Cell Biol 2009; 10(12): 843-53.
[23]
Huveneers S, Danen EHJ. Adhesion signaling - crosstalk between integrins, Src and Rho. J Cell Sci 2009; 122(Pt 8): 1059-69.
[24]
Ata R, Antonescu CN. Integrins and cell metabolism: An intimate relationship impacting cancer. Int J Mol Sci 2017; 18(1): 1-31.
[25]
Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res 2010; 339(1): 269-80.
[26]
Pan L, Zhao Y, Yuan Z, Qin G. Research advances on structure and biological functions of integrins. Springerplus 2016; 5(1): 1-11.
[27]
Takada Y, Ye X, Simon S. The integrins. Genome Biol 2007; 8(5): 215.
[28]
Rosenow F, Ossig R, Thormeyer D, et al. Integrins as antimetastatic targets of RGD-independent snake venom components in liver metastasis [corrected]. Neoplasia 2008; 10(2): 168-76.
[29]
El Kharbili M, Robert C, Witkowski T, et al. Tetraspanin 8 is a novel regulator of ILK-driven β1 integrin adhesion and signaling in invasive melanoma cells. Oncotarget 2017; 8(10): 17140-55.
[30]
Weis SM, Cheresh DA. αV Integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med 2011; 1(1)
[http://dx.doi.org/10.1101/ cshperspect.a006478]
[31]
Garmy-Susini B, Varner JA. Roles of integrins in tumor angiogenesis and lymphangiogenesis. Lymphat Res Biol 2008; 6(3-4): 155-63.
[32]
Ley K, Rivera-Nieves J, Sandborn WJ, Shattil S. Integrin-based therapeutics: Biological basis, clinical use and new drugs. Nat Rev Drug Discov 2016; 15(3): 173-83.
[33]
Somanath PR, Malinin NL, Byzova TV. Cooperation between integrin ανβ3 and VEGFR2 in angiogenesis. Angiogenesis 2009; 12(2): 177-85.
[34]
Demircioglu F, Hodivala-Dilke K. αvβ3 Integrin and tumour blood vessels-learning from the past to shape the future. Curr Opin Cell Biol 2016; 42: 121-7.
[35]
Zhao F, Li L, Guan L, et al. Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Lett 2014; 344(1): 62-73.
[36]
Bledzka K, Smyth SS, Plow EF. Integrinα IIbβ3: From discovery to efficacious therapeutic target. Circ Res 2013; 112(8): 1189-200.
[37]
Cominetti MR, Ribeiro JU, Fox JW, Selistre-de-Araujo HS. BaG, a new dimeric metalloproteinase/disintegrin from the Bothrops alternatus snake venom that interacts with alpha5beta1 integrin. Arch Biochem Biophys 2003; 416(2): 171-9.
[38]
Schaffner F, Ray A, Dontenwill M. Integrin α5β1, the fibronectin receptor, as a pertinent therapeutic target in solid tumors. Cancers (Basel) 2013; 5(1): 27-47.
[39]
Ren J, Xu S, Guo D, Zhang J, Liu S. Increased expression of α5β1-integrin is a prognostic marker for patients with gastric cancer. Clin Transl Oncol 2014; 16(7): 668-74.
[40]
Barja-Fidalgo C, Coelho ALJ, Saldanha-Gama R, et al. Disintegrins: integrin selective ligands which activate integrin-coupled signaling and modulate leukocyte functions. Braz J Med Biol Res 2005; 38(10): 1513-20.
[41]
Rüegg C, Alghisi GC. Vascular integrins: therapeutic and imaging targets of tumor angiogenesis. Recent Results Cancer Res 2010; 180: 83-101.
[42]
Hammouda M, Montenegro M, Sánchez-del-Campo I, et al. Lebein, a snake venom disintegrin, induces apoptosis in human melanoma cells. Toxins (Basel) 2016; 8(7)
[http://dx.doi.org/10.3390/toxins8070206]
[43]
Hsu CC, Chuang WJ, Chung CH, et al. Improved antithrombotic activity and diminished bleeding side effect of a PEGylated αIIbβ3 antagonist, disintegrin. Thromb Res 2016; 143: 3-10.
[44]
Markland FS, Swenson SD. Applications of snake toxins in biomedicine.Applications of snake toxins in biomedicine, in: Venom genomics and proteomics. Springer Netherlands, Dordrecht. 2016;.
[http://dx.doi.org/10.1007/978-94-007-6416-3_37]
[45]
Arroyo AG, Andrés V. ADAMTS7 in cardiovascular disease. Circulation 2015; 131: 1156-9.
[46]
Manzine PR, Barham EJ, Vale FAC, et al. Platelet a disintegrin and metallopeptidase 10 expression correlates with clock drawing test scores in Alzheimer’s disease. Int J Geriatr Psychiatry 2014; 29(4): 414-20.
[47]
Ribeiro de Queiroz M, Mamede CCN, Morais NCG, et al. Purification and characterization of BmooAi: A new toxin from Bothrops moojenisnake venom that inhibits platelet aggregation. BioMed Res Int 2014; 2014: 1-7.
[48]
Laing GD, Moura-da-Silva AM. Jararhagin and its multiple effects on hemostasis. Toxicon 2005; 45(8): 987-96.
[49]
Huang TF, Hsu CC, Kuo YJ. Anti-thrombotic agents derived from snake venom proteins. Thromb J 2016.
[http://dx.doi.org/10.1186/s12959-016-0113-1]
[50]
Sánchez EE, Lucena SE, Reyes S, et al. Cloning, expression, and hemostatic activities of a disintegrin, r-mojastin 1, from the mohave rattlesnake (Crotalus scutulatus scutulatus). Thromb Res 2010; 126(3): 211-9.
[51]
Slagboom J, Kool J, Harrison RA, Casewell NR. Haemotoxic snake venoms: Their functional activity, impact on snakebite victims and pharmaceutical promise. Br J Haematol 2017; 177(6): 947-59.
[52]
McCleary RJR, Kini RM. Snake bites and hemostasis/thrombosis. Thromb Res 2013; 132(6): 642-6.
[53]
Serrano SMTT. The long road of research on snake venom serine proteinases. Toxicon 2013; 62: 19-26.
[54]
Fu J, Xia L. CLEC-2 and podoplanin, partners again. Blood 2016; 127(13): 1629-30.
[55]
Chang CH, Chung CH, Hsu CC, Peng HC, Huang TF. Inhibitory effects of polypeptides derived from a snake venom C-type lectin, aggretin, on tumor cell-induced platelet aggregation. J Thromb Haemost 2014; 12(4): 540-9.
[56]
Kamiguti AS. Platelets as targets of snake venom metalloproteinases. Toxicon 2005; 45(8): 1041-9.
[57]
Ramos OHP, Selistre-de-Araujo HS. Snake venom metalloproteases-structure and function of catalytic and disintegrin domains. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142(3-4): 328-46.
[58]
Koh CY, Kini RM. From snake venom toxins to therapeutics – Cardiovascular examples. Toxicon 2012; 59(4): 497-506.
[59]
Dolgos H, Freisleben A, Wimmer E, et al. In vitro and in vivo drug disposition of cilengitide in animals and human. Pharmacol Res Perspect 2016.
[http://dx.doi.org/10.1002/prp2.217]
[60]
Allen MD, Thomas GJ, Clark S, et al. Altered microenvironment promotes progression of preinvasive breast cancer: Myoepithelial expression of v 6 integrin in DCIS identifies high-risk patients and predicts recurrence. Clin Cancer Res 2014; 20(2): 344-57.
[61]
Vogetseder A, Thies S, Ingold B, et al. αv-Integrin isoform expression in primary human tumors and brain metastases. Int J Cancer 2013; 133(10): 2362-71.
[62]
Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 2015; 25(4): 234-40.
[63]
Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005; 438(7070): 932-6.
[64]
Arruda Macêdo JK, Fox JW, de Souza Castro M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr Protein Pept Sci 2015; 16(6): 532-48.
[65]
Sheu JR, Yen MH, Kan YC, et al. Inhibition of angiogenesis in vitro and in vivo: Comparison of the relative activities of triflavin, an Arg-Gly-Asp-containing peptide and anti-alpha(v)beta3 integrin monoclonal antibody. Biochim Biophys Acta 1997; 1336(3): 445-54.
[66]
Marcinkiewicz C, Calvete JJ, Marcinkiewicz MM, et al. EC3, a novel heterodimeric disintegrin from Echis carinatus venom, inhibits alpha4 and alpha5 integrins in an RGD-independent manner. J Biol Chem 1999; 274(18): 12468-73.
[67]
Hong SY, Koh YS, Chung KH, Kim DS. Snake venom disintegrin, saxatilin, inhibits platelet aggregation, human umbilical vein endothelial cell proliferation, and smooth muscle cell migration. Thromb Res 2002; 105(1): 79-86.
[68]
Kisiel DG, Calvete JJ, Katzhendler J, et al. Structural determinants of the selectivity of KTS-disintegrins for the alpha1beta1 integrin. FEBS Lett 2004; 577(3): 478-82.
[69]
Bolás G, de Rezende FF, Lorente C, et al. Inhibitory effects of recombinant RTS-jerdostatin on integrin α1β1 function during adhesion, migration and proliferation of rat aortic smooth muscle cells and angiogenesis. Toxicon 2014; 79: 45-54.
[70]
Juárez P, Bolás G, de Rezende FF, Calvete JJ, Eble JA. Recombinant expression in human cells of active integrin α1β1-blocking RTS-disintegrin jerdostatin. Toxicon 2010; 56(6): 1052-8.
[71]
Bazan-Socha S, Żuk J, Plutecka H, et al. Blocking of α1β1 and α2β1 adhesion molecules inhibits eosinophil migration through human lung microvascular endothelial cell monolayer. Postepy Hig Med Dosw (Online) 2014; 68: 1444-51.
[72]
Staniszewska I, Walsh EM, Rothman VL, et al. Effect of VP12 and viperistatin on inhibition of collagen-receptor-dependent melanoma metastasis. Cancer Biol Ther 2009; 8(15): 1507-16.
[73]
Schmitmeier S, Markland FS, Schönthal AH, Chen TC. Potent mimicry of fibronectin-induced intracellular signaling in glioma cells by the homodimeric snake venom disintegrin contortrostatin. Neurosurgery 2005; 57(1): 141-53.
[74]
Minea R, Helchowski C, Rubino B, et al. Development of a chimeric recombinant disintegrin as a cost-effective anti-cancer agent with promising translational potential. Toxicon 2012; 59(4): 472-86.
[75]
Kang IC, Kim DS, Jang Y, Chung KH. Suppressive mechanism of salmosin, a novel disintegrin in B16 melanoma cell metastasis. Biochem Biophys Res Commun 2000; 275(1): 169-73.
[76]
Hong SY, Lee H, You WK, et al. The snake venom disintegrin salmosin induces apoptosis by disassembly of focal adhesions in bovine capillary endothelial cells. Biochem Biophys Res Commun 2003; 302(3): 502-8.
[77]
Min CK, Lee JW, Chung KH, Park HW. Control of specific growth rate to enhance the production of a novel disintegrin, saxatilin, in recombinant Pichia pastoris. J Biosci Bioeng 2010; 110(3): 314-9.
[78]
Colinas O, Moreno-Domínguez A, Zhu HL, et al. α5-Integrin-mediated cellular signaling contributes to the myogenic response of cerebral resistance arteries. Biochem Pharmacol 2015; 97(3): 281-91.
[79]
Calderon LA, Sobrinho JC, Zaqueo KD, et al. Antitumoral activity of snake venom proteins: new trends in cancer therapy. BioMed Res Int 2014; 2014: 1-19.
[80]
Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: Mechanistic findings and clinical applications. Nat Rev Cancer 2014; 14(9): 598-610.
[81]
Mahmoudi M, Delhaye C, Wakabayashi K, et al. Integrilin in patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction. J Interv Cardiol 2011; 24(4): 351-6.
[82]
Saviola AJ, Burns PD, Mukherjee AK, Mackessy SP. The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells. Int J Biol Macromol 2016; 88: 457-64.
[83]
Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: How fat depots respond differently to pathophysiological cues. Diabetologia 2016; 59(6): 1075-88.
[84]
Bauters D, Scroyen I, Deprez-Poulain R, Lijnen HR. ADAMTS5 promotes murine adipogenesis and visceral adipose tissue expansion. Thromb Haemost 2016; 116(4): 694-704.
[85]
Lin D, Chun TH, Kang L. Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem Pharmacol 2016; 119: 8-16.
[86]
Lin YT, Tang CH, Chuang WJ, et al. Inhibition of adipogenesis by RGD-dependent disintegrin. Biochem Pharmacol 2005; 70(10): 1469-78.
[87]
Sanchez EF, Gabriel LM, Gontijo S, et al. Structural and functional characterization of a P-III metalloproteinase, leucurolysin-B, from Bothrops leucurus venom. Arch Biochem Biophys 2007; 468(2): 193-204.
[88]
Brando C, Marcinkiewicz C, Goldman B, McLane MA, Niewiarowski S. EC3, a heterodimeric disintegrin from Echis carinatus, inhibits human and murine alpha4 integrin and attenuates lymphocyte infiltration of Langerhans islets in pancreas and salivary glands in nonobese diabetic mice. Biochem Biophys Res Commun 2000; 267(1): 413-7.
[89]
Coelho ALJ, Freitas MS, Mariano-Oliveira A, et al. RGD- and MLD-disintegrins, jarastatin and EC3, activate integrin-mediated signaling modulating the human neutrophils chemotaxis, apoptosis and IL-8 gene expression. Exp Cell Res 2004; 292(2): 371-84.
[90]
Cicala C, Arthos J. Virion attachment and entry: HIV gp120 Env biotinylation, gp120 Env, or integrin ligand-binding assay. Methods Mol Biol 2014; 1087: 3-12.
[91]
Racicot K, Cardenas I, Wunsche V, et al. Viral infection of the pregnant cervix predisposes to ascending bacterial infection. J Immunol 2013; 191(2): 934-41.
[92]
Li C, Jiao S, Wang G, et al. The Immune adaptor ADAP regulates reciprocal TGF-β1-Integrin crosstalk to protect from Influenza virus infection. PLOS Pathog 2015; 11(4): doi:10.1371/journal. ppat.1004824.
[93]
Fu WM, Chang TK, Sun WZ, et al. Inhibition of neuropathic pain by a potent disintegrin--triflavin. Neurosci Lett 2004; 368(3): 263-8.
[94]
Neeper MP, Jacobson MA. Sequence of a cDNA encoding the platelet aggregation inhibitor trigramin. Nucleic Acids Res 1990; 18(14): 4255.
[95]
Trikha M, Rote WE, Manley PJ, Lucchesi BR, Markland FS. Purification and characterization of platelet aggregation inhibitors from snake venoms. Thromb Res 1994; 73(1): 39-52.
[96]
Zhou XD, Ding CH, Tai H, et al. A novel disintegrin, jerdonatin, inhibits platelet aggregation and sperm–egg binding. Comp Biochem Physiol Part B Biochem Mol Biol 2004; 139(1): 117-22.
[97]
Eble JA, Bruckner P, Mayer U. Vipera lebetina venom contains two disintegrins inhibiting Laminin-binding 1 integrins. J Biol Chem 2003; 278(29): 26488-96.
[98]
Minea RO, Helchowski CM, Zidovetzki SJ, et al. Vicrostatin – an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities. PLoS One 2010; 5(6)
[http://dx.doi.org/10.1371/journal.pone.0010929]
[99]
Galán JA, Sánchez EE, Rodríguez-Acosta A, et al. Inhibition of lung tumor colonization and cell migration with the disintegrin crotatroxin 2 isolated from the venom of Crotalus atrox. Toxicon 2008; 51(7): 1186-96.
[100]
Zhou XD, Jin Y, Chen RQ, et al. Purification, cloning and biological characterization of a novel disintegrin from Trimeresurus jerdonii venom. Toxicon 2004; 43(1): 69-75.
[101]
Senn H, Klaus W. The nuclear magnetic resonance solution structure of flavoridin, an antagonist of the platelet GP IIb-IIIa receptor. J Mol Biol 1993; 232(3): 907-25.
[102]
Sánchez EE, Galán JA, Russell WK, et al. Isolation and characterization of two disintegrins inhibiting ADP-induced human platelet aggregation from the venom of Crotalus scutulatus scutulatus (Mohave Rattlesnake). Toxicol Appl Pharmacol 2006; 212(1): 59-68.
[103]
Lucena SE, Jia Y, Soto JG, et al. Anti-invasive and anti-adhesive activities of a recombinant disintegrin, r-viridistatin 2, derived from the Prairie rattlesnake (Crotalus viridis viridis). Toxicon 2012; 60(1): 31-9.
[104]
Bilgrami S, Tomar S, Yadav S, et al. Crystal structure of schistatin, a disintegrin homodimer from saw-scaled viper (Echis carinatus) at 2.5 A resolution. J Mol Biol 2004; 341(3): 829-37.
[105]
Tomar S, Yadav S, Chandra V, Kumar P, Singh TP. Purification, crystallization and preliminary X-ray diffraction studies of disintegrin (schistatin) from saw-scaled viper (Echis carinatus). Acta Crystallogr D Biol Crystallogr 2001; 57(Pt 11): 1669-70.
[106]
Ramos OHP, Kauskot A, Cominetti MR, et al. A novel alpha(v)beta (3)-blocking disintegrin containing the RGD motive, DisBa-01, inhibits bFGF-induced angiogenesis and melanoma metastasis. Clin Exp Metastasis 2008; 25(1): 53-64.
[107]
Huang TF, Wang WJ, Teng CM, Liu CS, Ouyang C. Purification and characterization of an antiplatelet peptide, arietin, from Bitis arietans venom. Biochim Biophys Acta 1991; 1074(1): 136-43.
[108]
Coelho AL, Freitas MS, Oliveira-Carvalho AL, et al. Effects of jarastatin, a novel snake venom disintegrin, on neutrophil migration and actin cytoskeleton dynamics. Exp Cell Res 1999; 251(2): 379-87.
[109]
Yeh CH, Peng HC, Huang TF. Accutin, a new disintegrin, inhibits angiogenesis in vitro and in vivo by acting as integrin alphavbeta3 antagonist and inducing apoptosis. Blood 1998; 92(9): 3268-76.
[110]
Huang TF, Sheu JR, Teng CM. A potent antiplatelet peptide, triflavin, from Trimeresurus flavoviridis snake venom. Biochem J 1991; 277(Pt 2): 351-7.
[111]
Kawasaki T, Sakai Y, Taniuchi Y, et al. Biochemical characterization of a new disintegrin, flavostatin, isolated from Trimeresurus flavoviridis venom. Biochimie 1996; 78(4): 245-52.
[112]
Williams J, Rucinski B, Holt J, Niewiarowski S. Elegantin and albolabrin purified peptides from viper venoms; homologies with the RGDS domain of fibrinogen and von Willebrand factor. Biochim Biophys Acta - Protein Struct Mol Enzymol 1990; 1039(1): 81-9.
[113]
Rucinski B, Niewiarowski S, Holt JC, Soszka T, Knudsen KA. Batroxostatin, an Arg-Gly-Asp-containing peptide from Bothrops atrox, is a potent inhibitor of platelet aggregation and cell interaction with fibronectin. Biochim Biophys Acta 1990; 1054(3): 257-62.
[114]
Pinto A, Angulo Y, Jiménez R, Lomonte B. Isolation of bothrasperin, a disintegrin with potent platelet aggregation inhibitory activity, from the venom of the snake Bothrops asper. Rev Biol Trop 2003; 51(1): 253-9.
[115]
Liu CZ, Peng HC, Huang TF. Crotavirin, a potent platelet aggregation inhibitor purified from the venom of the snake Crotalus viridis. Toxicon 1995; 33(10): 1289-98.
[116]
Huang TF, Liu CZ, Ouyang CH, Teng CM. Halysin, an antiplatelet Arg-Gly-Asp-containing snake venom peptide, as fibrinogen receptor antagonist. Biochem Pharmacol 1991; 42(6): 1209-19.
[117]
Jaseja M, Lu X, Williams JA, et al. 1H-NMR assignments and secondary structure of dendroaspin, an RGD-containing glycoprotein IIb-IIIa (alpha IIb-beta 3) antagonist with a neurotoxin fold. Eur J Biochem 1994; 226(3): 861-8.
[118]
Joubert FJ, Taljaard N. Some properties and the complete primary structures of two reduced and S-carboxymethylated polypeptides (S5C1 and S5C10) from Dendroaspis jamesoni kaimosae (Jameson’s mamba) venom. Biochim Biophys Acta 1979; 579(1): 228-33.
[119]
Fernandez JH, Silva CA, Assakura MT, Camargo ACM, Serrano SMT. Molecular cloning, functional expression, and molecular modeling of bothrostatin, a new highly active disintegrin from Bothrops jararaca venom. Biochem Biophys Res Commun 2005; 329(2): 457-64.
[120]
Oshikawa K, Terada S. Ussuristatin 2, a novel KGD-bearing disintegrin from Agkistrodon ussuriensis venom. J Biochem 1999; 125(1): 31-5.
[121]
Okuda D, Morita T. Purification and characterization of a new RGD/KGD-containing dimeric disintegrin, piscivostatin, from the venom of Agkistrodon piscivorus piscivorus: the unique effect of piscivostatin on platelet aggregation. J Biochem 2001; 130(3): 407-15.
[122]
Scarborough RM, Rose JW, Hsu MA, et al. Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J Biol Chem 1991; 266(15): 9359-62.
[123]
Gan ZR, Gould RJ, Jacobs JW, Friedman PA, Polokoff MA. Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. J Biol Chem 1988; 263(36): 19827-32.
[124]
Hantgan RR, Stahle MC, Connor JH, et al. The disintegrin echistatin stabilizes integrin alphaIIb beta3’s open conformation and promotes its oligomerization. J Mol Biol 2004; 342(5): 1625-36.
[125]
Calvete JJ, Schrader M, Raida M, et al. The disulphide bond pattern of bitistatin, a disintegrin isolated from the venom of the viper Bitis arietans. FEBS Lett 1997; 416(2): 197-202.
[126]
McLane MA, Kowalska MA, Silver L, Shattil SJ, Niewiarowski S. Interaction of disintegrins with the alpha IIb beta 3 receptor on resting and activated human platelets. Biochem J 1994; 301(Pt 2): 429-36.
[127]
Tseng YL, Peng HC, Huang TF. Rhodostomin, a disintegrin, inhibits adhesion of neutrophils to fibrinogen and attenuates superoxide production. J Biomed Sci 2004; 11(5): 683-91.
[128]
Smith JB, Theakston RDG, Coelho ALJ, et al. Characterization of a monomeric disintegrin, ocellatusin, present in the venom of the Nigerian carpet viper, Echis ocellatus. FEBS Lett 2002; 512(1-3): 111-5.
[129]
Shin J, Hong SY, Chung K, et al. Solution structure of a novel disintegrin, salmosin, from Agkistrondon halys venom. Biochemistry 2003; 42(49): 14408-15.
[130]
Adler M, Lazarus RA, Dennis MS, Wagner G. Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science 1991; 253(5018): 445-8.
[131]
Shimokawa K, Jia LG, Shannon JD, Fox JW. Isolation, sequence analysis, and biological activity of atrolysin E/D, the non-RGD disintegrin domain from Crotalus atrox venom. Arch Biochem Biophys 1998; 354(2): 239-46.
[132]
Carey CM, Bueno R, Gutierrez DA, et al. Recombinant rubistatin (r-Rub), an MVD disintegrin, inhibits cell migration and proliferation, and is a strong apoptotic inducer of the human melanoma cell line SK-Mel-28. Toxicon 2012; 59(2): 241-8.
[133]
Marcinkiewicz C, Calvete JJ, Vijay-Kumar S, et al. Structural and functional characterization of EMF10, a heterodimeric disintegrin from Eristocophis macmahoni venom that selectively inhibits alpha5beta 1 integrin. Biochemistry 1999; 38(40): 13302-9.
[134]
Calvete JJ, Fox JW, Agelan A, Niewiarowski S, Marcinkiewicz C. The presence of the WGD motif in CC8 heterodimeric disintegrin increases its inhibitory effect on alphaII(b)beta3, alpha(v)beta3, and alpha5beta1 integrins. Biochem 2002; 41(6): 2014-21.
[135]
Moreno-Murciano MP, Monleón D, Marcinkiewicz C, Calvete JJ, Celda B. NMR solution structure of the non-RGD disintegrin obtustatin. J Mol Biol 2003; 329(1): 135-45.
[136]
Olfa KZ, José L, Salma D, et al. Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis. Lab Invest 2005; 85(12): 1507-16.
[137]
Sanz L, Chen RQ, Pérez A, et al. cDNA cloning and functional expression of jerdostatin, a novel RTS-disintegrin from Trimeresurus jerdonii and a specific antagonist of the alpha1beta1 integrin. J Biol Chem 2005; 280(49): 40714-22.
[138]
Shih CH, Chiang TB, Wang WJ. Inhibition of integrins αv/α5-dependent functions in melanoma cells by an ECD-disintegrin acurhagin-C. Matrix Biol 2013; 32(3-4): 152-9.
[139]
Higuchi DA, Almeida MC, Barros CC, et al. Leucurogin, a new recombinant disintegrin cloned from Bothrops leucurus (white-tailed-jararaca) with potent activity upon platelet aggregation and tumor growth. Toxicon 2011; 58(1): 123-9.
[140]
Calvete JJ, Marcinkiewicz C, Sanz L. Snake venomics of Bitis gabonica gabonica. Protein family composition, subunit organization of venom toxins, and characterization of dimeric disintegrins bitisgabonin-1 and bitisgabonin-2. J Proteome Res 2007; 6(1): 326-36.
[141]
Okuda D, Koike H, Morita T. A new gene structure of the disintegrin family: A subunit of dimeric disintegrin has a short coding region. Biochem 2002; 41(48): 14248-54.
[142]
Gasmi A, Srairi N, Guermazi S, et al. Amino acid structure and characterization of a heterodimeric disintegrin from Vipera lebetina venom. Biochim Biophys Acta 2001; 1547(1): 51-6.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 4
Year: 2019
Page: [465 - 477]
Pages: 13
DOI: 10.2174/1389450119666181022154737
Price: $65

Article Metrics

PDF: 36
HTML: 7