Title:Searching for Potential Novel BCR-ABL Tyrosine Kinase Inhibitors Through G-QSAR and Docking Studies of Some Novel 2-Phenazinamine Derivatives
VOLUME: 16 ISSUE: 5
Author(s):Mayura Kale*, Gajanan Sonwane and Yogesh Choudhari
Affiliation:Department of Pharmaceutical Chemistry, Government College of Pharmacy, Aurangabad-431 005, Maharashtra, Department of Pharmaceutical Chemistry, Government College of Pharmacy, Aurangabad-431 005, Maharashtra, Department of Pharmaceutical Chemistry, Government College of Pharmacy, Aurangabad-431 005, Maharashtra
Keywords:2-phenazinamine, autodock 4.2, BCR-ABL, Tyrosine kinase, anticancer, docking.
Abstract:
Background: The computational studies on 2-phenazinamines with their protein targets
have been carried out to design compounds with potential anticancer activity and selectivity over specific
BCR-ABL Tyrosine kinase.
Methods: This has been achieved through G-QSAR and molecular docking studies. Computational
chemistry was done by using VLife MDS 4.3 and Autodock 4.2. 2D and structures of ligands were
drawn by using Chemdraw 2D Ultra 8.0 and were converted into 3D. These were optimized by using
semi-empirical method called MOPAC. The protein structure was downloaded as PDB file from RCSC
protein data bank. PYMOL was used for studying the binding interactions. The G-QSAR models generated
were found to possess training (r2=0.8074), cross-validation (q2=0.6521), and external validation
(pred_r2=0.5892) which proved their statistical significance. Accordingly, the newly designed series of
2-phenazinamines viz., 3-chloro-4-aryl-1-(phenazin-7-yl) azetidin-2-ones (4a-4e) were subjected to wet
lab synthesis. Alternatively, docking studies were also conducted which showed binding interactions of
some derivatives with > 30% higher binding energy values than the standard anticancer drug imatinib.
The lower energy values obtained for these derivatives indicate energetically favorable interaction with
protein binding site as compared to standard imatinib.
Results: G-QSAR and molecular docking studies predicted better anticancer activity for the synthesized
azitidine derivatives of 2-phenazinamines (4a-4e) as compared to standard drug.
Conclusion: It is therefore surmised that the molecular manipulations at appropriate sites of these derivatives
suggested by structure activity relationship data will prove to be beneficial in raising anticancer
potential.