Integrated Cheminformatics-Molecular Docking Approach to Drug Discovery Against Viruses

Author(s): Muhammad Faraz Anwar, Ramsha Khalid, Alina Hasanain, Sadaf Naeem, Shamshad Zarina, Syed Hani Abidi*, Syed Ali*

Journal Name: Infectious Disorders - Drug Targets
Formerly Current Drug Targets - Infectious Disorders

Volume 20 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: In the current study, we present an integrated in silico cheminformaticsmolecular docking approach to screen and test potential therapeutic compounds against viruses. Fluoroquinolones have been shown to inhibit HCV replication by targeting HCV NS3-helicase. Based on this observation, we hypothesized that natural analogs of fluoroquinolones will have similar or superior inhibitory potential while having potentially fewer adverse effects.

Methods: To screen for natural analogs of fluoroquinolones, we devised an integrated in silico Cheminformatics-Molecular Docking approach. We used 17 fluoroquinolones as bait reference, to screen large databases of natural analogs. 10399 natural compounds and their derivatives were retrieved from the databases. From these compounds, molecules bearing physicochemical similarities with fluoroquinolones were analyzed using a cheminformatics-docking approach.

Results: From the 10399 compounds screened using our cheminformatics approach, only 20 compounds were found to share physicochemical similarities with fluoroquinolones, while the remaining 10379 compounds were physiochemically different from fluoroquinolones. Molecular docking analysis showed 32 amino acids in the HCV NS3 active site that were most frequently targeted by fluoroquinolones and their natural analogues, indicating a functional similarity between the two groups of compounds.

Conclusion: This study describes a speedy and inexpensive approach to complement drug discovery and design against viral agents. The in silico analyses we used here can be employed to shortlist promising compounds/putative drugs that can be further tested in wet-lab.

Keywords: Cheminformatics, molecular docking, antiviral agents, drug, discovery, virus.

[1]
World Health Organisation. Hepatitis C. World Health Organisation; 2014 [updated April 2014; cited 2012 28 July];. 2014 April 2014.http://www.who.int/mediacentre/factsheets/fs164/en/#
[2]
Negro, F.; Alberti, A. The global health burden of hepatitis C virus infection.Liver Int 2011. 31(s2), (Suppl. 2), 1-3.
[http://dx.doi.org/10.1111/j.1478-3231.2011.02537.x] [PMID: 21651699]
[3]
Druyts, E.; Thorlund, K.; Wu, P.; Kanters, S.; Yaya, S.; Cooper, C.L.; Mills, E.J. Efficacy and safety of pegylated interferon alfa-2a or alfa-2b plus ribavirin for the treatment of chronic hepatitis C in children and adolescents: a systematic review and meta-analysis. Clin. Infect. Dis., 2013, 56(7), 961-967.
[http://dx.doi.org/10.1093/cid/cis1031] [PMID: 23243171]
[4]
Graham, C.S.; Swan, T. A path to eradication of hepatitis C in low- and middle-income countries. Antiviral Res., 2015, 119, 89-96.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.004] [PMID: 25615583]
[5]
Hepatitis C fact sheet. 2016 July , 2016.Available from:. http://www.who.int/mediacentre/factsheets/fs164/en/
[6]
Richter, S.; Parolin, C.; Palumbo, M.; Palù, G. Antiviral properties of quinolone-based drugs. Curr. Drug Targets Infect. Disord., 2004, 4(2), 111-116.
[http://dx.doi.org/10.2174/1568005043340920] [PMID: 15180459]
[7]
Yamaya, M.; Nishimura, H.; Hatachi, Y.; Yasuda, H.; Deng, X.; Sasaki, T.; Mizuta, K.; Kubo, H.; Nagatomi, R. Levofloxacin inhibits rhinovirus infection in primary cultures of human tracheal epithelial cells. Antimicrob. Agents Chemother., 2012, 56(8), 4052-4061.
[http://dx.doi.org/10.1128/AAC.00259-12] [PMID: 22585227]
[8]
Wang, X.; Miyake, H.; Okamoto, M.; Saito, M.; Fujisawa, J.; Tanaka, Y.; Izumo, S.; Baba, M. Inhibition of the tax-dependent human T-lymphotropic virus type I replication in persistently infected cells by the fluoroquinolone derivative k-37. Mol. Pharmacol., 2002, 61(6), 1359-1365.
[http://dx.doi.org/10.1124/mol.61.6.1359] [PMID: 12021397]
[9]
M Witvrouw1, et al., Broad-Spectrum Antiviral Activity and Mechanism of Antiviral Action of the Fluoroquinolone Derivative K-12. Antivir Chem Chemother, 1998, 9(5), 403-411.
[10]
Baba, M.; Okamoto, M.; Makino, M.; Kimura, Y.; Ikeuchi, T.; Sakaguchi, T.; Okamoto, T. Potent and selective inhibition of human immunodeficiency virus type 1 transcription by piperazinyloxoquinoline derivatives. Antimicrob. Agents Chemother., 1997, 41(6), 1250-1255.
[http://dx.doi.org/10.1128/AAC.41.6.1250] [PMID: 9174179]
[11]
Ikeda, S.; Yazawa, M.; Nishimura, C. Antiviral activity and inhibition of topoisomerase by ofloxacin, a new quinolone derivative. Antiviral Res., 1987, 8(3), 103-113.
[http://dx.doi.org/10.1016/0166-3542(87)90064-7] [PMID: 2827566]
[12]
Leung, A.Y.; Chan, M.T.; Yuen, K.Y.; Cheng, V.C.; Chan, K.H.; Wong, C.L.; Liang, R.; Lie, A.K.; Kwong, Y.L. Ciprofloxacin decreased polyoma BK virus load in patients who underwent allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis.,, 2005, 40(4), 528-537.
[http://dx.doi.org/10.1086/427291] [PMID: 15712075]
[13]
Komatsu, M. Pilot study of ofloxacin and interferon-alpha combination therapy for chronic hepatitis C without sustained response to initial interferon administration. Canadian journal of gastroenterology, 1997, 11(6), 507-511.
[14]
Negro, F.; Male, P.J.; Perrin, L.; Giostra, E.; Hadengue, A. Treatment of chronic hepatitis C with α-interferon plus ofloxacin in patients not responding to α-interferon alone. J. Hepatol., 1998, 29(3), 369-374.
[http://dx.doi.org/10.1016/S0168-8278(98)80053-6] [PMID: 9764982]
[15]
Khan, I.A.; Siddiqui, S.; Rehmani, S.; Kazmi, S.U.; Ali, S.H. Fluoroquinolones inhibit HCV by targeting its helicase. Antivir. Ther. (Lond.), 2012, 17(3), 467-476.
[http://dx.doi.org/10.3851/IMP1937] [PMID: 22293206]
[16]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[17]
Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci., 2003, 43(6), 1947-1958.
[http://dx.doi.org/10.1021/ci034160g] [PMID: 14632445]
[18]
Goyal, R.K.; Singh, G.; Madan, A.K. Models for anti-tumor activity of bisphosphonates using refined topochemical descriptors. Naturwissenschaften, 2011, 98(10), 871-887.
[http://dx.doi.org/10.1007/s00114-011-0839-3] [PMID: 21892780]
[19]
Khatri, N.; Lather, V.; Madan, A.K. Diverse models for anti-HIV activity of purine nucleoside analogs. Chem. Cent. J., 2015, 9(1), 29.
[http://dx.doi.org/10.1186/s13065-015-0109-0] [PMID: 26019722]
[20]
Wei, Y.; Li, J.; Qing, J.; Huang, M.; Wu, M.; Gao, F.; Li, D.; Hong, Z.; Kong, L.; Huang, W.; Lin, J. Discovery of novel hepatitis C virus NS5B polymerase inhibitors by combining random forest, multiple e-pharmacophore modeling and docking. PLoS One, 2016, 11(2)e0148181
[http://dx.doi.org/10.1371/journal.pone.0148181] [PMID: 26845440]
[21]
Schneidman-Duhovny, D. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res,, 2005, 33, W363-7.
[http://dx.doi.org/10.1093/nar/gki481]
[22]
Kim, D.W.; Kim, J.; Gwack, Y.; Han, J.H.; Choe, J. Mutational analysis of the hepatitis C virus RNA helicase. J. Virol., 1997, 71(12), 9400-9409.
[http://dx.doi.org/10.1128/JVI.71.12.9400-9409.1997] [PMID: 9371600]
[23]
Shah, A.A.; Siddiqui, S.; Ali, S. HCV Helicase as a Therapeutic Target, in Virology II: Advanced Issues, i. Press, Editor; , 2014.
[24]
Alves, V.M.; Muratov, E.; Fourches, D.; Strickland, J.; Kleinstreuer, N.; Andrade, C.H.; Tropsha, A. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds. Toxicol. Appl. Pharmacol., 2015, 284(2), 262-272.
[http://dx.doi.org/10.1016/j.taap.2014.12.014] [PMID: 25560674]
[25]
Ehrman, T.M.; Barlow, D.J.; Hylands, P.J. Virtual screening of Chinese herbs with Random Forest. J. Chem. Inf. Model., 2007, 47(2), 264-278.
[http://dx.doi.org/10.1021/ci600289v] [PMID: 17381165]
[26]
Naeem, S.; Hylands, P.; Barlow, D. Construction of an Indonesian herbal constituents database and its use in Random Forest modelling in a search for inhibitors of aldose reductase. Bioorg. Med. Chem., 2012, 20(3), 1251-1258.
[http://dx.doi.org/10.1016/j.bmc.2011.12.033] [PMID: 22261024]
[27]
Gu, M.; Rice, C.M. Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism. Proc. Natl. Acad. Sci. USA, 2010, 107(2), 521-528.
[http://dx.doi.org/10.1073/pnas.0913380107] [PMID: 20080715]
[28]
Tai, C-L.; Pan, W.C.; Liaw, S.H.; Yang, U.C.; Hwang, L.H.; Chen, D.S. Structure-based mutational analysis of the hepatitis C virus NS3 helicase. J. Virol., 2001, 75(17), 8289-8297.
[http://dx.doi.org/10.1128/JVI.75.17.8289-8297.2001] [PMID: 11483774]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 2
Year: 2020
Published on: 13 May, 2020
Page: [150 - 159]
Pages: 10
DOI: 10.2174/1871526518666181019162359
Price: $65

Article Metrics

PDF: 20
HTML: 4