[1]
Robbie, K.; Sit, J.C.; Brett, M.J. Advanced techniques for glancing angle deposition. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom., 1998, 16(3), 1115-1122.
[2]
Robbie, K.; Beydaghyan, G.; Brown, T.; Dean, C.; Adams, J.; Buzea, C. Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure. Rev. Sci. Instrum., 2004, 75(4), 1089-1097.
[3]
Oliva-Ramírez, M.; Gil-Rostra, J.; Yubero, F.; González-Elipe, A.R. Robust polarization active nanostructured 1D Bragg Microcavities as optofluidic label-free refractive index sensor. Sens. Actuators B Chem., 2018, 256, 590-599.
[4]
Singh, A.; Sharma, A.; Tomar, M.; Gupta, V. Growth of highly porous ZnO nanostructures for carbon monoxide gas sensing. Surf. Coat. Tech., 2018, 343, 49-56.
[5]
Ollitrault, J.; Martin, N.; Rauch, J.Y.; Sanchez, J.B.; Berger, F. Improvement of ozone detection with GLAD WO3 films. Mater. Lett., 2015, 155, 1-3.
[6]
Song, Y.G.; Shim, Y.S.; Kim, S.; Han, S.D.; Moon, H.G.; Noh, M.S.; Kang, C.Y. Downsizing gas sensors based on semiconducting metal oxide: Effects of electrodes on gas sensing properties. Sens. Actuators B Chem., 2017, 248, 949-956.
[7]
Briley, C.; Mock, A.; Korlacki, R.; Hofmann, T.; Schubert, E.; Schubert, M. Effects of annealing and conformal alumina passivation on anisotropy and hysteresis of magneto-optical properties of cobalt slanted columnar thin films. Appl. Surf. Sci., 2017, 421, 320-324.
[8]
Zhou, W.; Brock, J.; Khan, M.; Eid, K.F. Oblique angle deposition-induced anisotropy in Co2FeAl films. J. Magn. Magn. Mater., 2018, 456, 353-357.
[9]
El Beainou, R.; Salut, R.; Robert, L.; Cote, J.M.; Potin, V.; Martin, N. Anisotropic conductivity enhancement in inclined W-Cu columnar films. Mater. Lett., 2018, 232, 126-129.
[10]
Daza, L.G.; Canché-Caballero, V.; Díaz, E.C.; Castro-Rodríguez, R.; Iribarren, A. Tuning optical properties of CdTe films with nanocolumnar morphology grown using OAD for improving light absorption in thin-film solar cells. Superlattices Microstruct., 2017, 111, 1126-1136.
[11]
Gupta, M.C.; Ungaro, C.; Foley, J.J.; Gray, S.K. Optical nanostructures design, fabrication, and applications for solar/thermal energy conversion. Sol. Energy, 2018, 165, 100-114.
[12]
Karthick, P.; Vijayanarayanan, D.; Sridharan, M.; Sanjeeviraja, C.; Jeyadheepan, K. Optimization of substrate temperature and characterization of tin oxide based transparent conducting thin films for application in dye-sensitized solar cells. Thin Solid Films, 2017, 631, 1-11.
[13]
Fu, Y.Q.; Luo, J.K.; Nguyen, N.T.; Walton, A.J.; Flewitt, A.J.; Zu, X.T.; Du, H. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog. Mater. Sci., 2017, 89, 31-91.
[14]
Kiema, G.K.; Jensen, M.O.; Brett, M.J. Glancing angle deposition thin film microstructures for microfluidic applications. Chem. Mater., 2005, 17(16), 4046-4048.
[15]
Barranco, A.; Borras, A.; Gonzalez-Elipe, A.R.; Palmero, A. Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Prog. Mater. Sci., 2016, 76, 59-153.
[16]
Guvendik, S.; Trabzon, L.; Ramazanoglu, M. The effect of Si nano-columns in 2-D and 3-D on cellular behaviour: Nanotopography-induced CaP deposition from differentiating mesenchymal stem cells. J. Nanosci. Nanotechnol., 2011, 11(10), 8896-8902.
[17]
Kennedy, S.R.; Brett, M.J. Porous broadband antireflection coating by glancing angle deposition. Appl. Opt., 2003, 42(22), 4573-4579.
[18]
Messier, R; Gehrke, T.; Frankel, C.; Venugopal, V. C.; Otano, W.; Lakhtakia, A. Engineered sculptured nematic thin films. J. Vacuum
Sci. Technol. A Vacuum Surfaces Films, 1997, 15(4), 2148-2152.
[19]
Rice, C.; Mock, A.; Sekora, D.; Schmidt, D.; Hofmann, T.; Schubert, E.; Schubert, M. Control of slanting angle, porosity, and anisotropic optical constants of slanted columnar thin films via in situ nucleation layer tailoring. Appl. Surf. Sci., 2017, 421, 766-771.
[20]
Kahn, S.B.; Hou, M.; Shuang, S.; Zhang, Z. Morphological influence of TiO2 nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes. Appl. Surf. Sci., 2017, 400, 184-193.
[21]
Sumigawa, T.; Chen, S.; Yukishita, T.; Kitamura, T. In situ observation of tensile behavior in a single silicon nano-helix grown by glancing angle deposition. Thin Solid Films, 2017, 636, 70-77.
[22]
Tokas, R.B.; Jena, S.; Misal, J.S.; Rao, K.D.; Polaki, S.R.; Pratap, C.; Udupa, D.V.; Thakur, S.; Kumar, S.; Sahoo, N.K. Study of ZrO2 thin films deposited at glancing angle by radio frequency magnetron sputtering under varying substrate rotation. Thin Solid Films, 2018, 645, 290-299.
[23]
Ohring, M. The materials science of thin films; Academic Press: San Diego, 1992, pp. 115-116.
[24]
Hawkeye, M.M.; Brett, M.J. Glancing angle deposition: Fabrication,
properties, and applications of micro-and nanostructured thin
films. J. Vacuum Sci. Technol. A Vacuum Surfaces Films, 2007, 25(5), 1317-1335.
[25]
Broughton, J.N.; Brett, M.J. Electrochemical capacitance in manganese thin films with chevron microstructure. Electrochem. Solid-State Lett., 2002, 5(12), A279-A282.
[26]
Suzuki, M.; Taga, Y. Numerical study of the effective surface area of obliquely deposited thin films. J. Appl. Phys., 2001, 90(11), 5599-5605.
[27]
Sazideh, M.R.; Dizaji, H.R.; Ehsani, M.H.; Moghadam, R.Z. Modification of the morphology and optical properties of SnS films using glancing angle deposition technique. Appl. Surf. Sci., 2017, 405, 514-520.
[28]
He, L.; Jiang, C.; Wang, H.; Lai, D. Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells. IEEE Electron Device Lett., 2011, 32(10), 1406-1408.
[29]
Can, M.F.; Guvendik, S.; Benli, B.; Trabzon, L.; Kizil, H.; Celik, M.S. Predicting the extent of hydrophilicity on Si nano-column surfaces. Materialwissenschaft und Werkstofftechnik., 2012, 43(5), 366-372.
[30]
Khranovskyy, V.; Ekblad, T.; Yakimova, R.; Hultman, L. Surface morphology effects on the light-controlled wettability of ZnO nanostructures. Appl. Surf. Sci., 2012, 258(20), 8146-8152.
[31]
Kurihara, K.; Suzuki, Y.; Suto, K.; Shiba, N.; Nakano, T.; Tominaga, J. Wettability control using large-area nanostructured film. Microelectron. Eng., 2010, 87(5-8), 1424-1427.
[32]
An, T.; Deng, X.; Liu, S.; Wang, S.; Ju, J.; Dou, C. Growth and roughness dependent wetting properties of CeO2 films prepared by glancing angle deposition. Ceram. Int., 2018, 44(8), 9742-9745.
[33]
Abdi, F.; Savaloni, H.; Placido, F. Influence of number of pitches and substrate on the nanostructure and optical properties of ZnS helical sculptured thin films. Opt. Commun., 2016, 380, 69-78.