Design of Patient Specific Spinal Implant (Pedicle Screw Fixation) using FE Analysis and Soft Computing Techniques

Author(s): Jayanta Kumar Biswas, Swati Dey, Santanu Kumar Karmakar, Amit Roychowdhury*, Shubhabrata Datta

Journal Name: Current Medical Imaging
Formerly: Current Medical Imaging Reviews

Volume 16 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: This work uses genetic algorithm (GA) for optimum design of patient specific spinal implants (pedicle screw) with varying implant diameter and bone condition. The optimum pedicle screw fixation in terms of implant diameter is on the basis of minimum strain difference from intact (natural) to implantation at peri-prosthetic bone for the considered six different peri-implant positions.

Methods: This design problem is expressed as an optimization problem using the desirability function, where the data generated by finite element analysis is converted into an artificial neural network (ANN) model. The finite element model is generated from CT scan data. Thereafter all the ANN predictions of the microstrain in six positions are converted to unitless desirability value varying between 0 and 1, which is then combined to form the composite desirability. Maximization of the composite desirability is done using GA where composite desirability should be made to go up as close as possible to 1. If the composite desirability is 1, then all ‘strain difference values in 6 positions’ are 0.

Results: The optimum solutions obtained can easily be used for making patient-specific spinal implants.

Keywords: Spinal implant, pedicle screw, microstrain, design, modeling, optimization, finite element analysis, artificial neural network, genetic algorithm, composite desirability.

[1]
Moramarco V, Pérez del Palomar A, Pappalettere C, Doblaré M. An accurate validation of a computational model of a human lumbosacral segment. J Biomech 2010; 43(2): 334-42.
[http://dx.doi.org/10.1016/j.jbiomech.2009.07.042] [PMID: 19909959]
[2]
Rohlmann A, Zander T, Rao M, Bergmann G. Applying a follower load delivers realistic results for simulating standing. J Biomech 2009; 42(10): 1520-6.
[http://dx.doi.org/10.1016/j.jbiomech.2009.03.048] [PMID: 19433325]
[3]
Riggs BL, Melton Iii LJ, Robb RA, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 2004; 19(12): 1945-54.
[http://dx.doi.org/10.1359/jbmr.040916] [PMID: 15537436]
[4]
Russo CR, Lauretani F, Bandinelli S, et al. Aging bone in men and women: Beyond changes in bone mineral density. Osteoporos Int 2003; 14(7): 531-8.
[http://dx.doi.org/10.1007/s00198-002-1322-y] [PMID: 12827220]
[5]
Reynolds KJ, Cleek TM, Mohtar AA, Hearn TC. Predicting cancellous bone failure during screw insertion. J Biomech 2013; 46(6): 1207-10.
[http://dx.doi.org/10.1016/j.jbiomech.2013.01.021] [PMID: 23466167]
[6]
Inceoglu S, Ferrara L, McLain RF. Pedicle screw fixation strength: Pullout versus insertional torque. Spine J 2004; 4(5): 513-8.
[http://dx.doi.org/10.1016/j.spinee.2004.02.006] [PMID: 15363421]
[7]
Yerby SA, Ehteshami JR, McLain RF. Loading of pedicle screws within the vertebra. J Biomech 1997; 30(9): 951-4.
[http://dx.doi.org/10.1016/S0021-9290(97)00037-7] [PMID: 9302618]
[8]
Chen SI, Lin RM, Chang CH. Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions. Med Eng Phys 2003; 25(4): 275-82.
[http://dx.doi.org/10.1016/S1350-4533(02)00219-9] [PMID: 12649011]
[9]
Skalli W, Robin S, Lavaste F, Dubousset J. A biomechanical analysis of short segment spinal fixation using a three-dimensional geometric and mechanical model. Spine 1993; 18(5): 536-45.
[http://dx.doi.org/10.1097/00007632-199304000-00004] [PMID: 8484143]
[10]
Shokrieh MM, Rezaei D. Analysis and optimization of a composite leaf spring. Compos Struct 2003; 60(3): 317-25.
[http://dx.doi.org/10.1016/S0263-8223(02)00349-5]
[11]
Lee DC, Lee JI. Structural optimization design for large mirror. Opt Lasers Eng 2004; 42(1): 109-17.
[http://dx.doi.org/10.1016/S0143-8166(03)00079-4]
[12]
Hsu CC, Chao CK, Wang JL, Lin J. Multiobjective optimization of tibial locking screw design using a genetic algorithm: Evaluation of mechanical performance. J Orthop Res 2006; 24(5): 908-16.
[http://dx.doi.org/10.1002/jor.20088] [PMID: 16528743]
[13]
Hernández JA. Optimum operating conditions for heat and mass transfer in foodstuffs drying by means of neural network inverse. Food Control 2009; 20(4): 435-8.
[http://dx.doi.org/10.1016/j.foodcont.2008.07.005]
[14]
Schneider P, Schneider A, Schwarz P. A modular approach for simulation-based optimization of MEMS. Microelectronics J 2002; 33(1-2): 29-38.
[http://dx.doi.org/10.1016/S0026-2692(01)00101-X]
[15]
Schmid F, Hirschen K, Meynen S, Schäfer M. An enhanced approach for shape optimization using an adaptive algorithm. Finite Elem Anal Des 2005; 41(5): 521-43.
[http://dx.doi.org/10.1016/j.finel.2004.07.005]
[16]
Uysal H, Gul R, Uzman U. Optimum shape design of shell structures. Eng Struct 2007; 29(1): 80-7.
[http://dx.doi.org/10.1016/j.engstruct.2006.04.007]
[17]
Ajaal TT, Smith RW. Employing the Taguchi method in optimizing the scaffold production process for artificial bone grafts. J Mater Process Technol 2009; 209(3): 1521-32.
[http://dx.doi.org/10.1016/j.jmatprotec.2008.04.001]
[18]
Hwang RL, Lin TP, Liang HH, Yang KH, Yeh TC. Additive model for thermal comfort generated by matrix experiment using orthogonal array. Build Environ 2009; 44(8): 1730-9.
[http://dx.doi.org/10.1016/j.buildenv.2008.11.009]
[19]
Gatti CJ, Doro LC, Langenderfer JE, et al. Evaluation of three methods for determining EMG-muscle force parameter estimates for the shoulder muscles. Clin Biomech (Bristol, Avon) 2008; 23(2): 166-74.
[http://dx.doi.org/10.1016/j.clinbiomech.2007.08.026] [PMID: 17945401]
[20]
Brown AM. A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Comput Methods Programs Biomed 2001; 65(3): 191-200.
[http://dx.doi.org/10.1016/S0169-2607(00)00124-3] [PMID: 11339981]
[21]
Schöllhorn WI. Applications of artificial neural nets in clinical biomechanics. Clin Biomech (Bristol, Avon) 2004; 19(9): 876-98.
[http://dx.doi.org/10.1016/j.clinbiomech.2004.04.005] [PMID: 15475120]
[22]
Gismondi RC, Almeida RM, Infantosi AF. Artificial neural networks for infant mortality modelling. Comput Methods Programs Biomed 2002; 69(3): 237-47.
[http://dx.doi.org/10.1016/S0169-2607(02)00006-8] [PMID: 12204451]
[23]
Roy S, Dey S, Khutia N, Chowdhury AR, Datta S. Design of patient specific dental implant using FE analysis and computational intelligence techniques. Appl Soft Comput 2018; 65: 272-9.
[http://dx.doi.org/10.1016/j.asoc.2018.01.025]
[24]
Anderson JA. An introduction to neural networks. Cambridge: MIT press 1995.
[http://dx.doi.org/10.7551/mitpress/3905.001.0001]
[25]
Sinha A, Dey SS, Chattopadhyay PP, Datta S. Optimization of mechanical property and shape recovery behavior of Ti-( 49 at.%) Ni alloy using artificial neural network and genetic algorithm. Mater Des 2013; 46: 227-34.
[http://dx.doi.org/10.1016/j.matdes.2012.10.023]
[26]
Wang GG, Gandomi AH, Alavi AH. An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl Math Model 2014; 38(9-10): 2454-62.
[http://dx.doi.org/10.1016/j.apm.2013.10.052]
[27]
Dey S, Ganguly S, Datta S. In silico design of high strength aluminium alloy using multi-objective GA. In: International Conference on Swarm, Evolutionary, and Memetic Computing. 2014 Dec 18-20; Bhubaneswar, India. Springer 2014; pp. 16-27.
[28]
Yi JH, Wang J, Wang GG. Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem. Adv Mech Eng 2016; 8(1): 1-13.
[http://dx.doi.org/10.1177/1687814015624832]
[29]
Harrington Edwin Jr C. The desirability function/harrington EC. Industrial Quality Control 1965; pp. 494-8.
[30]
Goldberg DE. Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesely 1989.
[31]
Wang GG, Gandomi AH, Alavi AH. Stud krill herd algorithm. Neurocomputing 2014; 128: 363-70.
[http://dx.doi.org/10.1016/j.neucom.2013.08.031]
[32]
Rizk-Allah RM, El-Sehiemy RA, Deb S, Wang GG. A novel fruit fly framework for multi-objective shape design of tubular linear synchronous motor. J Supercomput 2017; 73(3): 1235-56.
[http://dx.doi.org/10.1007/s11227-016-1806-8]
[33]
Das P, Mukherjee S, Ganguly S, Bhattacharyay BK, Datta S. Genetic algorithm based optimization for multi-physical properties of HSLA steel through hybridization of neural network and desirability function. Comput Mater Sci 2009; 45(1): 104-10.
[http://dx.doi.org/10.1016/j.commatsci.2008.03.050]
[34]
Gao M, Lei W, Wu Z, Liu D, Shi L. Biomechanical evaluation of fixation strength of conventional and expansive pedicle screws with or without calcium based cement augmentation. Clin Biomech (Bristol, Avon) 2011; 26(3): 238-44.
[http://dx.doi.org/10.1016/j.clinbiomech.2010.10.008] [PMID: 21084138]
[35]
Biswas JK, Rana M, Majumder S, Karmakar SK, Roychowdhury A. Effect of two-level pedicle-screw fixation with different rod materials on lumbar spine: A finite element study. J Orthop Sci 2018; 23(2): 258-65.
[http://dx.doi.org/10.1016/j.jos.2017.10.009] [PMID: 29113764]
[36]
Shin DS, Lee K, Kim D. Biomechanical study of lumbar spine with dynamic stabilization device using finite element method. Comput Aided Des 2007; 39(7): 559-67.
[http://dx.doi.org/10.1016/j.cad.2007.03.005]
[37]
Tsuang YH, Chiang YF, Hung CY, Wei HW, Huang CH, Cheng CK. Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation--a finite element study. Med Eng Phys 2009; 31(5): 565-70.
[http://dx.doi.org/10.1016/j.medengphy.2008.11.012] [PMID: 19117789]
[38]
Hall SJ. Basic biomechanics Humanities, social sciences & world languages. New York: McGraw-Hill 1995.
[39]
Nabhani F, Wake M. Computer modelling and stress analysis of the lumbar spine. J Mater Process Technol 2002; 127(1): 40-7.
[http://dx.doi.org/10.1016/S0924-0136(02)00195-4]
[40]
Majumder S, Roychowdhury A, Pal S. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body. Med Eng Phys 2007; 29(10): 1167-78.
[http://dx.doi.org/10.1016/j.medengphy.2006.11.001] [PMID: 17270483]
[41]
Ciarelli MJ, Goldstein SA, Kuhn JL, Cody DD, Brown MB. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthop Res 1991; 9(5): 674-82.
[http://dx.doi.org/10.1002/jor.1100090507] [PMID: 1870031]
[42]
Biswas J, Karmakar S, Majumder S, Banerjee PS, Saha S, Roychowdhury A. Optimization of spinal implant screw for lower vertebra through finite element studies. J Long Term Eff Med Implants 2014; 24(2-3): 99-108.
[http://dx.doi.org/10.1615/JLongTermEffMedImplants.2014006264] [PMID: 25272208]
[43]
Zhang QH, Teo EC. Finite element application in implant research for treatment of lumbar degenerative disc disease. Med Eng Phys 2008; 30(10): 1246-56.
[http://dx.doi.org/10.1016/j.medengphy.2008.07.012] [PMID: 18804398]
[44]
Galbusera F, Bellini CM, Anasetti F, Ciavarro C, Lovi A, Brayda-Bruno M. Rigid and flexible spinal stabilization devices: a biomechanical comparison. Med Eng Phys 2011; 33(4): 490-6.
[http://dx.doi.org/10.1016/j.medengphy.2010.11.018] [PMID: 21177135]
[45]
Kumar S. Neural networks: A classroom approach. New York: McGraw-Hill Education 2004.
[46]
Gatza PE, McMillan RC. The use of experimental design and computerized data analysis in elastomer development studies Army mobility equipment research and development center fort. Belvoir Va 1973.
[47]
Derringer G, Suich R. Simultaneous optimization of several response variables. J Qual Technol 1980; 12(4): 214-9.
[http://dx.doi.org/10.1080/00224065.1980.11980968]
[48]
Nandi AK, Deb K. In: materials science and engineering: Concepts, methodologies, tools, and applications. Hershey: IGI Global 2017; pp. 185-229


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Page: [371 - 382]
Pages: 12
DOI: 10.2174/1573405614666181018122538
Price: $65

Article Metrics

PDF: 11
HTML: 2